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The proof of the theorem can be obtained by using Ornstein’s Igomor-
phism Theorem [3] and Roklin’s decomposition theorem [6], which can
be formulated in the following form:

TEEOREM 6. Let fiy, iz be two invariant measures on X and let V1 Vg
be the decomposition on ergodic components of fj, and iy, respectively. The
dynamical systems (X, #,T,f,) and (X » B, Ty iky) are isomorphic iff
there ewists an invertible measure-preserving tramsformation 8: (M gy »y)
= (Myy v;) such that for a.e. (modw,) ue .M, the ergodic dynamical systems
(X, 8,7, n) and (X,B,T,8,) are isomorphic.

Remark 4. If s =2 then m,(log2) =1, m,(log2) = 0 for n=2
and for a € <0, log2) we must have m,(a) = 0 for n = 3,4,... fs>2
then m,(logs) =1, m,(logs) =0, n =2,3,..., and the remaining
meagures may have arbitrary types.
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Abstract. Lot a = (a,) denote & stable nuclear exponent sequence of finite
type. It is shown that a subspace X of 4, (e) with a basis is either isomorphic to a sub-
gpace of A (a) or X has a complemented subspace which is isomorphic to a power
geries space of finite type. Also applications of this result to spaces of analytic functions
are discussed. :

Introduction. Throughout, we let a= (e,) denote a nuclear exponent
sequence of finite type which is assumed to be stable [6] (i.e. (ay,/a,)
it bounded). By subspace we mean a closed, infinite-dimensional subspace.
Recently, Dubingky [§] characterized Xothe spaces which are isororphic
to subspaces of a power series space A;{a) of finite type. In particular,
the power series space A, (a) of infinite type is isomorphic to a subspace
of A,(a) ([81). The main result of this note is the following.

THBOREM 1. A subspace X of A,(a) with a basis is either isomorphic
to & subspace of A, («) or X has a complemented subspace which is isomorphic
10 a power series space of finite type.

We note that a subspace of 4, (a) cannot have a subspace isomorphic
to a power series space of finito type ([20]). For the special case of a, = n'/?,
the corresponding power series space of infinite type is isomorphic to the
space O(C% of entire functions in d variagbles and the corresponding power
geries gpaces of finito type is isomorphic to the space 0(4% of funct{ona
analytic in the d-dimengional unit polycylinder ([15]). In the final section,
we apply Theorom 1 to spaces of analytic functions and obtain the fol-
lowing result.

Temorem 2. Let M be a Stein manifold of dimension d and asswme that
O(M) has a basis. Then O(M) is either isomorphic to 0(C% or Q(_M ) has
a complemented subspace isomorphic o a power serics space of finite type.

Wo introduce some terminology in the following section, which leads
to the proof of Theorem 1. For any undefined terminology_ we refer to EQ],
[12], and [6]. This research was supported by the Scientific and Technical
Research Council of Turkey.
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Proof of Theorem 1. A locally convex space X is said to have property
(DN) if the topology of X ean be defined by an increasing sequence of
norms || || such that the inequality

ol < Neelhgmy 101
ig satistied for cach € X and & =1, 2, ... ([18]: 2.1, Sutz). Such a space is
necessarily metrizable. This condition was introduced by Vogt in [18],
where it was proved that a nuclear locally convex space X is isomorphic
to a subspace of the space (s) of rapidly decreasing sequences if and only
if X hag property (DN).
A countable family P - {(p%)} of sequences will be called o G ooset
([16], [6]) if the following ave satisfied:
(1) pp =1 and 1 <py<ph,, for cvery b and neN = {0,1,2, )
(ii) for each ke N there is o j with (pf)* == O(pl).
The Kéthe space A(P) defined by such a set P is called a G-space
([16]). In particular, a power series space of infinite type is a @ -space.
The diametral dimension A(X) of a locally convex space X ig the
set of all sequences (&,) such that for each absolutely convex neighbor-
hood U in X there is another such neighborhood V in X with lim E.0,(V, U)
= 0, where d,,(V, U) is the nth Kolmogorov diameter of ¥ with respect
to U ([12], [16]). If X is nuclear, one can replace the Kolmogorov diameter
d,, in the above definition by the n-th Gelfand diameter ([16]). This number
i defined by y,(V, U) =infint{y > 0: VnLc U} where the gecond in-
fimum is taken over all subspaces L of X with codimension not exceeding n.
A nuclear @,-space A(P) is isomorphic to a subspace of (s) ([4]) and
its diametral dimension is equal to AP)Y ([16]).
Proof of Theorem 1. Let (]| |,) be a gsequence of norms on X
satisfying the (DN)-inequality, which can be written in the form
lloe ) Sy
@lery il
for @ 5% 0. Repeated applications of this inequality yield
lerm ol
Il g gom Nl s
for each %,j and m. I U, = {x e X: loly < 1} and it U, ;0L < pU,
for some subspace L and y > 0, we have for ¢ e L,
”m”k—{-j lloz
T
from the above inequality. Hence
UprosNL < P(UpyynL) <y U,.
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Thus
Yol Uragy Un) < 90 (Upyqy Up)2.
Since X is agsumed o be isomorphic to a subspace of 4, (a), for each k, m
we can find an e> 0 with
Y (Uspms Up) < exp(— €ay,) .
Glven R > 0, wo choose ¢ such that 2% > R. Since
P Uh-l-z s Ulc) % Y UYM-m? Ula)zq < exp( —Ran)?

(As(@)) = A(X). Hence X is a Ay(a)-nuclear space
with basis and property (DN). M. Alpseymen has proved that such a space
is isomorphie to & subspace of A, (a) ([1]). Now, we assume X does not
have property (DN) and show that it has a complemented subspace isomor-
phic to a power geries space of finite type.

Let (y,) be a basic sequence in ;(a) such that X iy isomorphic to
the cloged linear span of (y,). If (¢;) denotes the canonical basis of A,(a)

and if
Yn zzt?%
7

et
ak = |yl = sup (7|6~ m,

It A = {(af),en}, then X is isomorphic to the Koéthe space A(4) by the
basis theorem. for nuclear spaces ([12]). A(4) has property (DN) if there
is a k&, such that for each % there is an m with

(ay) = O(afoay)
([181). So, by our assumption, there is a p, with
(a3

ala™

sup
n

for each m € N. We now choose a subsequence I, = (n;) of N with

(afh)? > j o} o,
Then
(1) Lim (ah a2 /(aB1)?) = 0
nely

for every m e N. We now consider the Kéthe space A(4y,) where
Ay, = {(0f)ner,: k€ N},
and claim that it does not have property (DN).

6 — Studia Mathematica LXIX, 1
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If we assume the contary, we can choose an increasing sequence (%)
with &, = p, and lim#; = oo such that

2)
for every ¢ e N ([18]; 2.1. Satz). Let

(a+1)* = O(dtalers),  mel,

05 = max{g: of = |2|oxp(—a,/k)}.

By the fundamental inequality in [14] we have

ex( ] (1 R\ DA 11
P I\ Bt \W\OXP _aﬂﬁ(iwm))

for every (n, k&, j) e N° It follows from (3) that

3)

1 \Ton/(7e,—~1)
a,n (A1}
ex2(=eg) < (5]
and
a;iu Feqleq/(Fey — )
(w—aﬁ* ) < exp( -—a«,:.o).
S0 we have
affo \Fra—DIle=ko) g1
ia"’i 3 < a’ko *
n n

Since k; ko (k —%y) > ky(ke—1), from (1) we obtain therefore

‘a¥o\*1ko gl
(4) lim (“—",H) S0
nel; [ @0

for every ¢ e N. On the other hand, applying (2) repeatedly, we find an

i 6 N with
(_“_ﬁ.l.)klko —of%
ol oy

and this contradicts (4). Hence the claim is verified. So now we can chooso
Pe With
(a72)

ala

sup = 00

nely

for each m e NV
and a subsequence I, of I, such that

liza(az a7? (@22)?) = 0.
nely .
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Thus, we can chooso by induction snbsequences I, and p, e ¥ with

(a) I is & subsequence of I,
Ic o

lim —"

nely, (“ﬁk)“

By the diagonal process we choose a sequence I which is a subge-

quence of cach I, It follows that, for every &k e N there is a p, € N such

that

== ( for each meXN.

(h)

alal
lim -t = 0
nel (a'nla)
for every m ¢ N. This means thati 1(4;), the Kothe space generated by
'A'I = {(a’ﬁ)nﬂ: ke N};

i8 & (dy)-space and by w result of Dubingky ([8]; Proposition 6) it iy isomor-
phice to a finite type power serics space.

Remark. Our thanks are due to the referee for suggesting a simplifi-
cation of the first part of the proof. Indeed, a slightly more elaborate argu-
ment along the same line, gives that the diametral dimension of a nuclear
Fréchot space X with property (DN) is equal to the dual of a suitable
@ -8pace.

Applications, Wo let O(M) denote the space of analytic functions
on a-8tein complex gpace M with, the topology of uniform convergence on
compacta. These gpaces provide one with important and interesting
examples of nuclear Fréchot spaces and are gtudied from that point of
view by various authors ([18], [11], [21]). By passing to its envelope
of holomorphy if necessary, we see that the space of analytic functions
defined on an open counected subset of €% is isomorphic to some O (M)
for a suitable Stein manifold M ([9]; XII Theorem, p. 49). (Although we
shall not mention it again, we shall only consider connected, Hausdorif,
separable complex manifolds.) Our fivst result shows that O(M) isisomorphic
to & subspace of o power series space of finite type.

LivmA. 4. Let M be a complew manifold of dimension d. Then O(M)
i8 isomorphic to a subspace of O(A4% where 4% denotes the unit polycylinder
in C%

Proof. In view of a result by Fornaess and Stout ([8], Main Theorem)
there is & holomorphic map ¢ from 4% onto M. It I': O(M) ~ 0(4% is
detined by Tf(e) = f(p(2)), # e 4% then it is easily that T is injective,
continuous and has closed range.

We recall that 0(4% resp. 0(C% is isomorphic to the finite type
resp. infinite type power series space generated by the sequence (nM%y ([1B7).
We are now ready to prove Theorem 2 stated in the introduction.
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Proof of Theorem 2. By Lemma 4 we know that 0 (M) is isomorphic
to a subspace of A, (n/4) and we assumed O (M) has a bagis. By Theoré&n 1
we hfwe to show that if O(M) is isomorphic to a subspace of A.m(ﬂzll‘zj
2:( Jﬁd)oj((;élgl).f.h&s property (DN)), then O(M) must be isomorphic to

Without loss of generality we can assume, via the imbedding theorem
for Stein manifolds ([9]; p. 225), that M is & closed subvariety of some ¢
It follows from the Oka~Cartan theory that the restriction (;I)(!,l'ibt()x' fron{
O(Cf) to O(MM) i8 & continnous linear surjection. Since O (M) is :’ussumed
juo.lmvo. proporty (DN), by Theorem 3.3 of [7], wo conclude that 0 (M)
iy isomorphie to a power series space 4., (f)for some f. By following a line
of argument due to Mitiagin and Henkin ([11]), wo shall show that 4 (8
is isomorphic to A (n'/%), "

We fix an analytic function f from M to €% such that the interior
of f(M), which wo will denote by 4, is non-empty. Weo find a sequence
#; € C% such that the sets {z +#}; cover C% O(2,4.4#) can bo naturally
%'clentified with a subspace of O (M) for each ¢ € N. We dofine 7 from O(Gd)
into O(M)*, the cartesian produet of countably many copies of O(M),
by L(g) = (9|24 )er. It is easy to seec that T is an igomorphism of
0(¢% onto a cloged subspace of O(M)™. In particnlar, wo have

(1) 4(0(M)*) = 4(0(0%).

(Z?n the othe}; hand, O(M)> is isomorphic to a subspaco of 0(C%™, and
since 4(0(C%) = 4(0(C%™) by stability of 0(C%), we have 4(0(0%)
<= A[O(M)) and so from (1) we geb

(2) 4(0(M)°) = 4(0(CY).

We know 4(0(M)) = A,(B)' and if f® denotes the sequence obtained
from f by repeating f, k-times, f, k-times, ete., wo have A, (p®) is iso-
morphic to the cartesian product of k-copies of A (B) ([17]). Hence from
(2) we have

(-]
(3) A(O(M)™) = () Au(B®) = A, (n¥y,
Iom=l
If b is the sequence whose mth term i oxp(—g,), we let B = {(3®:
=1,2,...}. By (3) the Kothe space A(B) is contained in A (W4 and
the inclusion map of A(B) into 4, (n*®); is bounded, TLis moeans that
there is a k and a j with

1/6% = O(exp(j n')),
Using the stability of (n''%), we get from above B = O(n*) and so

Ae(B) « Au(n'l%'. Bince the other inclusion i already sh
. Y own
that 4 (B) is isomorphic to 4, (n¥4), v shown, we have
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Remark. If wo combine Lemma 4 again with Proposition 6 of [5]
and Lemma 2.0 a of [11], we obtain that O (M) is isomorphic to 0(4%
it and only if O(M) has a basis and the (dy)-property.
In view ol the Oka-Cartan theory for a Stein manifold M, we have
an. exact sequence of the form

(%) 0->I5% 0% o0

for some §, where § and R ave continuous linear operators. It is of interest
to know when an oxact sequence of typoe () splits, i.c., when there is
a continuous linear operator It O (M) — O(€”) such that BT is the ident-
ity on O(M) ([11]; Seetion 6.5).

SoRoLLARY. If M is a Stein manifold of dimension d and if O(DM)
has o basis, then an cxact soquence of ype (x) splits if and only if O(D)
45 dsomorphic to O(C%.

Proof. If (x) splits, then O(M) cannot contain a complemented
subspace isomorphic to a power series spaco of finite type. This follows from
a result of Zahariuto [20] whieh states that o continuous linear operator
from & finite type power series space into an infinite type power series
spaco is always compaet. Tleneo O (M) is isomorphic to 0 (%) by Theorem 2.
The converge is given in [11]; Prop. 6.4.

Remark: Let V be an algebraic variety in O", ie. V = {zeC":
fi(#) == 0, ¢ == 1,2, ..., &} where cach f; iy a polynomial in n variables.
Dijukov and Mitingin {2] proved that O (V) is isomorphic to 0(C%, where d
is equal to the dimension of V. An alternatoe proof can be given as follows:

Wo write 7 as  finite union of manifolds M; with max(dimM;) = d
([19]; Theorem 66, p. 93). Applying Lemma 4 to cach M; and using the
stability of 0(4%, we imbed O(V) into 0(4%. It is shown in [2] thab
0 (V) iy isomorphic to o subspace of 0 (C") with basis and so by Theorem 1
O(V) is isomorphic to » subspace of 0(C?). The diametral dimension argu-
ment used in the proof of Theorem 2 can be repeatod to obtain that O(V)
iy isomorphio to O(C%) itself.
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An extension theorem of functionals
on comuutative semigroups

by
YUJIL KOBAYABMI (Tokushinm)

Abetract, Gonoralizing the Sandwich Thoeorem, wo give an extension theorem
of ndditive functions to [~ eo, 4+ 00] on commutative semigroups. Several regults
ineluding some of R. Kuulman’s rosults are derived from it.

The HMahn-Banaclh type theorem on commutative semigroups has
been studied by many authors. The most general and efficient result
nughti be what is ealled the Sandwich Theorem, which is a generalization
of the Mazur-Orlicz theorem [7] and was proved originally by Kaufman [3]
and established by Kranz [6] and Puchssteiner [1]. Especially Fuchssteiner
doduced many related results from it,

In this note woe will generalize the Sandwich Theorem and give an
extension theorem of fanctionaly on commutative semigroups, from which
sovoral known results follow naturally.

Let @& be o commutative semigroup with a compatible quasiorder o,
that i, ¢ iy w reflexive and transitive relation satisfying that way
= gzoyz for @,y, 26 @ R denotes the real line and R=R u {—~o00, + o0}
= [~o0, ool is the additive (partial) semigroup of the real numbers
equipped with the negative and the positive infinite; the addition in R
is extonded naturally to R, bub note that (- 00) - ( — 00) and ( — 00) +-( - co)
are 1ot defined.

An oquation or an inequality in R is understood to hold if it holds
as far ag overy addition contained in it ix defined. For example, we say
that a-1-b == ¢ (a, b, o & ) holds if either a--b i defined and the oquation
holds or @ ~b is not definoed,

Tob f be o funetion of @ into R. Fis called additive it f(aoy) == f(w)--f(y)
for all @,y & G (an fur o f(m) +f(y) is dofined; we will omit this kind of
comment hovondbor), fis eallod subadditive (vosp. superadditive) it f(ay)
S f(@) - f () (osp. flay) 2 f(@)--F() tor il @, y € G fis ealled monoione
il way == f(w) < f(y), for all o,y &G,

Tho pointwiso order of funetions of @ is denoted by g, that is, for
functions f and g of @, £ < g means f() < g(w) for all @ & G. The constant
Tunetion with a value o & R is simply denoted by a.
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