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STUDIA MATHEMATICA, T. LXX. (1981)

IP-integrability (1 < p < ) of a class of integral tramsforms

by
YOSHIMITSU HASEGAWA (Hirosaki)

Abstract, For 1 < p < oo, K. Soni and R. P. Soni [5] and the author {3] proved
some LP-integrability theorems for a class of integral transforms, where it includes the
Hankel transform and so on, In the case 1< p < oo, we generalize their theorems.

1. Definitions. Throughoutt his paper, we assume that the function
%(t) is real-valued, measurable and wunifermly bounded in 0 <t << oo,
and that

(0)+Bt°+o(t’y a8 t— +0 for B>0, where
1) k) = B £0,
k(0)+o(1) ag t—+0 for f=0.

Asg in [3], we define the k-transform as follows: if the function f()
is real-valued in 0 <t < oo and is of bounded variation in Tt < oo
1

for every T > 0, and if [|k(t)—%(0)||df(?)] < oo, then the function F(x)
is defined by °

F(w) = [ {(at) -k (0)}df(), 0<o< oo,

0

and denotes the k-transform of f(t).
1
For >0, the condition [|k(f)—%k(0)||df(#)| < oo is equivalent to
0

fP1ar@) < oo
0

by (1.1). ‘

It is known by K. Soni and R. P. Soni [6] (also see [3] and [5]) that
the k-trangform includes the Hankel transform and go on.

In [3], we considered the three cases that k(f) satisties respectively
the additional conditions (K1), (K2) or (K3) as follows.
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ConpiTIoN (K1):
(i) %(0) = 0 for f > 0, and %(0) 5 0 for § = 0,
i
(i) %y (t) = [k(w)dw is uniformly bounded in 0 <t < oo
[}

ConDrrioN (K2): there exists a function w(z) such that

() w(») eL(0,1), s’ w(@) e L(1, co) and Tw"w(m)dm # 0 for f> 0,
0

(i) %*(y)—%"(0) has no change of sign in 0 < y < oo, Whore

(1.2) f k(oy)dw, 0<y< co.
[]

CoxpitIoN (K3):
(i) %(t) satisfies Condition (K1),
(ii) there exists a function (@) such that

cor ﬂ(a,>) Owl(w) eL(0,1), ™o, () e L(1, o) and fw”'”wl (@)dw 0

(b) %j(y) has no change of sign in 0 <y < oo, where

]
= [ ey@)ky(@y)de, 0<y< oo
; .
Throughout this paper, we put
lp+1ljg=1, 1<p,¢< co.
A positive and measurable function M(u) in 0 < u < oo is said to
belong to the class 8, i.e. M(u) e 8, if there exist two positive constants
= H;(6,4) and H, = H,(4, A) satisfying
H<Mw<H in s<u<
and if

4 for every 6 and 4, 0 < d< 4,

o M (Lu) M (lu)
1}520 T(w) :ﬂ: () =1 for every {> 0.

It is clear that M (w) and M (1/u) are slowly varying functions in 1 < u < oo

(see [2]). Therefore, for fixed 6 and 4 (0 < 6 < 4),

M(lu) . M(lu
(1.3) 311:50 T (w) whf[:o M(u)) =1 uniformly for ¢ e [4, 4],
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and, for every a >0,

(1.4)  lim w M (u) = limu"M(4) = o and
U0

U->00

lim %M (4) = im 4~ "M (u) =0

uU->r+0 n—r0

(see [2]).
The letter €, with or without subseript, denotes a positive constant,
not necessarily the same at each appearance.

2. Main results.
TumoreM 1. Let 8 > 0. Suppose that f(t) is defined in 0 <1 < oo and

is of bounded variation in T <t < oo for every T >0, and that ftf’]df(t

< oo. Moreover, suppose that o(u) is @ measurable Sfumetion in 0 < % << 00
suoh that

(2.1) sup{f]qo(u u’ﬂ”du}l/”{f !‘P(u)%ﬂﬂl"’du}l/q 00.
If
11
¢ (1) [ o |df (@)] € I7(0, o),
0

then o(1 /o)~ P F(») € L? (0, co).

Remark 1. ITn Theorem 1 and throughout this paper, 0-oc0 is to be
taken as 0 (for instance in (2.1)), and the symbol L> (the case p = 00)
is to be taken as ess sup.

Remark 2. Tt is eagily seen that Theorem 1 holds for ¢(f)
— ¢—f-UP [ (§), where 1/p <y< f-+1/p and M(t) €S, In particular,
in case M (f) = 1fort > 0, thatis, p(t) = ¢#~#~*7, Theorem 1 for1 < p < oo
coincides with [3], Theorem 1.

As a corollary of Theorem 1, we have a theorem as follows.

TamoreM 2. Let p 2 0. Let k(i) satisfy Condition (K1). Suppose that

g (1) decreases to zero in 0 <1< oo, and that ¥g(t) e L(0,1). Let

(2.8) Glw) = fia (@hg)dt, 0<a< co.

Moveover, suppose that ¢, (u) 48 a measurable funotion in 0 < u < o0 such
that

(23) Sup {f Iy () =P d%}w { ofr‘lm(u)u"ﬂl"“du}”“ < o0
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and
‘ . -
(2.4 su P gyl -2 g\
) sup { [ lps )™ f s (w1000} < oo.

If pi()g(3) e LP(0, ), thew o,(1/p)2" PG () € L?(0, o).
. Ren:lmk 3. It was proved by the author [3], Theorem 3, that the
integral in (2.2) converges for every # > 0.

Remark 4. It is easily seen that Theorem 2 holds for

@y (b) == (P L (),

where —1/g<y< f-+1/p and M(1) e 8. In parti i , :

a . In particular, in cago M (4) = 1L
for ¢ >0, that iy, @,(f) = ¢*'~*P, Theorem 2 for 1<p < incide
with [3], Theorem 3. y < p < co coincides

A the inverse case to Theorem 1, we bave the following theorem.
N m?ﬁ:ﬁ?ngbﬁtti} og il:; Iot fj) satisfy O?a@fiition (K2), Suppose that f(1)
s nds to o finite value as t~» oo, and that
oftﬁ |df(8)} < oo. Moreover, suppose that y(w) is & moeasurable function in
0 <o < co such that

(i) lp(@)| = o™ M () +o(w™" M
<y<pB+1ilp and M(w)eS,O(m (w)) @@ k0 or o> eo for Lfp

(i) there exist two positive constanis Hy = H,
(i) g = Hy(d, A) and H, = H,(5, 4
satisfying Hy< lyp(@)| < H, in << 4 for m;er,y J and 441, 0 <':$(6<,A?

If (@) F(@) e (0, o), thon (L2 [o8f(a) & I2(0, o).
0

AS & 001011311'? of Theo!eln 3 we ha»ve the 0110 Win, hheoreln verse
H f g

TaroREM 4. Let $0. Let k i 00
%%@(; Ziga:leg ;:‘lddzr:%?/g ;o) z;;_o i'fbt)ﬂ Szt’:w;’y ogfnaoxlr:flwt;:;t (5 gl ()t)?g(f)l,(i;
Tt O s su(;h t Mioreo'oer, supposc that vy, () 18 & measurable
- y<(1)[3f3(7:p)|;dﬂagn;i}a)[(:gj-o(w“”lkt(w)) as @ +00r ®— co for —1/q
- (i;b)a:hem ewist two positive constamits Hy = Hy(8, 4) and H, = H(, 4)
H < |y <H, in <0< for everyld and 4,0 < 8 < 4.
If yi(2)G () € LP(0, o), then v (1/)t=*Pg(1) e LP(0, oo).

> Remark 5. In_ case M(x) =1 for @ >0, Theorems 3 and 4 for
<P < oo are equivalent to [3], Theorems 4 and B, respectively.
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3. Proofs of Theorems 1 and 2. In order to prove Theorcms 1
and 2, we need first the bagic lemma as follows. ®

Tamma 1. Let three fumctions h(®), o(#) and o(») be measurable in
0 <t< oo, and let o(@)h(w) e LP(0, o). Then we have the following two

results.
(i) There is a finite D for which the inequality

(3.1) {f ( 0 (m)fm h(t)di r’ dm}”” < D{fw | () h(m)]vdm}””
0 @ 0

holds if and only if
r )
. " 1p 2~ e .
Q= EE}){J[g(w)l"dw} {f o (@)] “dw} < oo

Turthermore, if D is the least constant for which (3.1) holds, then Q<D
< piPghaQ for L < p < oo and 2 = D for p =1 or co.
(i) There is a finite D' for which the inequality

(3.2) { f ‘ o(®) f h(t)dt 1”«1;@}{’” <D {fm o (@) b (@) dm}”"

holds if and only if
s 7 p (¢ a7 \Va
0 = s x)|P do lo(@)| "4 dal " < co.
r}}g{ ! lo(a)?da)™ { of ( |

Furthermore, if D' is the least constant for which (3.2) holds, then Q' < D’
< pPgaQ’ for 1< p < oo and Q' = D' forp =1 or co.

Temma 1 is due to B. Muckenhoupt [4]. In order to prove Theorems 1
and 4, we need the following lemma.

Tmvoia 2. Let s > 0. Suppose that A(u) increases in 0.< w < o0, and
that A(+0) = 0. Moreover, suppose thal U(w) and V(@) are two non-nega-
tive and measurable functions in 0 < & < oo such that

(3.3) siu>10){ f U(w)pdm}"”{f(V(m)mHl)‘wm}”“ < oo.
Q0 7
If V(u)A(w) e I?(0, oo), then the inequality
{fw{ U(u)fwd/l(m))"du}”” <0 fm (V (@) Ay au)® < oo
holds. ' : 0
Proof. It (V(wut")™" ¢ LU(R, o) for any I > 0, then (3.3) implies

that U (@) = 0 almost everywhere in 0 <& < oo and the lemma is trivial.
Now, we assume (V(w)u)™" e L(R, oo) for any R>0. For > R,
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V{(w) > 0 almost everywhere and the integrability of V() A(u)|” shows
that A(u) =0 af, almost every point where V(u) = co. Therafore, for
almost every w > R, the equality A(uw) = V(u)A(u w)(V ('u,)) "1 holds. By

asgumption, A(u) is non-negative and increasing in 0 < % < co. Then
for » > R, ’

co

utA () < sf W A (u f

<ol (Vi) W}“”{f

(use Holder’s inequality for 1 < p < oo). Henee, by integration by parts,

() 2 (w))(V (w) w®+')~* du

oo

1\ g
w) ) "du} -0 48 > 00

oo s o o
[ o %di(2) = —wA(w)+s [ @™ Al dw < 8 [ a7 (w)dw.
u u w

Now, when we put

@) =Ulw), o@ =V@a** and hin) = &= A(w)

in Lemma 1(i), we get, under condition (8.3),

{ of (U@ f o™ ar(@))’ du}llﬂ<s{ (Tw fm w'““’ll(m)dw)pdu}m’

et g Sy

<O{ [ (Vw)rw)au)®.

Thus Lemma 2 is proved.
Proof of Theorem 1. When we set

=OfW”ldf(w)l, $=f U@ =lpww| and V() = p(u)

in Lemma 2, we have, under condition (2.1),

{J (et [ 1) au™ < of [ (istwn [ #1asconf anp.
0 0

Henece, by assumptions on k(2),

{ [ tp Lm0 B @) o)

{5[ ('(p 1/50)50“”——2/1’1[ |k (wt) —k (0)]|df(t)|) dw}llzi

icm°®

LP.integrability of a class of inlegral transfaMa 189

e -

{f(](p o f) =P | f # |af )1} dm}""+
+oz{f(w fw)ar= P2l f \df (2)] 7 do} "
0 1w
=6
+0.{ [ it f afa)p

o,,{fw(w(u); [ i) au}< oo

0

(1p (] f 2| af )} au}"® +

6%8

Thus Theorem 1 is proved.
Proof of Theorem 2. In the proofs of [3], Theorems 2 and 3,
we proved that %,(0) = 0 and &, (t) = B,#’*' 40 (1"*?) as ¢~ +0, where

B, + 0, that
i 1 [

fu"y(u)du>——— W dg(w)], 0<t< oo,

0 ﬁ+10
and that

2G (@) = —fkl(wt)dg(t), 0 << oo,
0

‘When we set

—A

ho) = 2'g(0), el@) =p(@at and  o(a) =¢:(0)0

n Lemma 1(ii), we have, under condition (2.3),
o i 0
(] (im0 [ Pgi@anf aif "< o{ [ (e @lg )t}
0 0 (1}

Hence .
ga(0)170 [P+ dg (@)] € L2 (0, co).
0

Now, when we replace § by f+1 and then put
ft) =g, o0 =@t and
in Theorem 1, we have, under condition (2.4),
@1 (/@)1 G0 G(a) = @y (1/0)2" "G (@) € L*(0, o).

To(@) = Ty (@)

Thug Theorem 2 is proved.
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4. Proofs of Theorems 3 and 4. In order to prove Theorem 3, wo neod
the following four lemmas.

LmvwA 3. Suppose that f(t) is non-negative and monotone in 0 <1< ¢
flor some & >0, and that it is of bounded variation in e<it< co. If

0f’fﬂldf(t)l < oo for §>0, then

J TGty —To(0)1 laf (1)) = 0@ as o0- 40,

o(@) a8 @ oo;

oo

[ 1k(@t) B (0) |df 1) = O(L) a8 @ +0 or @ oo.

1

. LEMIYI_A 4. Lei f> 0. Let w(w) satisfy (i) of Condition (K2), and let
K*(y) define as in (1.2). Then
@) Io"(g) is uniformly bounded in 0 <y < oo,
(i) &*(y)—K*(0) ~ Byy* as y > +0, where B, # 0.
Lemmas 3 and 4 are due to [3], Lemmas 2 and 3, respectively.
LEm 5. Let M(u) € 8. Then there is a function M,(u) e § satisfying
the following four properties: l
(i) Mo(u) is continuously differentiable in 0 < u < Ay and in 4, < u
< co for some A, and Ay, 0 < A, <1< Ay, and Jurther

. a
Hm w(M,(w)) " — My(u) = Hm %(Mo(u))“iMo(u) =0,

U0 du P du

(i) tim 2o _ o Motw)
il ul—;+0 M%) ysco M (u)
) ) For every v > 0, w My (u) is inoreasing and uw~ " My(u) is decreasiy
in O'< w6 for sufficiently small 8 = é(r, 4;) > 0. e N
(}v) -If’or every v >0, utMy(u) is inoreasing amd w My(w) is de-
ereasing in A< u < oo for sufficiently large 4 = A (v, 45) > 0.
We remarlk that M (w) and M (1}u) for 3> 1 i
i g = 1 are slowly varying func-
?[ons. J . Galambos and E. Senfata, [2], pp. 111, pointed out that there is
: o gb(z:i:é < %(01 <J O;I such that it satisfies (i) and (ii) of Lemma 5. Further,
. Boj and J. Karamata [1], p. 14 and pp. 36-37 ved. ths
M, (u) satisfies Lemma B(iv). ’ PP r proed fhat e
; tLEMMA 6. Let §>0 a/.nd I-L/p <y < f-+1/p. Let y(w) be a measurable
];nc on in 0< o< © satisfying the conditions (i) and (i) of Theorem 3.
] o;eo'f)er, let 7 =min((y—1/p)/2, (B+1/p—y)[2), and let A; and A,
¢ defined as in Lemma 5. Then, for sufficiently small 8 = 6(z, 4;)> 0
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and sufficiontly large A =A(v, 4,)>0, we have the following four in-

equalities:

(1) B ip(@)] < lp(ov)]| < Byo~ ~lp(@)] in 0 <2< 8
md0<o<L,inae>Avand0 <v<1, and ind < z< /v,

4.2) Ty p(@)] < lp(av)] < Bo™"+ [p(@)] in0 <o < 8o
andv>1,ine>Adandv > 1, andin0 < o< dand Az < v,

4.3) B (M (L)) (@) < (o) < Beo™?(M (1/o)) 7 [y (o)
in 0<ao<d and Slz<v< dlz, and in o> 4
and Sz <v< 4w,

(4.4)  EBo "M @)y(@)] < lplao)] < B ? M (o) Ip(w)]  in d<a<4
and v > 0, where B, = B,(6,4)>0,j=1,2,...,8.
Proof. Throughout the proof of this lemma, let 8 = &(v, 4,) >0
and 4 = A(z, A;) > 0 be taken sufficiently small and sufficiently large,

respectively. Let M,(u) € § be the function as in Lemma 5. From Lemma
B(ii) and the definition of the class S, we have

(4.5) BMy(u) < M(w) < BMy(w) in  0<w< oo,

where B} = H;(8,4) >0, j =1, 2.
Firgt wo ghow (4.1) in 4 < » < 8/v. By the condition (i) of Theorem 3,
(4.B), and (iii) and (iv) of Lemma 5, we have, in 4 <o < é/v,
[ ()] > B} (w0) ™+ {(ow) "My (a0)} > Bj (w0) (87" Mo ()
= B 87" My (8)(o™" M, (@) 0" T M (2)
> B 6"M0(6)(A"'M0(A))“‘v"’*’m_"’Mo(m) > Bo7 77 p(w)|
and
I (@) ] < Hy (00)™7 " {(do)" My (a0)} < By (w0) ™7~ 7(6° My (8))
= B, 8 Mo(8)(0" My (@) 0 T Mo (@)
< B, 8 My (8)(A" M,y (4)) 07" Mo (@) < Bpv™ 7 (@)1
Thus (4.1) in 4 < # < /v is proved. The proof of (4.1) in the other
sets are simpler than it. Morcover, the proof of (4.2) is similar to (4.1).

Secondly, we show (4.3) in 0 <s< 8 and djmw<v<<d/m. By the
definition of the class 8, we may assume

(4.6) BMy(2) < Myw/d) < B Mw) n 0<2<06,
where E; = Hj(d,4) >0, j =3,4. Hence, by (4.8), condition (ii) of
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Theorem 3, (4.8) and Lemma Biii),
Mo(5/4) (1/0)'M o (L)

lw(wv)l>Eiv“v(ﬂfo(}))—l(%?)r Mo(@)  (wjAy My(@jd)

> Bl (M (@))( ) B0 > B0 (m(L)) 'in(@)
and

_ teionli< faw '(M(%» (f,,) Wola) (ol A)-FE, (2] )

G , .
<E;«:"’(Mo (-1;)) (?) Bla™? My(0) < Bev- 1’(711( )) ()]

Thus (4.3) in 0 < w < 6 and d/w < v << 4w is proved. The proof of (4.3)
in ©>4 and djz <v<< Ajw is similar to it.

Lastly we show (4.4). By the definition of the cluss 8, and-(1.3),
we have

By M (v) <

@™ My (w)

Mu ((D/A) (-L//")—TMO(I/')) "'ﬂ]’fo ()

M) < EBM@w) in d<o<<dand 0>0

and
BE<M@<B, in d<e<d,

where B; = E;(,4) >0, j =5, 6,7, 8. From this, the definition of the
class S, ‘ohe conditions (i) and (ii ) of Theorem 8, and

1 Mw) 7" M(w) R ACL)
M) M(v)  pl@)  (w0)" M (av)
we get easily (4.4). Thus Lemma 6 is proved.

Proof of Theorem 3. Ag in the proof of [3], Theorem 4, we have,
for t>0,

y(av) = (07" M (v)) p(a),

o0

4.7 ' w(oft) F(2)ds
0

plt) = p(b)”

= () f o (u)du f {Fo(tuy) — (0)}af (4) = w(2) f {I6* (ty) — K™ (0)} df (y)

uging Lemma 3, where &* (u) is defined as in (1.2). Let 7, 6 and 4 be taken
a8 in Lemma 6, and further let 8 and 4 be fixed. Lot

n(u) = ,uv+r-1lzz+u1’-1—1/p_|_uy-llp(M(u))— —}—@b"“”"M(l/u)
n 0<u< oo,

It is clear that 0 <y—1/p<f and O<ytr—1jp< B, and that
(M (w))™* €8 and M(1/u) €8. By (i) of Condition (K2) and (1.4), we ge‘u
w(uw)n(u) e L(0, oo).

icm
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PFirst we put p = oo. Then, by (4.7), (4.1)—(4.4), v (z)F ()
and w(u)n(u) e L(0, co), we have, for ¢ > 0,

e L*(0, oo)

()] < ()

([

0

H(f o))

i f o (@) F(@)ldw = fp()e~ f jf‘;—((%’f—)l (@) P(2) de

p(t)

) )

A

du) (o sup |y(@)F (z)])

.

sup |y (e)F(x)]),

0 <z <<oo

A

where H = H(d, 4) > 0. Hence u(t)eL™(0, o). .

Secondly we put 1 < p < . Then, by (4.7), (4. 1)-—(4 4), a generalized
form of Minkowski’s inequality [7], p. 19, a,nd w(x)F (x) € L2 (0, oco),
. we geb

(f (%) l"dt)”p<{fm(lw(t)t“llfm|w(m/t)ﬂ(m)|dm)pdt}1/p
={[([ wwvor t“)'d“)pdt}l/p<f (f oo () p(2) F (1) " t)® s
0 0
<j? Iw(u)u—llpl ( j'q I,"P(wlu)p(w)lpdm))llpdu

<2 laun(

= H'(8, 4) > 0. Hence u(t) e L*(0, o) for 1< p < oo.
there exigts a positive

w)| du) (f () F () du)"* < oo,
[

where H' s
Now, let 1< p< co. From Lemma 4(ii),
number & < 1 such that

(4.8) %*(y) —&*(0)} > }|Bsly”

Since M (&/u) e 8 for such &, it is easily seen, from the definition of the
clags §, and the conditions (i) and (ii) of Theorem 3, that

(4.9) Blp(Ljw) < lp(éw)| < Bilp(ljw)]  in

where E, = Hj(8,4, & >0, § =1,2. Since f(t) is monotone, wo bave,
by p(t) e (0, o), (4 7), (i) of 0011(111:1011 (K2), (4.8) and (4.9),

| (:f u@Pay)”® = {

{

for any 4, 0 <y <<é.

0<u< oo,

(Iw(t)l F o —w o) \df (9)1)° @}
[

v

o —y3 0%8

s * P 5.\ le
(w1 [ 1" () —* (01 1af )1 e}
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>%lel{f(lw t"lf 91 ( 'y)l) ay”

— 31 (el o) o™
o

o0 u

> 73 [ v~ o af)eau”

0

where B% = H!(8, 4, & B,) > 0. Thus Theorem 3 is proved.

Proof of Theorem 4. The first part of the proof is the same as
in that of Theorem 2. In Theorem 3, we replace § and y by f+1 and ¢ -1,
respectively, and put

) =g, v@ =wp@e™ and k(@) = b (@).

Then, since y,()a~ (2@ (@) e L*(0, o), we get
t
p (L)~ [ o+ dg (@) € L7 (0, oo).
0

By the conditions (i) and (ii) of Theorem 4, and the definition of the class §,
we gee easily that

0 < sup| f I (Ljo) P27~ dw) | f I (1 o) "0 dr)
<0- fgop{ f a:”’“”‘z(M(l/w))pdw}””{ ,f m—va—ﬂ(Ma/w))*adw}”“ =0,.

Now, when we put

11
a0 = [ aga)l, 8 =p+1
0
and '
U(@) = lpu(L/)a*~],  V(a) = py(Lo)a=0-2)

in Lemma 2, we have, by assumptions,
o0
pa (LY~ [ 070710 dg(a)| = 9y (LE~ g (1) € L2(0, oo),
13

since g(t) decreases to zero in 0 < ¢< oo. Thus Theorem 4 is proved.
The author is grateful to the referee for his valuable suggostions.
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