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Gleason measures and some inner products
on the algebra of bounded operators
on a Hilbert space

by .
RYSZARD JAJTE(®) (B:6d%) and RICHARD I. LOEBL (Detroit, Mich.)

Abstract. This paper represents a synthesis of the efforts of the authors to
relate the study of Gleason measures to operator theory. We will begin by using results
on Gleason measures to characterize certain inner products on £(#)—the algebra
of bounded linear operators on the Hilbert space 2. Then we show that an algebraic
condition on the inner product gives an equivalent characterization, which further-
more holds in the case where Gleason Theorem fails. The proof proceeds via results
in operator theory, and it is our hope that these results may suggest a new direction
of attack on the problem of Gleason measures {11, [2], [4].

§1. Let us begin with some preliminaries.

1.1. DEFINITION. Let #, # be separable complex Hilbert spaces.
Let P(s#) denote the lattice of projections in # and let & (o4 y* stand
for the cone of all positive bounded linear operators acting in #. A mapping
o1 P(#)— ()T is said to be a positive Gleason measure when for any
gequence Pi, P,... of mutually orthogonal projections in P (), o (2P
= > o(P;) in the weak operator topology and o(1) = 1.

A positive Gleason measure o is said to be orthogonally scattered if
for P,Q eP(#), P _1Q, we have ¢(P)o(@) = 0.

It is easy to see that any positive Gleagon measure ¢ has a unique
extension to be a positive linear mapping from & (#’) to L(A).

1.2. DEFINITION. A mapping o: P(#)— A is said to be a A -valued
orthogonally scattered Gleason measure when for any sequence {P;} of pair-
wise orthogonal projections in P(3#), ¢ (Y P;) = 3 o(P;) in the weak topolo-
gy in o, and (o(P), 0(@)) = 0 for Pre." k

1.3. DEFINITION. The correlation function of ¢ is the function 0,(P, @)
= (o (P), a(@)>

The main resul’ on the structure of correlation functionsisthe follow-
ing [2] oot

(1) On leave from £ 6d% }Tniversity, Poland, while this research was being carried

out,
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L.4. TEBOREM. Suppose o is a A -valued, orthogonally scattered Gleason
measure and dim 5% > 3. Then the correlation function of o is given by
0,(P, Q) = tr(MPQ+ NQP), where tr denotes the usual Jaithful normal
semifinite trace on Z(#) and M, N are non-negative members of the trace-
olass. Furthermore, M and N are unique when dim(#) = -+ co.

We now wish to introduce another definition.

1.5. DEFINITION. An inner product on. ¥ (#) is a non-negative sesqui-

linear form (-, ): L (o) XL (#) > €. That is to say, <, > hag the

following properties:
(i) <4,4>>0,

(i) (ad+pB, C) =-uld,0>+p<B, 0,

(iil) <4, B) =B, 4.

We then have the following elementary observation.

1.6. LeMMA. Let o be a A -valued Gleason measure, and extend o to be
G: L(H)—> A in a standord way (taking first the linear combinations and
then passing to the limit in the uniform operator topology). Then the correla-
Vion function of & defines am imner product on L(H), i.e.,

4, B> = 0;(4, B) = <5(4), §(B)

s an inner product on (). Notice that the correlation function has the
property that P, Q orthogonal projections implies that C.(P,Q) =0 = <P, Q>.

1.7. DEFINITION. An inner produet <-,-> on Z(3#) is orthogonal if

(i) P, @ orthogonal projections implies (P, @> = 0;
and :
(ii) for any decreasing sequence {P,} of orthogonal projections in #,
P, -0 in the strong operator topology implies <P, P,> — 0.

A non-negative, self-adjoint, trace class operator will be called an
s-operator.

‘We shall now prove the following characterization of inner products
on Z(#). ’ .

1.8. TEmorEM. Let 2 be separable, complen Hilbert space (dim s > 2)
with an orthogonal inner product (90> on L(H#). Then there ewist two
s-operators acling in #, say M and N, such that the Sformula

@ {4, B) =tr MAB* 4 tr NB*4
holds for any A, B € (). :

The representaiion is unique when dim # — oo, Of course, formula (1)
defines some inner product for any pair M, N of s-operators.

Proof.Let #, bethe completion of & (#)1{<4, A> = 0} (withrespect
to {+,->). Let us consider

(@) & P>P, PePrjx,
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where P on the right-hand side is treated as an element of #, (represen-
tant of an equivalence class). Thus by, (i) of Definition 1.7, & is an 3#,-
valued, orthogonally scattered Gleason measure, and, by Theorem 1.4
there exist two s-operators M and N for which (2) holds. The orthogonally
scatbered measure & is bounded in the sense that [EP] < E(D)] < oo
for all P e Proj s#. Here I is the identity operator. Then, using Gleason’s
theorem [1], [4] we can extend £ (in a unique, standard way) to a linear
operator (which will be denoted by the same letter &). It is worth noting

here that, in fact, & can be extended to the linear isometry on # onto

£(#) < #y. By Theorem 1.4 we have
(3) (EP, £Q) = tr MPQ +tr NQP.

Pagsing in (3) to the linear combinations of projectors and then to the
limit (in uniform operator topology) we obtain
(4) (EA, EB)> =tr MAB* +tr NB*4
for all A, B € Z(s#). But, by (2), this entails (1).

To prove the uniqueness of representation (1) (in case dim = oo,
let us assume thatb

(®) tr MAB* { tr NB*A =0

for some M and N. Let us fix an #, € 5, ||z,]| = 1 and let V be an a;rbij;rary
unitary operator in 5. Then putting

(6) [#0]: y—>(y, @), A =7V[z] and B=V,
we have
] tr MV [0] V™" = — (Nwo, @,)-

Since V' iz arbitrary, we have (Mz,x) = const for all # € 5#; [z = 1,
which is possible only for M = 0, because M is nuclear and dim # = co.
Similarly, N = 0. Hence the proof is completed.

1.9. Remarks. (a) If the Hilbert space # isreal and so is the com-
pletion .# (o) under real inner product (-, ->, then we have the (unique)
representation -

(8) (A,B) =tr MAB*
for some s-operator M. Thig follows from the formula
(9) (&P, £Q) = tr MPQ, P,Q eProj #

for an orthogonally scattered measure in a real Hilbert space [.2]. Th.e
proof of (9), in the real case, is very easy. Namely that (9) follows immedi-
ately from the formula

(10) 1P +QIF =tr M(P+Q)*, P,QeProj#,
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where I is given by Gleason’s theorem :

(11) [EP|? =t MP, P eProj#.
In the complex cage the formula
(12) EAF = tr M4A4*

is valid only for normal operators and, in p&rticular, does not hold for
A = P--iQ when P and @ do not commute. .
The proof of Theorem 1.4 that the authors know [2] is very long

and complieated and it heavily depends on the classical result of Gleason [1].

A dirvect proof of representation (1) would give at the same time 2 new
proof of Theorem 1.4.

(b) The condition dim 2 > 2 iy closely connected with the fact
that Gleason’s theorem is not true for the case dim s# = 2. One can
easily construet a counterexample for Theorem 1.4 (and Theorem 1.8)
in the cage dim # = 2.

(¢) The additional requirement {4, 4> =0 if 4 = 0 ig equivalent
o the condition ((M - N)w, ) > 0 for @ # 0. In fact, for # € #, ||| = 1,
we have 0 < ([], [¢]) = tr M[2]+te N [2] = (M +N)a, z).

(d) Tt.follows immediately from (1) that every orthogonal inner
product in & (a#) is continuous with respect to both the variables in the
strong operator topology and it is continuous with respect to any one
variable in the weak operator topology. -

§ 2.

" 2.1. In this section, we will present an operator-theoretic approach
to the problem of inner products on & (s#). It is our hope that these results
may suggest a new direction of attack on the problem of Gleason measures,
as mentioned in the Remarks above.

2.2. DEFINITION. The inner product <:,:> on Z(s#) is said to be
algebraie if (i) for fixed 4, the functional X - (X, 4> is ultra-weakly
-continuous [0], [3], and

(i) <4B, 0>+, A*OB*) = (4, 0B* 4 (B, A*C)
for all A4, B, C e L (#).
We remark that an algebraic inner product also satisfies the con-
dition that X — {4, X isan ultra-weakly continuous conjugate-linear
functional.
Our main result is the following
2.3. TemorREM. Let 5 be o separable Hilbert space, let -, > stand

Jor an algebraic inmer product on £ (). Let tr be the usual faithful normal
semifinite trace on ¥ () associated with an orthogonal basis. Then there
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exist two nom-negative elements M, N of the trace class such that (A, B)
=tr(MAB*+NB*4) for all A, B e & (#). Furthermore, M and N are
unique when dim (#) = 4+ oo,

2.4. Remarks. Notice that for projections P and @, Theorem 2.3
yields the same result as Theorem 1.4 and 1.8, and that Theorem 2.3
is valid when dim(s#) = 2, whereas Theorems 1.4 and 1.8 are not.

Before beginning the proof of Theorem 2.3, we need some prelimi-
nary results of an operator-theoretic nature.

2.5. LEMMA. Let @: Z(#)—>ZL(H#) be a lnear map. Then ¢(4)
= MA+AN for fized M, N if and only if ¢p(4) = XA+ 6(4), where X
8 fized amd 8 is a derivation. Furthermore, if the range of @ is contained in
the compact operators (trace-class), then M and N may be laken to be compact
(trace-class).

Proof. If p(4) = XA+ 8(4), then since §(4) = 6p(4) = YA—AY
for some ¥, we have ¢(4) = XA+ YA -AY = (X+Y)A+A(—T).
Conversely, if ¢(4d) = MA+ AN, let X = M+ N. It suffices to put
8(4) = p(d)—XA.

Since X = @(1), we have that if the range of p is contained in the
eompact operators (trace-class), so is the range of 4.

2.6. COROLLARY. ¢(A4) = MA+ AN if and only if

¢{AB) = Ap(B)+¢(4d)B—Ap(1)B.

Proof. By Lemma 2.5, p(4)=MA + AN if and only if ¢ (4) = (1) 4 +
+ 8(4), where §(4) = @(4)—p(1) A is a derivation. Theng(4B)—@(1)4AB
= 3(4AB), and §(AB) = A5(B)+5(4)B if and only if p(4B)—¢(1)4B
= A[p(B)—p(1)Bl-+[p(4)~¢(1)A]B if and only ¢(4B) = Agp(B)+
+@(4)B—Ap(1)B.

Proof of Theorem 2.3. Fix an orthonormal basis of 5, and let tr
be the associated trace. Since X — (4, X is an ultra~-weakly continuous
conjugate-linear functional, there exists an element g(4) in the trace-
class such that {4, X> =trp(4)X* and ¢ is a linear map from & ()

"to the trace-class. We rewrite property (ii) of an algebraic inner product

a8 (AB,X> = (4, XB*>+(B, A*Xy— (1, A*XB*>. Hence trp(4B)X"
= trp(A)BX* +tro(B) X*A —trp(1)BX*4, and so tre(dB)X* =
=tr[p(4)B+4¢(B)—Ap(1)B]X*. Thus ¢(4B) =¢(4)B+Ap(B)—
—~dp(1)B. .

By applying Corollary 2.6, we now have that (4, X) = tre(4)X"
= tr(MA+ AN)X* = tr(MAX*4-NX*4). We now wish to show that M
and N are self-adjoint. Let M = [m;], ¥ = [ny] be the matrix represen-
tations of M and N with respect to the fixed basgis. Then for the matrix
units By and By wo have (B, B> = tr(MB,E;+NEE,) = tr(NE)
=ny; also (By, Byd = tr(ME;E;+ NE;By) =t NEy; =ny;.  From

¥


GUEST


144 R. Jajte, R. I. Loebl

property (iii) of inner products, we have ny; = n;, and so N is self-adjoint.
Similar use of the matrix units T, and I, shows that M is self-adjoint.

In order to study the question of unigueness, suppose that tr ( MAB*+

"+ NB*4)=tr(M,AB*+ N,B*A)forall A, Be % (#). Thentr (M —M,)x

X AB*++ (N —N,)B*A] = 0 for all 4 and B, so it suffices to consider the
case where tr(MAB*+NB*A) =0. Let M = [my], N = [n,] be the
matrix representations of M and N. Then for 4 = By, B = H; (j #1)
we have AB* =0, B"A = Iy, and 50 0 = tr(MAB*+NB*4) = tr N,
= ny. Since a; = 0 for ¢ % j, N is diagonal. The choice of A4 = B,
B = B, yields the fact that M is also diagonal. Then for 4 = B, B = I,
we have AB' =E,, B*A =5E;, and zo = tr (MAB* + NB*4)
= tr(M B+ NEy) = my+ny. Fixing 4, we have ny = —m, for all j,
and since N is diagonal, N is sealar. Similarly, M is scalar, and so M = mI
= —X.

We have now shown that M —M, =ml, N—N, = —mlI. Further,
since M, M,, N, and N, are members of the trace-class, so is mI. In case
dim s = +4-oo, this forces m = 0, proving the uniqueness. Notice that
in cage dim # < co, we have tr[(M —mI)AB*+(N+mI)B*4]=
tr( MAB*+ NB*A)+mtr(B*A — AB*) = tr(MAB*++ NB*4) for all 4
and B.

In order to show that M and N are non-negative, let » and y be
unit vectors in 4, and let the operator A be given by A(z) = (2, ¥y
for z € #; thus A*(w) = (w, y>=. Then we have

0< <A, A) =tr(MAA*+ NA*4) = Y' (MAA*e;, 6+ D <1§TA*Ae,., o>
. i i
= 2 o Il <My, 0>+ 3] <oy Dyl <N, 0
= l2l<My, D) <y, > e+ yIFNe, 3 <@, 66
1 3

= |&lf <My, >+l Nw, z).

If dim # = o0, then the fact that M and N are self-adjoint el-
ements in the trace-class implies that the spectra o(M) and o(N) consist
at most of sequences converging to 0. Let # be an arbitrary unit vector,
let s> 0 be arbitrary, and let ¥ be a unit vector with |<My, yd| <.e.
Then (Nz, @) = — (My, y> > — ¢, but ¢ arbitrary implies that (N, 2> > 0,
and, hence that N > 0. Similarly, reversal of the roles of » and ¥ implies
that M > 0.

Ii dim # < oo, then for any real number 4, (4, B =tr[(M + A)AB*+
+(N—2)B*4). Thus for A(e) = <z, 2>y with llell = |lyll =1, we have
04, A = M+y, y)+ N —a, 5>, We will choose 4 so that
M+A30nd N—4>0. Let u = int {My,y), and let A = —pu; then

liyil=1
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for unit vectors y, (M +24)y, y> = (My, y>—p = {My, y>— int (My, y)
Hyll=1

=0, and so M2 0. Since dim 5 < co, there is a unit vector y, such
that <M¥o,yop = p, and so {(M+2)¥,, yop = 0. Then for any unib
vector 4, we have 0<{(M+A)yo, ¥+ <N —Ne, 2) = (N -z, x,
and thus N — 2 > 0. The proof is completed.

2.7. Remarks. (a) It is somewhat surprising that there are more
difficulties involved in the finite-dimensional ease than in the infinite-
dimensional cage. The problem, of ecourse, is that the trace of the identity
is finite. ’

(b) The condition that the inner product be algebraic may perhaps
be unnatural. What is essential is that the map @: 2 (o#)— trace-class
be of the form ¢(4) = MA+ AN for some operators M and N in the
trace-class.

(c) Suppose that for Hilbert-Schmidt operators 4,B in Z(#),
the inner product {4, B) is continuous with respect to the Hilbert—Schmidt
norm. Can one use the Riesz theorem to obtain a proof of Theorem 1.4,
Theorem 1.8, or Theorem 2.3% This problem seems to be open. It follows
from Theorem 1.4, Theorem 1.8 and Theorem 2.3 that these inner products
are indeed continuous on the Hilbert-Schmidt operators with respect
to the Hilbert-Schmidt norm.
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