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is @-ergodic at 0, and this implies the ergodicity of I at 0. We have thug
obtained a contradmtlon, as 0 e &. Hence 4 = @ and our corollary is
proved.
Piecing together Theorem 2 and Corollary 2, we get our main result:
TarROREM 4. Lot B < & be closed and scattored and let m be & topological
mean on L®(@). Then the map

L3(@) - L3(&)

defined by (Af)" (z) = m(f7) Jfor felz(G) and re@is an tsometry  of
Banach spaces Lﬁ(G) and LL(GY and it does not depend on the choice of m.
Almost periodic functions are fized points of A.

We end with simple corollaries to Theorem 4. Denote by R the ad-
ditive group of real numbers.

Exavern 1 (of. [B]). Tet @ = B = & and let (p,)%, (2,)F be two
sequences of integers, p,,, ¢, = 2. Let

= D1t oo Dk k=0, +1,..., +q,}

and let = UE HE K < (—%, $) is compact and countable, then by [5],

Example (I), I,E 1z (@) = APp, £ (G). Tt is eagy to see that F+ K is closed
and scattered; hence 'by Theorem 4 we get Iy, (@) = APy, (G).

CororrAryY 3. (cf. [2], Corollary of Theorem 1), Let H< @ be
closed, scatiered and independent. Then every f e Ly (@) is a Fourier transform
of a discrete measure with o support in B,

Proof. B is Sidon in (@), so L3(G) = APy(G) = 1'(E)". By The-
orem’ 4 LH(G) = APz(G) =1'(E)".
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Some ergodic theorems for commuting I, contractions

by
8. A. McGRATH (Woodland Hills, CA)

Abstract. Let Ty, T, ..., Ty Dbe commuting submarkovian operators on I
and suppose for some 1< p < oo, [Tillp < 1, 1 < 4 < k. Then for fe L,

Q"S5 28 2o

1y=0 =0

converges pointwise as n — oo. Also, the local ergodic theorem is proved for %-par-
ameter semigroups of I, isometries.

Introduction. Let (X, X, u) be a o-finite measure space and leb
L, = L,(X, Z, ), 1<p< oo, be the usual Banach spaces of complex-
Valued functmns A linear operator T on I, is submarkovian if it is a positive
contraction (7f e L if f e I and ||T], < 1). Suppose T is suhmarkovian
and ||Z'], < 1 for some p > 1. A.kcoglu and Chacon [2] showed that

a1

lim (1/n) 3 T'f(@)

exists and is finite a.e. for every f e L,. In this paper we extend their
result to the case of multiple ergodic averages of k commuting submarkovian
operators. In obtaining this result we generalize Akeoglu’s pointwise
ergodic theorem [1] to the case of ¥ noncommuting positive L, contractions.
The final section of the paper contains a proof of the local ergodic theorem
for strongly continuous semigroups of (not necessarily positive) L, iso-
metries. This result provides a partial answer to the gquestion of whether
the local ergodictheorem holds for k-parameter semigroups of nonpositive L
contractions. )

Let {T(ty, ..., 4): £, >0, ..., % > 0} be a strongly measurable semi-
group of I, contwctmns In considering the question of pointwise conver-
gence of the ergodic averages

AT, &)f = La)* [ oo [Tty oony ) faty ...
L] [1] .

it is necessary to define 4 (7', a)f(w) in such a way that the question makes
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sense. Note that the existence of the Bochner integral

f...ffl’(tl,...,tk)fdt,...dtk -
0 0

is guaranteed by the strong measurability of {T'(¢,..., %)} and the fuct
that [1T(4, ..., )k < 1. Given f e L;, it is known [B], Lemma IIL.1L.16,
that there exists a scalar function g(4y, ..., #,, ), measurable with respect
to the usual produet measure on B x X, which is wniquely determined
up to & null set by the conditions

(D) for a.e. (B, ..o )y Glhy oonybeye) =T (e, o ory B)S;
(ii) for a.e. @, the funection ¢(-,®) is integrable over every finite
ay e
k-dimensional rectangle in R and the integral { ... [g(ty, ..., &, 2)diy ...
a4 g 0 0
... dt,, as a function of &, equals™[ ... [T(t, ..., &)fdt; ... @,. We define
5 RS ;

AT, (@) = (L) [ ... [glty..s by 0) s ...
0 o

for all > 0. Then A(T, a)f(a) is in the equivalence class of (Lja)® [ ...
L] 0

e [Ty, .7 )ty ... @t for all a> 0. Note that A (T, a)f(x) depends
0 °

continuously on. o outside a null set which is independent of o > 0.

Pointwise convergence for commuting submarkevian operators.

1. Levma. Let {T(t): t >0} be a strongly measurable submarkovian
semigroup - satisfying |T (t)ll, <1 for some p>1. Then

sup [A (T, o)f(®)] < oo a.e.
a>0
Sor every f eL,.

Proof. By the Riesz convexity theorem we may assume p < oo
By Lemmas IIT.11.16 and VIIL.1.3 in [5] the semigroup {Z'(¢): ¢> 0},
regarded as either an L, or I, semigroup, is strongly continuous. If 0 < o
€Q* (=the set of nonnegative rationals) then

anl—1
A(T, a)f =s—lim(Ljan!) D' T(m/n))f, feZ,.
Lemad me0

For any 7 >0

et
| sup | 1) g T (2)f@)| |, < (p /(o —1)) IFl,

icm°
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by Akcoglu’s estimate [1]. Employing the Canter diagonal process and
Fatou’s lemma one may show that

I s%glA(T, Af @)l < (/e —1)Ifllp,  f &Ly
ael
Sinece A (T, a)f(z) depends continuocusly on a for a.e. «, it follows that

| Isup | 4(T, a)f@)lll, < (2/(@ —1) IS llp-
a>0
By the argument in [8], Lemma 1, we may define I'(0) so that {T(t):t> 0}
is a strongly continuous I, semigroup. Since A(T, a)f = A(T, a)T'(0) I
f € L, the argument in [3], p. 551, shows that {T'(3): t = 0} is also strongly
continuous as an L, semigroup. For f € I, and o > 0, set
BE(f, @) = {o: sup A(T, 7)f(2) > 0}
I<r<a
and

B(f) = {»: sup A(T, 7)f(z) > 0}.
>0

Then

[ TOfdu=0

E(f,q)
for all a > 0 by Lemma 1 in [7]. An application of the Lebesgue dominated
convergence theorem yields [ T(0)fdu > 0, f € I,. Now choose 0 <h € L.
Then £
[ TO)(f-Mm)du=0, forall i
E(f-AR)
Setting
R*(f, h)(#) = sup|A(T, a)f()/A(T, o) h(2)]
a>0 .

and 'uh(A)=4f T(0)hdu, A € X, and noting that
{o: B*(f, B)(2) > 4} = B(If| —4h),

one has ({B*(f, h) > &) < (LA T(0)|f|du, 4> 0. Thus E*(f,R)
< oo ae. on suppT(0)h. T we choose 0 < kel Nk, then iz, (®) < oo
a.e. where h*(x) = sup|A(T, a)h(z)l. Since f*(@)/h*(2)< E*(f,h) on

a>0
supp T'(0) h, it follows that f*(®) < o a.e. on gupp T (0) k. ‘Beca,use T(0)
is a positive operator and k > 0a.e., T'(0)g vanishes a.e. outside supp T (0)h
for any g € L,. Thus T'(¢)f = T(0)T(t)f vanishes a.e. outside suppZ(0)h
for every t > 0. Consequently, f*(@) = 0 a.e. on X —suppT(0)h and we
have ‘
sup |A (T, a)f(z)| < oo a.e., feli.

a>0
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2. LEMMA, Let {T (tyy ..., t,): 8, >0, ..., 8, > 0} be & sirongly measura-
ble submarkovian semigroup satisfying
Ty ooy )y <1, 6>0,...,8>0
for some p > 1. Then
sup JA(T, a)f ()] < oo a.e., fel,. m
a>0
. i
Proofi. The proof is by induction on %. The result holds for & = 1 =~ 2°,
Suppose it holds for % =27 Let {T(t,..., 1) & >0, ..., b, > 0} be

a submarkovian semigroup satisfying ||T(t, ..., ty)l, < 1. For u,s > 0,
st @, (@) = (u/2ym)a ¥ evMe ang

8(@yy ey 0)f = [ oo [ 00 (1) Py (ta) - G () T by ooy L) By ... .
[] 0.

It is shown in [9] that {S(z1, :.., @): #,> 0, ..., 4, > 0} is a strongly

continuous submarkovian semigroup. Since [ou@)de =1, it is clear
0 ‘

that [I8(@y, ..., o), <1, @,>0,...,2,>0. By Lemma 2.3 in [9] (see

also [5], Lemma VIIL.7.13), there exists a constant 0, > 0, depending
only on k, such that for f e Iy

A(8, ]/E)f(w)> 0, AT, o)f(w), a>0.
Since sup 4(8S, o)f(#) < o a.e. by assumption, we have
a>0
sup |[A(T, a)f(2)] < oo a.e., fel,.
a0

This establishes the result for & '= 2™ m =0,1,2,... For k2™,
choose m go that 2™ > & and set i

Bl eny tym) = T(tyy cnny &), ‘
Then A(S, a)f(») = A(T, a)f(x) ae. for all a> 0 and thus the lemms
holds for all %. L]
The next theorem generalizes Akeoglu’s pointwise ergodic theorem [1]

to the case of multiple ergodic averages of noncommuting I, contrac-
tions.

3. THEOREM. For some 1< p < oo, let T, «voy Ty, b6 positéve L, eon-
traotions. If feL,, then

nl_l teg,—1

fn,l.:.l.nk ZZTiI o Tff (2)

=0  ip=0 .

converges a.e. to a finite limit as ny —> oo, ..., m, - oo tndependently.
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Proof. The proof is by induction on k. The case &k = 1 is Akcoglu’s
theorem. Assume the theorem has been established for k¥ —1 operators.
For f e L,, set

Aym)f = (L) D) Tif -

and
M f(2) = sup [4;(n)f (@)1,

1<i< k. By repeated appliéa,tion of Akcoglu’s dominated estimate,
one obtains
”MI see Mkf”p < (p/(p“l))k”f”py f ELp'
Thus
sup  JAi(#y)... Ap(n)f(@) < o ae., fel,.

Hence Banach’s convergence principle may be applied _to.esf,a}olish the
result for & operators provided we can show that the limit exists for f
in a dense subclass of L,. Functions of the form

f+I-Tyy,

L 4
where f, g € L, and T,f = f, are dense in I,, by a corollary to the mean
ergodic theorem [5], Corollary VIIL. 5.2. We show that

m A, (my) ... Ay () [f(@)+ (I~ Ti)g ()]
= Hm A () ... Ay () f(2) 2ee.

Let .
9w =sup|Tiglil, m =1,2,...
i=m
Since ’
[m@)Pau<[[ X (Tigly] du = 3 [ (Tiglhyrdu<iol - ) (L)

izm i>m i=m

for every m > 0, it is elear that [g,,|, = 0 and consequently that g, (#)»0
a.e. a8 m — oo, Setting

gfn(m) =M, ... M} 19m(®),
we have :
R I @)l < (/@ =1l gmllp-

Again we have [jg}|, -~ 0 which implies g, ()0 a.e. as m — oo. Thus

C Ay (my) . Ay () [THEg (@) ] ~ O ae.
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a8 My > 00, ..., Ry — oo independently since

[a(ma) « . Agr ) [T*9(0) 1] < g, (@)

for .all ny, ..., 7y
Applying the above argument to the special case T = I, we get

Ay () oo Agoy () [g (@
., My — oo independently. Hence
Hm Ay () .. Ay () [f (@) +(I— T g (2)]
= Hm A, (ny) ... dy_y () [f() 4+ g(@)fn, —
- A () f (@) ane.
By Banach’s principle [5], Theorem IV. 11. 3,
A1) . Ay () f (@)

converges a.e. for every f e L,

4. TegoreM. Let T, ..
satisfying 1T, <1, 1<i<<

) [1,]— 0 ae.

as Mg —> 00, ..

i 9(@) ]

= lim A, (ny) ..

s Ty be commuting submarkovian operators
k Sfor some p > 1. Then

1
hm 1/n)* 2 2 T .. T f () .
=0 =0 '
exists a.e. for fely.
Proof. For #,>0,...,2,>0, seb
0 (-~ wil i]c
8(@yy ooy @) = e~ rtotan N7 E Z O g gl
~ &~ RN |
1 =

Then {S(wy, ..., %) @12 0,..., 2, >
markovian semigroup satisfymg

N8 (@, oy @), <1,

Given fe L and n> 0 there exists €, > 0, depending only on %, and
a = a(n,f), such that

0} is a strongly continuous sub-

%120,...,2,20.

A8, a)f(@) = 0L A(T, n)f(2) ae.,
where
n~—~1
AT, mf(2) = (1) 3. 2:0
4=0 =0

Since sup.A(S, a)f(®) < co a.e. by Lemma 2, we ha.ve
m:%)A(T,w)f(w)< o ae., felLt.
n.

icm

©
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The existennce of Oy i established in [B], p. 703. By Theorem 3,
lim A (T, m)f () exists a.c. for f € Ly nL, which is denge in I, . By Banach’s
H-+00
prineiple

lim 4.(7, n)f(»)

N-r 00
exists a.0. for fe L.
It should be nmv(l that the continwous parameter a.mlogues of The-
orems 3 and 4 are true and may be established by similar arguments.

A local exgodie theorem for semigroups of L, isometrics. In this sec-
tion tho loeal orgodie theorem for k-paramoter semigrowps of L, isometries
is proved. A linear operator I is wn Ly isometry if [|Z'fl, = |fll, for every
fely.

5. Towort. Lot {T'(by, ooy B)s b2 0, ..., 1,22 0} Do a strongly con-
tinuous k-parameter semigroup of L, isometries. Then

limA (T, a)f(e) = f(®) a.c, fel.
a% 0
Proof. Lieb 7 (ty, ..., t,) denote the linear modulus [4] of T'(t, ..., t).
Since each w(fy, ..., %) is an isomelry, {v(ty, ..., %): 630, ..., % >0}

is strongly continuous by the corollary in [6], p. 371, Clearly

Fbgy oery 0) T (81, +eny 80)F(@) 3 T(by 81, ooy b F8)f(0) Bie.
for every f e L. Therefore we must have

Tty vany b) T (81 ovy S)F(®) == T(by -+ 81, ooy B+ 8)f(0) 2ee

for every fe L since v(fy 481, ..., b--8) I8 a positive isometry. Conse-
quently {r By eery b): 320, tk 2 0} is & strongly continuous Rk-par-
ameter senugmup of positive I/1 1some‘nmes Since the local ergodic theorem
holds for {v(y, ..., %)} [9], it follows that R

sup A(r, a)f(@) < o a0, feli.
0<a<l '
Noting that
. Az, o)lf(@) = 14T, a)f@)], o>0, fely
wo see thatb
mp A (T, @)f(@)] < oo ae., fely.
0l
Boecanse T'(Ly, ..., &) is strongly continuous at 3, =ty = ... = t =0
(for simplicity we wsaume 70, ..., 0) == I), the clags M == {A (T, a)f:

a> 0, fel,}is dense in Ly. The argument in [9], p. 266 shows that
lim A (2, a)f(@) = f(0) a.0. fe®
ano


GUEST


160 8. A. MoGrath

By Banach’s principle [5], Theorem IV. 11. 3
A(T, o)f(0) = f(@) a.e., fely,

as ax0 through QF. Since A(T, o)f(w) depends continuously on a a.e.
it follows that

im A(T, o)f (%) = f(®) a.e,, fel;. m

aNo
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Addendum to the paper
“Weak-strong convolution operators on certain
disconnected groups”

by
IAN R, INGLIS (Montreal)

Abstract. In [1] G.1. Gaudry and the author obtained several results concerning L2
convolution operators and multipliers on & totally disconnected group where the
indices of sucessive subgroups remain bounded. More specifically, estimates were
obtained for kernels (rosp. multipliers) having a strong singularity at the erigin (resp.
at infinity). In this note we ghow how to extend the results of [1] to the case where
the indices are unbounded, and in doing so answer a question implicit in the work of
Peyridre and Spector [2].

1. Imtroduction. Lot ¢ denoto a compach abelian group having the
following properties:

(1) thexe exigts a strictly decreasing sequence {6.,.}2., of open compact
gubgroups of @ such that the index G.,: G, of @, in G, i finite;

(i) UG, =6 and NE, = {0};

(iif) |G| = 1 where |8] denotes the Faar meagure of a (measurable)
set §;

({v) |Gl (Gl 710

Tet I' denote the dual group of & and I', the annihilator of &, in I
Then {3} is an increasing soquence of open compact subgroups of I
and J7: 1y = Gpyy: Gy Such groups divide naturally into two classes:
(3) where @16, < for some positive integer b>2, and (b) where
Gpyrt G, = oo, Groups satisfying (a) were treated in [1] and from now on
we shall guppose that (b) holds.

We refer the reader to [L] for all the requived definitions and notation.

9. Convolution estimates. Tho following result takes the place of
Theoroms 2.1 and 2.2 of [1]. (There is no real need to consider the cage
6>0 of [1]) )

Tenorum 1. Suppose k e L', If

1 b ()] < B{Gusal 161", ¥ € LN
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