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Damit ist (6) und nach den obigen Uberlegungen » € W, nachgewiesen.
Es gilt also Ly, = W, (vgl. auch (2)).

FoLgErUNG 1. Ist A konvergenzirew und gilt Ly + W, so ist A
u-stetig. ' - ‘

Die Bezichung L, # W, ist z.B. erfiillt, wenn 4 fastkoregultr (F, % W)
oder nicht ersetzbar (L, s F,; vgl. Korollar 2 von Benndtt [2]) ist.

Beweis. Die Aussage ist trivial, falls A nicht p-eindeutig ist. Ist 4
p-eindeutig, so ist 4 genaun dann p-stetig, wenn @ == G+, der Kern
von u, f(cl, ¢4)-abgeschlossen ist. Letzteres folgt aber unter der Voraus-
setzung L, s W, aus Theorem 2 und dem obigen Satz.

ForLerRUNG 2. Ist A Konvergenztrew wund abschnitisbeschrinkt (d.h.
L, =u0,), so ist A I stetiy.

Boweis. Wire 4 nicht u-stetig, so e111101tcn wir Ly = WA und
damit lim, € @,. Dies hitte aber wegen (4) die Nicht-p-Eindeutigkeit
und damit die u-Stetigkeit von A zur Folge.

Das Ergebnis in Folgerung 2 wurde von Wilansky [8] fiir den Fall
104 it BK-Raum” bewieseri. .

Zum AbschluB sei noch auf das obige Beispiel hingewiesen: 4 ist
p-eindeutig, und es gilt L, = W, ; weiter ist A auch u-stetig, da A rever-
sibel ist (vgl, Theorem 3 und die Bemerkung zu (1)).
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Operators which respect norm intervals
by

EHRHARD BEHRENDS (Berlin)

Abstract. Let X, ¥ be real normed linear spaces. For zy,%,¢ X let [3,; 2]
be the intersection of all closed balls containing #, and ,. [#y; ©,] is called the norm
interval between %, and z,. A continuous linear operator T': X — Y is said to respect
norm intervals if T'([@,; m,]) < [Tay; Tw,] for oy, #, € X. We investigate the collection
of these operators. For example, every extreme functional on X respects norm intervals
and, conversely, the set of norm interval respecting functionals can be obtained from
the extreme functionals by means of & Krein-Milman type theorem.

Norm interval regpecting operators on function modules are investigated in
more detail. As corollaries we obtain a result of Cunningham and Roy which charac-
terizes the extreme functionals on function modules, theorems of the Banach-Stone
type and characterizations for extreme operstors between spaces of continuous funoction.

0. Introduction. Let X be a real normed linear space. If »,, @, are
elements of X, [#,, #,] (the norm interval between », and ,) denotes the
intersection of all closed balls which contain », and x,, Some basic
properties and examples are considered in Section 1. In particular, we
characterize the norm infervals in function modules by means of the
norm intervals of the components.

The aim of this paper is the investigation of continuous linear oper-
ators T: X — Y between real normed linear spaces X, ¥ which respect
norm intervals, i.e. operators for which T ([&y; ®,]) < [Twy; To,] for
@yt € X. Wo prove that this class contains, for example, extreme
functionals, isometries with dense range, and M-bounded operators.
Some general propertics of norm interval respecting operators are estab-
lished in Section 2. Section 3 contains a theorem by which the norm
interval respecting functionaly on X can be obtained from the extreme
functionals. We apply this theorem to investigate the porm interval

respeeting functionals on some classes of Banach spaces.

Finally, in Section 4, we consider norm interval respecting operators
between function modules. The main theorems (Theorem 4.3, Theorem 4.7)
admit a number of corollaries; for cxample we obtain a characterization
of extreme functionals on function modules (a result which is due to
Cunningham and Roy) and Banach-Stone type theorems as well as
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characterizations of M-bounded and extreme operators for spaces of con-
tinuous functions.

Norarion. D(w,r) (resp. B(x,r)) denotes the closed (resp. open)
ball with centre « and radius 7. D(X) meansg the closed unit ball of & normed
linear space X, exD(X) the subset of its extreme points.

All spaces are assumed to be nonzero.

1. Norm intervals.

1.1. PrOPOSITION. Let X be a real normed linear spacs, a e I, 2, ,,

@y, vy € X, Then
() [e; 2] = () {B(@, )| @1, 25 € B(w, 1)}
=" {D(m, )| @, @, € B(w,)};

(ii) 2 € [wy; @,] implies that w,-+o,—2 € [5,; 2,];

(i) [y -+ @3 @at 5] = [y @]+, o035 5] = [amy; am,]

(in particular, all norm iniervals can be consiructed from noim intervals
of the form [0; x]).

Proof. (ii): Tet 2 € [#,; 4,] and D(»,r) be a ball such that o, v,
€ D{z,r). It follows that ,,®, € D (2,42, —x,r) 50 that |[(@; -2, —2)—
—2| <7, e @+ 2,—2eD(w,r).

The proof of the other assertions of the proposition is routine.

1.2, LemMMA. Let D:= D(m,7) be a closed ball, 2, y points in X such
that 2 ¢ D, y € B(w, ). Define § to be the unique point in co {y, &} (== the
conven hull of {y, 2}) such that | —g || = r. Then, for D;: = D(t(x—7) +4, ir)
(all £>1) we have 2¢ D, and D < D,.

Proof. For Ae[0,1], let @ = Ay +(1—A)z § = #, for a uniquely
determined % €10,1[, and x, ¢ D for A< . Since @, —(1[t) (0, —2) =
= @yq-1py it follows that 2 ¢ D, for all t=1. For veD, t>1, we
have (1—1/t)@,+(1ft)& € D. This implies that & e D,.

1.3. PROPOSITION. (i) For # ¢ [my; #,] there are balls D with arbitrorily
lorge radius such that 2 ¢ D, z,,®, e D.

(i) For & e[wy;®,], pel0,1], we have z & [@15 pwy +(1 — p)2].

Proof. (i): Let D:= D(z, r) be a ball such thatz ¢.D,w,, 2y € B, r).
We only. have to apply the preceding lemma with Y =y ¥y, 0y 6D <= Dy,
but 2z ¢ D, for every > 1.

(ii): We may assume that pe]0,1[. Suppose that 2 ¢ [@; g -
+(1—p)2]. It follows that there is a ball D := D(ax,r) such that = ¢ D,
@y, pa+(1—p)z € B(w,r). Let o; := Amy+(1~2)z for Ae[0,1]. Tf ¢
i the unique value in 70, 1] such that o —a,|| =r, then # < u and @, ¢ D
for /}< 7. It follows that z ¢ I, D < D, for all $>1 (D, a8 in 1.2). In
pa,r‘mcu_lar, for ty : = (1—) /(s —mn), we have (1 —1fto) @, +(1ftg) s = w, €D
which implies that ,, , e D, in contradiction to 2 e [u,; z,].

1.4, Exameirs. (a) For X = R the norm intervals are the usual
cloged intervals.

icm

Operators which respect morm intervals y 205

(b) It can easily be shown that [2,; »,] = co{w,, #,} if X is a Hilbert
space. More generally we will prove in Proposition 3.2 (iii) below that
this is the case whenever the extreme functionals on X are weak*-dense
in the dual unit sphere (in particular, every smooth space has this property).
We will say that X has small norm intervals if [@,; #,] = co {@,, ,} for
@y, Bq € X, ‘

(e) If K is a compact Hausdorff space, it is easy to see that (in the
Banach space OK) [f;9] = {h| fAg<h<fv g} for f, g e OK.

(d) If IC is o compact. convex subset of a locally convex Hausdorff
gpace, then (in the Banach space AK)

9] =Rl (frg)¥ <h<(fvg)*} for

(e) It is clear that the definition of [x,; #,] depends on the whole
space X. If necessary, we have to write [z,; z,]y instead of [ay; 2,]. In
general, [w; %]y 2 ¥ [wy; @)y if ¥ i8 a subspace of X containing
and »,. However, it can easily be shown that [#,; %]y = Y [2; @alx
if ¥ is a dense subspace of X containing w,, »,.

The structure of the norm intervals in example 1.4(c) is a special
case of a result for funetion modules. Function modules have been intro-
duced by Cunningham ([7]). They play an important role in M-structure
theory (cf. for example [4], [5], [7]). Note that every Banach space can
be regarded as a function module over a “maximal” base space.

1.5. DeFINtrioN. Let K be a compact Hausdorff space (the base
space), (Xy)pg & family of real Banach spaces indexed by the points
of K (the X, are called the component spaces). A function module X is a
closed subspace of the Banach space product of the X, (i.e. the space of
all bounded families (2 (%))x, provided with the supremum mnorm) for
which the following properties are satisfied:

(i) & > llz (k)] is upper semicontinuous for every » € X;

(ii) hwe X for # € X and h e OK ((ho)(k) : = h(k)o(k));

(iii) {x(k)| v € X} == X, for every ke K;

(iv) {k| X, 5 0} is dense in K.

Note. The most important properties are (i) and (ii), (iii) is always
automatioally satisfied ([7], p. 621) and (iv) has been included to avoid
trivial situations.

1.6. PropoSITION. Let X be a function module over K with component
spaces X,. Then, for »,,», € X, ‘

fi9gedAR.

(o3 3] = {2| 2 € X, 2(k) & [@:(k); @y(k)] for every k e K} =: [} @plem, -

Proof. The inclusion [@; @alym. < [@; @] is obviously valid. Con-
versely, let z ¢ X be given such that there is a %k e K for which z(k)


GUEST


206 E. Behrends

¢ [04(k); v, (k)]. We choose =z, € X;, >0 such that

@y (k), #(k) € Blay, r); (k)= > r.

By 1.3(i) we may assume that » > [lo ||+ |z, ]l. Let # be an element of X
such that x(k) = @, (1.B(ii)). |, —a)(B)| <7 (i =1,2), so that there
is a neighbourhood U of & with |(#;—a@) ()| <r for ¢ =1,2,le U. We
choose a function & e CK such that 0 < A < 1, h(k) = 1, h(l) = O forl ¢ U.
Then the ball D(»,+h(z—ay), 7) contains @, and @, but not 2, ie.
2 ¢ [@,5 o,].

1.7. Note. It follows that a function module has small intervals
only if K = {k} and X, has small norm intervals. This implies that
a Baa'mch‘ space X cannot have small norm intervals if the centralizer
of X is non-trivial (we recall that X has a function module representation
where 0K is isometrically isomorphic to the centralizer; see (2] or [4]
for definitions). The ‘converse is not true (consider f. ex. ).

2. Operators which respect norm intervals.

. 2.1. DEFINITION. Let X and ¥ be real normed linear spaces, T: X - Y

a linear continuous operator. We say that T respects norm intervals or
that T is a norm interval respecting operator (abbr. nir-operator) it T([2,; o 1
< [Tw,; Tw,] for @y, 0, € X. It ¥ = R, T will be called an nir-fu%oti:m;l.

2.2. PROPOSITION. Lot T: X — Y be a linear comiinuous operaior.

(iy T 4s an nir-operator iff T([0; #]) = [0; Tx] for every = e X.

(i) If Y =R, the following assertions are equivalent:

(a) T 4s an nir-functional;

(b} there is @ ¢ € R such that T([0; x]) < [0; T] for every » € X such
that Ty = o; -

(¢) [0; 2] = kerT whenever x ckerT.

I_’.roof. (i): This follows at once from I1.1(iii).

'(11): (a) = (c) and (¢) = (b) ave trivially satisfied. (b) = (a): We will
consider the two cases ¢ % 0 and ¢ = 0. '

¢ 7 0: L.1(iii) easily implies that T([0;x]) < [0; T»] for @
such that Ta s 0. It remains to show th(a[t ,[Og)w] c[ k,er_’l’] fo(;'1 me: T{ro}:;
Suppose that there are @,2eX, T =0, z¢ [0;2], Tz # 0. By 1‘3(ii5
X-Zdi?;;;en.z & [0; (w+2)/2] 50 that Te € [0; T((m+2)/2)] = [0; T2/2], u con-

¢ = 0: We have to show that T s 0 implies that T([0; #]) = [0;
Let @,2e X be given such that 2 [0; a:I]), Tx # 0. (éu’p;]gso Egéth migz
¢ [0 ;.Tw]. W.lo.g. we may assume that T2 < 0 < Ta (if pecessary we
cons{der —a instead of @ and x—z instead of #; cf. 1.1(ii)). We choose
au in 10, 1[ -such that T(,uw—]—(lwy)z) = 0. Since 2 € [0; uzw + (L —u)#]
(1.3(il)) we get T'» = 0 in contrast to our assumption. ,
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2.3. Examrins. Bach of the following mappings T is an nir-operator
(resp. an nir-functional):

(a) T is a linear continuous operator from X to ¥, and X has small
norm intervals (1.4(Db)).

(h) X is a function module, and T = m,: X — X, is the projection
@ +> x(k) onto the kth component. :

(¢) T is an isometric isomorphism from X outo ¥ (more generally :
T is an isometric isomorphism from X onto a dense subspace of ¥).

() X = ¥, and T is an M-bounded operator (i.e. there is a Ae R
such that Tz e D for every closed ball D which contains +iv; cf. [2] for
more details).

(¢) ¥ =R, and T is an extreme point in the unit hall D(X') of the
dual X' of X.

() X = AK (K as in 1.4(d)), ¥ = R, and T is the cvaluation map
associated with an cxtreme point of K. :

Proof. (a): Obvious.

(b): This follows at once from 1.6.

(¢): This is a consequence of the remark in 1.4(e).

(d): Bvery M-bounded operator is (up to isometric isomorphisnl)
a multiplication operator associated with a real-valued continuous function
on a suitable function module (this is just the function module represen-
tation theorem; cf. [7], [4]). Thus, the assertion is an easy consequence
of 1.6. )

Another proof which does not depend on the function module represen-
tation theorem can be given using Proposition 2.6 below: for pe
ex D(X’), there is a A, e R such that pol = Z,p ([2], Th. 438, 67,
Th. 2.3). 2.3(e) and 2.6(ii) imply that poT is an nir-functional so that T
must be an nir-operator by 2.6(i). '

(e): Let p be an extreme point in. the unit ball of X', # € X. By 2.2(ii)
we only have to show that p(#) = 0 yields plyq = 0. For & > 0, consider

Xy = col{(g, Ol qeD(XN}V{(g, g@)l ¢ €-D(X')})
and
Ky = {(p, &)}

(in X’'x R, X’ provided with the weak*-topology). Let (w,a)e X xR
o (X' % R) be a functional which gtrictly separates the disjoint compact
convex sets K, and IC,:

plw)+ae > 0> g(w), g(w) + ag (@)

for a suitable ¢ e R and all ¢ e D(X’). 0 e D(X') implies that ¢ > 0, and
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peD(X') gives ¢ >0. With 7: = ¢/a it follows that
lw/ja] = max{g(w/a)| qeD(X")}<r,
le+wlall = max{g(e-+w/a)| geD(X")} <r

so that 0, e D(—w/a,r). Hence [0;%] < D(—wla,r) so that, for
ye [Q; @], p(g{ “+w/a) < r and consequently p(y) < ¢/a—p(w)/a < e. Con-
mdtf.rmg —p instead of p we get Pl > —e as well so that, gince ¢ way
arbitrary, pliy = 0.

(This result is a special case of [6], Prop. 2.2; this proposition has
been the starting point for our investigations.)

(f): This follows from (e), since exD((AK)) = {£06,] &k € ex K}
((?k denqtes the evaluation map f s f(%)). An independent proof can be
given using a well-known fact from Choquet theory: for f ¢ 0K and & e ox K
we }%awe FME) =f(k) =fY (%) ([1], T.4.1). Thus our assertion is an im-
mediate consequence of 1.4(d).

2,4. PROPOSITION. Let X be a real mormed linear space, x € X. Thon
[0;2] = {2| ze X, p(2) € [0; p ()] for every p eexD(X")}.

M 01‘;7 ge.nemlly: If N is a norm-defining family of nir-functionals (i.e. every
pe @ an  nir-functional, and |z| = sup{|p(x)/lpl|p e N\{0
z € X), then N determines norm intervals : { [ ? ¢ }} o

[0; 2] = {2 zeX, p(2) € [Q; p(2)] for every pe N} (all v e X).

Proof. “=” ig clear by definition (resp. a consequence of 2.3(e))
Conversely, let z ¢ [0; #]. There is a ball D(y,r) such that 0, e D(y, r),
lly —2l > . We choose a P eN such that |p(y)—p(2) > rlipll. Since
Py —a)<rlpll, Ip () < rllpll, we have 0,p(s) cD(p(y),lpl) and p(2)
¢ D(p(y), rllpl). This implies p(2) ¢ [0; p (z)].

2.5. Note. This proposition can be used to determi i
of B DT b et ermine norm intervals

(a) exD((OK)) = {4-8,| k € K} (K as in 1.4(c)). This vi
proof for 1.4(c). ‘ ) 1 ields & new

(b) More generally, if X is a function module, then

exD(X') = {fom) ke K, X, 0, feexD((X,))}

([8])_. Using this fact, 1.6 is a corollary of 2.4. We preferred, however.
to give a more elementary proof of 1.6 (the results of Cunningham a;nd’
Roy will be proved independently in Corollary 4.4 below)
(¢) For X =17, -
@ = (@) e X, (0501 =)l () e X, 3o, c[0; Y o]

for every sequence (g) in{—1, 1}}.

icm

Operators which respect norm imiervals 209

2.6, PrOPOSITION. (i) Let T: X — Y be a linear continuous operator.
T is an nir-operator iff poT' is an nir-functional for every nir-funmctional p
in X' iff poT' is an nir-functional for every p e exD(X’).

(i) Multiples aT and compositions Sol' of nir-operators are also
nir-operators. .

(iii) The set of nir-operators in [X, X is closed with respect to the
weak operator topology. In partioular, the set of nir-functionals on X dis
weak*-closed in X'.

Proof. (i): This follows at once from 2.4.

(ii): This is obvious.

(fil): Let (L,)eer Pe & net in [X, ¥, T, - T e [X, Y] (convergence
with respect to the weak operator topology). For p € ex D(Y'), poT, - poT
in (X', weak*topology). By 2.6(ii) the poT, are nir-functionals. Thus,
for # € X and ze[0; 2], poTl,ze[0;polw] so that polz e [0; pol=].
It follows that 7' is also an nir-operator.

3. The structure of the set of nir-functionals. Let X be a real normed
linear space. The results of Section 2 imply that every functional in the
weak*-closure of R(ex.D(X')) is an nir-functional. Thus there are even
three-dimensional spaces which admit nir-functionals that are not multiples
of extreme functionals. However, it is possible to derive a Krein—-Milman
type theorem for nir-functionals (Theorem 3.6) by which the set of mir-
functionals can be obtained from the.extreme functionals.

3.1. DErINITION. Let X be a real normed linear space.

(i) nir(@) := {gl ¢ X', ¢([0;2]) < [0; g(@)]} for we X.
(i) Xp 1= (nir(@) = {gl ¢e X', g is an nir-functional}.
zeX

3.2. PROPOSITION. (i) nir(z) = X’ #ff [0;2] = co{0, &}

(il) X has small norm intervals iff every functional on X is am nir-
functional.

(iii) If the muliiples of the extreme functionals on X are weal*-dense
in X', then X has small norm intervals (the converse is not true; of. 3.7(c)).

Proof. (i): Suppose that nir(s) = X' and that e [0;a] (we will
assume that @ = 0). It follows that g(z) = 0 whenever ¢(z) = 0 (allg e X")
90 that z == aw for some a € R. ¢ e [0; #] implies that a €[0,1]. The con-
verse implication is obvious. .

(ii): This follows from (i).

(ili): This is a consequence of 2.6(ii), (iii), 2.3(e) and (ii) of this prop-
osition.

The following definition will be needed to formulate the Krein—
Milman type Theorem 3.6:

3.3. DeFINITION, Let B be a real locally convex Hausdorif space,
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Ac B Forfel',abeR, let Hfa,b] :={o] B, fo
the set between the two hyperphnes {f =a} and {f = b}).
The linear convexr hull, ¢0 A, is defined by

ﬂ {H;[a, D] feE’ a, beR, A < Hifa, bl}.

)efa; B} (e

3,4. EXAMPLES. (<L) an is a closed, convex set which containg coA.
(b-) It 4 is o bounded set, then ¢od = coA.
(¢) A routine argument shows that ¢o.4 is always linearly eonvex.
(d) It can be shown that for finite-dimensional spaces the linearly
convex sefs are just the sums of a subspace and a compact convex get.
5. DEFINITION, Let X be a real normed linear space, x € X, X’
provided with the weak*-topology.
(i) nir*(z) := cOR* {p| p cexD(X'),
(i) nir*(z) : = nirt (z)Unirt (—=).
o (iii) nir* (@) : = [Ré0(nir* (z)n{g] ¢(@) = 1})]~ for & %0, nir*(0):=

o (@) = 0}

3.6. THEOREM. (i) nir*(z) c nir*(2) = nir(z) for every v e X.

(ii) If inf{lp (m)]] p eexD(X’)} > 0, then nir*(z) = nir* (@) (v e X).

(iii) (M) nir*(e) = () 0ir*(2) = X ;..

- aeX zeX

Proof. (i) (we will agssume that x 5= 0):

nir*(#)-< nir(e): A direet computation shows that co(R*{p|p
eexD(X'), p(2) > 0}) < nir(s). Since nir(z) is weak*-closed, this implies
that nir* (#) < nir(x), Similarly one shows that nir™(—g) < nir(a).

nir*(z) < nir(z): Since Rnir(s) < nir(s) and nir(z) is weak*-closed,
it is sufficient to show that

¢o(nirt ()N {g| ¢ ‘ () = 1}) = nir(a).

Let ¢, be an element of ¢o (nir™ ()N {q| q(w) = 1}), 2 € [0; @]. We will
prove that

nir* (@) N {g| g(w
so that ¢, e H,[0,1], ie.
' 40(2) € [051] = [0; gy ()]

(we have identified 2 with the evaluation functional ¢ — ¢(¢) on X';
note that go(#) =1 since nir*(z)n{g| ¢(») = 1} = H,[1,1]). Since

nirf () := coR* {p| p eexD(X'), p(x)> 0}
)n{gl ¢(») =1}

) =1} = H,[0,1]

is & cone, we have nirt (o = (nirf (@) {g| ¢(@) =1})" so
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that it is sufficient to show that

nirf (#)n{g| ¢(») =1} < H,[0,1].

n
Let 3 2,p; be an element of this set, i.e. 4, > 0, p; e exD(X'), p:(2) >
t=]

(t=1,...,m), N ip;(x) =1. Since p, enir(z) for all ¢, it follows that
2i(2) € [0; py( )1 = [0, ps()] %o that 0< 3 4,p:(2) < X Aps(w) =1, ie.
le,eﬂ [O 1]. “mr(m) < nir*(#)”: Let g, be an element of nir(z).
Since R nir*(#) = nir* (), we have only to consider the cases gy(#) =1
and gy(x) = 0.
First case: q,(w) = 1: We will show that

- gp emiry (@) 1= (,:No(nir* (@)n{gl g(z) = 1}) < nir* ().

Suppose that g, ¢ nirg(x). By definition, there is a w .in X such that
qo ¢ H,[a,b] for suitable a,beR, nirt(z)n{gl ¢() = 1} < H,[a, b].
We may assume that a < b so that, with 2 : = (w—a»)/(b—a), g ¢ H,[a, b]
= H,[0,1] (ie. go(2) ¢ [0; go(®)]). We claim that 2 e[0; #] in contra-
diction to g, e nir(x). By 2.4 we have to show that p(#) € [0; p(w)] for
every p eexD(X’). If p(w) >0, then p/p(x) enirt (z)n{g| g(x) =1},
ie. 0K pRR)<p®). If p(x) =0, we choose a Po € exD(X') such that
po(®) > 0. For every n &N, (po+np)/p.(x) enirt (#)n{q| gq(x) =1} so
that 0<<po(e)+np(2) < Do(w). This implies that p(e) =0 e [0;p(2)].
The case p(x) < 0 can be reduced to the ease p(x) > 0.

Second case: ¢o(®) = 0: We choose a p, eexD(X') such that
Po(x) > 0. Tt is clear that (p,-+ng) /pe(2) € nir () for every n e N so that,
by the first payrt of the proof, (po-+ng,)/Pe(x) € nir*(#). Therefore q.,+

+ (1 /n)p, € nir* (z) for every » and consequently g, € (mr (w)) = nir* (@).

(ii): Suppose that |p(@)|>e> 0 for every p eexD(X’). It follows
that nird (#)N{g| ¢(®) = 1} is contained in the ball with radius 1/ so
that

=1}) = &o (niry (@)n {g| ¢(2) =1})
= co(nir* (2) N {gl ¢(») =1})
= nir*(#)N {g| g(#) =1}.

¢o(nirf (2} {g| q(w

This y1e1ds R*G0 (nir* (@)n{g| ¢(z) = 1}) = nir* (v). Similarly one ghows
that R~ G0 (nir™ () n{gl g(@) = 1}) = R éo (mr"‘(-m)n{q[ q(—m) = 1})
< nirt(—o) so that Réo (nn”r (w n{ql ¢ a;) = 1}) < nir (w Since nir* ()
is closed, this implies that mir*(z) = nir*(2).

(iii): This follows from (i).

3.7. APPLICATIONS. (a) Suppose that there exists an element » of X
such that inf {|p()| | p eexD(X’')} > 0. Then X, X'
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(b) If X is a (necesgarily finite dimensional) space for which ex])(X')
is finite, then X,;, = RexD(X’).

(¢) There exists a three-dimensional space such that X' = X,
for which (RexD(X'))” is a proper subset of X’.

(d) I K is as in 1.4(d), then the elements in (4.K),, ave of the form
«é, with a e R and ¥ e K. Consequently in order to determine (4X),,
it iy sufficient to determine K. := {k| 4, iz an nir-functional on AK}.
It is clear that K, is a closed subset of K which containg the extreme
points of K. There seems o be no simple way to construct Ky, from
ex K,

Proof. (a): It ig clear that nir*(m),%X’ in this case (note that
nirt(@)n{g| ¢(») =1} is a bounded set). 3.6(ii) and (ili) imply that
X X

(b): Let g, be an element of X'\(Rex.D(X’)). Tt is an easy exercise
to establish fhe existence of an #, € X such that g,(z,) = 0, p(z,) #0
for every p e exD(X’). Tt follows that g, ¢ nir () » X;,. The reverse
inclusion is always valid.

(¢): Consider in R*® the “barrel” B := {(a,d,¢)| a*+b*+* <1,
le] <1/2}. Let X be that three-dimensional normed space for which B
is the unit ball of X’. It is easy to see that nir*(x) = X’ for every # ¢ X
so that X, = X’ by 3.6.

(d): An eagy calculation shows that nir*(L)
by 8.6(ii) and (i), (4K)y, = R{6,| % e K}.

= R{d,] ke K} so that,

4. nir-Operators on function modules,

4.1, DEFINITION, Let X be a function module as in 1.5, ¥ a real
normed linear space, I': X — Y a linear continuous operator. We say
that T is a component operator iff there are a k e K and an operator T): X,
- ¥ such that T = Tyom, (m,: X — X, denotes the projection from X
onto X;). For ¥ =R T will be called a component funclional.

4.2, PROPOSITION. (1) The following are equivalent:

(a) T is a component operator.

{b) There is a & e K such that z(k) = 0 implies To =0 (all » € X).

(¢) poT is a component functional for every p e X',

(i)

Oy :={gl g is a component functional on X, ¢ = gom,

for some g, e X}

8 a fweak* closed subspace of X' (all ke K). If, for ¢, g, €X', q:=
(1/2)(¢1+4y) belongs to Oy, then ¢, ga € 0y, provided that |\gulf, [gall < llgl.
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(i) If T is o monzero component operator on X, then k and T, are
uniquely determined for T.

Proof. (i): (a) = (¢): Thig is obviously valid.

(¢) = (b): Let Dy be the set {p] p € ¥', poT + 0} (we may assume
that I' 5% 0 so that Dy # @). By definition there are, for every p e Dy,
& k,ell and an f, e (X},)" such that pol = fiom, . We claim that there
in .m ke K such that & =k, for every p e Dy, Suppose that there are
D3y Pa € Dy such that %, % k,,. Since p,oT -r* 0, there are «;, € X such
that pol (%) =1 (i = 1 y 2). With @y : = Ry, +hews (hy, and h, suitable
functions in 0K such that h1 ky) = hy(ky) =1, Iyh, = 0) we have (p, -+ ps)o
olzy =2 so that p,-+p, € Dp; it follows that (D1 +22)0T = fp 40,07,
(ko 2=k 4p,)- Suppose that %, # ky,. We choose a function h e OK for
which h(ky, ) =1, h(k,) = h(k ,) = 0. Then, with  : = ke, we get (p, +ps)0
ofy =1 # 0 = fy 10,97, (@). *This contradiction proves that ko =k, .
Similarly one shows that k, =, so that k, =%k, in contrast to our
hypothesis.

I »(k) =0, then poT(z) =f,(x(k)) =0 for every p eD,
therefore for every p e X'), ie. T(x) =

(b) = (a): Define Ty: X, - ¥ by Ty((k)) := Tw. T, is well-defined
by hypothesis (cf. also 1.5(iii)) and obviously linear and continuous (note
that, for 4, € X, there is an 4 € X such that 2(k) = @, and [z < (1-+ &)zl
{e > 0 arbitrary); this follows at once from 1.5). We have T = Tyom,
by definition.

(ii): The first part follows at once from (i)(b). Suppose that ¢ : =
(L/2)(1+92) € Gy 1 = [l = llqall, ligall. 'We will show that (i)(b) is sab-
isfied for ¢, and g,.

Let @ be an element of X which vanighes in a neighbourhood U of %,
Jlwl < 1. For & > 0 we choose an o, € X such that 1 > ¢(2,) > 1—¢, 2.(I) =0
for 1 ¢ U, (o)l < 1 (w, == h&,, where h ig in OK with h(k) =1, supph < U,
and &, is a normalized vector in X such that 1> ¢(#,) > 1 —&; note that ¢
is & component functional).

q(®w,) > 1 —¢ implies that ¢,(w,), ga(®,) > 1—2e. On the other hand,
e, ol < 1 so that g, (2, +2), ¢a(@,42) < 1. This yields |¢:(2)], 1g2(»)] < 28
80 that q, (%) = gy(2) = 0. Now let # be an arbitrary vector in X such. that
2(k) = 0 (w.lo.g. we may assume that ||| < 1). For ¢ > 0 there is a neigh-
bourhood U of k such that [w(l)|<eforlin U. Let k Pe a continuous
function on K such that 0 <k <1, supph = U, b = 1 in a neighbourhood
of & contained in U. (1—h)a vanishes in a neighbourhood of % so that
g((L—hyw) =0 (i =1,2). Since |o~(l—h)w]|<e this yields |g (=),
|g(®)] < & 80 that q,(w) = ¢z(®) = 0. (i}(b) implies that ¢,, gs € 0.

(iii): Suppose that T = Ty om, = Tyom,, with &, # k,. Choose an
o € X guch that To # 0 and a functxon b € OK such that k(k,) = 1, h(ks)
= 0. It follows that

(and
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Ty omy, (ha) = Ty omy, () = To %0
= T,CZOnk2(7zw) = T (hx)
= Ty om, ().

This contradiction shows that &y = k,. T} = T,cg is a consequence of
1.5(iii).

4.3. THEOREM. (i) Hvery nir-functional on a function module is a
component functional.

(ii) If X has small norm intervals, then every nir-operator from a function
module X to Y is a component operator.

Proof. (i): Let ¢: X - R be an (w.l.o.g. nonzero) nir-functional.
We will proceed as follows: P

1. For every # ¢ X sueh that g(x) % 0 there is a k, e K such that
q(hw) # 0 whenever heCK, h>0, h(k,) = 1.

2. k, does not depend on # (the common value will be denoted by %,).

3. ¢(w) = 0 whenever & vanishes in a neighbourhood of k,.

4. ¢(w) = 0 whenever @ (k,) = 0 (so that, by 4.2(i), ¢ is & component
functional). '

1. Suppose that, for every k e K, there is a hy, € OK, b, > 0, hy(k) =1
such that q(h,w) = 0. Since K is compact, there are ky, ..., k, e K, m > 0
such that k :=m{k, + ... +h)>1. We have g(hw) =0 and, by 1.6,
% e[0; he]. Since ¢ is an nir-functional this implies that ¢(a) =0,
a contradiction.

2. Suppose that there are @y,4, X, ¢(@;) #0 % (@), by 1=k,
# by 1= k,,. We choose functions hy, hy € OK, hy(ky) = hy(ky) = 1, by, by
= 0, hyhy, = 0. For a suitable constant ¢ € R we have ¢ (ko -+ ahyw,) = 0.
Since kb, = 0, b2y € [0; hy@y + ahyw,] 80 that ¢(h@,) = 0 which contra-
dicts the construction of %,.

3. Let # be an element of X guch that ¢(z) # 0. For any neighbourhood
U of k, there is a function h € CK, h> 0, h(k,) =1, supph = U. Since
q(hz) # 0, @ cannot vanigh identically on U.

4. 1.5 (i) and (i) easily imply that @ = limh,a for suitable h, e CK
where %, vanishes in a neighbourhood of k, (¢f. also the proof of
4.2 (i)).

(ii) This f.ol!ows from the first part of thig proof, 4.2 (i)(e), 3.2 (ii),
and 2.6 (ii).

Note. (1) It is clear that g,0m, e Xy, for every ¢, € (Xp)uy (2.3(b),
2.6(ii)). One might suspect that, for g e Xy, ¢ = ¢,om, a8 in 4.3(1), g,
must be in (X;)y,. The following example shows that this must not be
the case: Let K :={1,2,..., o} (= aN), Xy := I for k € K. Define X
bY (@ bp)nex!| Oy 75520, by, s> by, @ € R} X is afunction module over K.
We congider the functional ¢:(a,, b,)pex = bo. An easy computation

shows that ¢ € X, (in fact, ¢ is the weak*-limit of the extreme functionals
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Dot (Cny Uydner +* @p+by, meN), In this case we have ¢ = 07,
where ¢.: I3 > R is the functional (a,b) - b which does not respect
norm intervals. (A similar funetion module has been considered by R.
Evans to show that the component spaces of the funection module rep-
regentation of & Banach space must not have trivial M-structure.) In addi-
tion this iy an example of a function module whose norm intervals do not
exhaust the norm intervals of the components: for k = co and @ = ((0, 1),
(0,1), ..., (1, 1)) we have [0;a], := {y(k)| y & [0; a1} G [0; @ (k)].

(2) The condition concerning the intervals of ¥ in 4.3(i) is essential:
the identity from CK to CK is an nir-operator but not a component op-
erator (K a compact Hausdortf space which contains more than one point).

‘4.4, OOROLLARY ([8]). Let X be a function module as in 1.5.

(i) For p eexD(X') there are a keXK such that X, #£0 and a
p eexD(Xy) such that p = p,om,.

(i) Conversely, for k& and p, as in (i), p 1= p,om, is an extreme funo-

. tional on X.

Proof. (iy: p = p,om, by 4.3(i) and 2.3(e). X, # 0 since p # 0.
;15 in the unit ball of Xz: |Ipf = [p4ll = 1 (cf. the proof of 4£.2(i) (b) = (a)).
P = (1/2)(px+2}) (with py, pi € D(X})) implies that p = (1/2)(prom, +
+ plom,) with piom,, piom, € D(X') so that p = pjom, = pjom,, i.e. Py
= Pi = D

(ii): Let p := pom,. We have |p|l =1 since [pll =1. I p., P,
e D(X') satisfy p = (1/2)(p; +2.), then p, = pjom, for suitable pi € D(X})
by 4.2(i) {1 =1, 2; note that |pi] = llp,l<1). It follows that p, =
(1/2)(pk+p3) so that p, = p; = pi. This implies p = p; = p,.

4.5, COROLLARY (Stone). Let L be a locally compact Hausdorff space.
The exireme functionals on C,L (the space of real-valued continuous functions
on L which vanish at infinity) are precisely the maps 496, l e L.

Proof. O,L is o function module over X = al with X, := R for
lel and X, :=0.

4.6. COROLLARY. Let X be o real normed linear space, K a compact
Hausdorff spavce for which the isolated points are a dense subset. Then every
ewtreme point T in the unit ball of [X, CK] i3 an nir-operator.

Proof. Let & be an isolated point of K. It is cagy to see that +do0l
is an extreme point of D(X') and consequently an nir-functional. Since
the isolated points are dense in X, the associated functionals +4, are
dense in oic])((OK)’). It follows that +68,07 is an nir-functional for every
ke K ie. T is an nir-operator by 2.6(i).

Note. It has been shown by Sharir (Israel J. Math. 26 (1977)) that

there- are compact Hausdortf spaces K, I, an extreme operator T':CI
- 0L, and an lel such that 60T ¢ | J RS, (we ave grateful to the
keK .
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referee for pointing out this reference to us). 2.6(i) and 4.3 imply that T
is not an nir-operator. Thus extreme operators between CK-gpaces need
not be mnir-operators.

If one is only interested in an extreme operator which is not norm
interval respecting for the case of arbitrary Banach spaces it sufficies
to consider two-dimensional spaces: Let ¥ be a two-dimensional Banach
space such that there are two extreme pointy p, ¢ in the unit ball for
which (1) [0;p] = co{0, p}, (2) p and ¢ ave linearly independent. Then,
with X : =1, let T: X - Y be defined by (a,b) s ap+bg. T corres-
ponds, in [X, ¥] >~ ¥ x ¥, to the extreme point (p, ¢) but T is not an
nir-operator: The interval [0; (0, 1)] in I} spans I} go that the range of
nir-operators in [X, ¥] which map (1, 0) on p must be contained in*the
span of [0; p] which iy one-dimensional.

4.7. THEOREM. Let X and Y be fumction modules with base spaces K
and L and component spaces (Xp)pex omd (¥))z, respectively. Suppose
that the component spaces Y, all have small norm intervals. Then, for every
nir-operator T: X — ¥, there are

@ subset L, of L;

a map t: Ly - K;

operators Tyy: Xyg) — ¥, (all 1 e Ly)
suoch that

_fo if  1¢L,,
(Tw)(l)*{mtw(w(t(l))) if 1L, (Wl oeX,lel).

Notes. (1) 4.3(il) may be thought of as a special case of this theorem
(consider Y in a trivial way as a function module over a base space con-
taining only one point).

(2) The conditions on Y of the theorem ave in particular satisfied
for the class of square Banach spaces considered by Cunningham and
Roy ([8]). Square Banach spaces can be regarded as funetion modules
where the component spaces are at most one-dimensional. For example,
every separable G-space is a square Banach space. Note that 4.8 and 4.4
imply that X, = RexD(X’) for every square Banach space X.

Proof. Let L, := {I] 1 e L, moT # 0}, For leL,, moT is an nir-
operator, i.e. there ave a ke K and an operator T: X, - ¥, such that
mo! = Thom, (4.8(ii)). % is uniquely determined for I by 4.2(iii). We will
write #(l) := k. It i3 obvious that L, ¢, (Tyyyher, have the claimed
properties.

4.8. CorOLLARY. Let X be o Banach space, ¥ o Banach space having
small norm intervals, K and L compact Hausdorff spaces, T: O(K, X)
- 0(L, X) an nir-operator (C(K,X) denotes the space of X-valued contin-
uous functions on K, provided with the supremwm norm). Then there are
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an open subset L, of L
a continuous map t: Ly, - K;
@ continuous map w: L —[X, ¥, with norm-bounded range which
vanishes on IN\IL,
such that

o  1¢L,
ELIURCATURES A

for weC(K,X), lel ([X, Y], denotes the set of nir-operators from X
to Y, provided with the strong operator topology).

Conversely, if Lo, ¢, u are given as above, then Ty , ., is on nir-opéfator.

Proof. We regard C(K, X) (resp. O(L, ¥)) as a function module
with bage space K (resp. L) and component spaces X (resp. ¥) at every
point of the base space. We define I, and ¢ as in 4.7, and u: L — [X, Y]
is the mapping I Ty (for 1 e Ly; fox 1 e NI, we define u(l) :=0).
‘We have to show that

1. I, is an open subset of L;

2. 1 is continuons;

3. % i8 continwous and normbounded;

4. every w#(l) is an nir-operator.

1. INL, = N {T=)"1(0)] » e O(K, X)}.

2. Let U be a neighbourhood of ¢(Iy) (I, € L,). By definition, there
is an # in O(K, X) such that (Tw)(l,) 5 0. Replacing (if necessary) @ by
ha for a suitable & e OK we may assmme that z(k) = 0 for k¢ U (note
that (Tw) (%) = T (kw)(l,) whenever h(t(l,)) = 1). By eontinuity, there is
a neighbourhood V of 1, such that (Tw)(l) # 0 for I € V. It follows that
Ty (#((1))) # 0 for Le V, ie. t(l) € U for these I.

3. For z € X, let ® be the constant function on K which assumes
the value z at every point. We have %(l)(2) = (T2)(l) for every Il € L 8o
that T - w(l)(2) is a continuous map. This proves that » is continuous.
The u(l), | €L, are bounded in norm by [T|.

4. For z,w e X, z € [0; w], we have 2 € [0;2] so that Tz e [0; Tw].
1.6 implies that w(1)(2) = (Tz)(l) € [0; (Tw)(l)] = [0; u(l)(w)] for every
1 e L. It follows that «(l) is an nir-operator (all 1 e L). -

Conversely, suppose that Lo, t,  are given. It ig clear that Ty ;. i8
a linear continuous map from € (K, X) into the space of bounded ¥-valued
fanetions on L (supremum norm). For h e 0K and 2 e X the function
T s h(8(1)) % (1) (2), i.e. the function T'p 40 (h2), is continuous by hypothesis.
Since {he2| h 0K,z e X} is total in ¢(XK, X) it follows that the range
of Ty 4, I8 in fact contained in0(L, ¥).

It remains to show that Ty, is an nir-operator. For », e oK, X),
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@ € [0; z,] we have #(k) & [0; (k)] for all & e K. In particular w(B)a(4(7)
e [0; u(lym, (t(1)] for 1e.L, so that Trpuu® € [05 Ty 0] by L6

4.9. COROLLARY. Let X, ¥ be real Banach spaces having small norm
intervals, K and L compact Hausdorff spaces. Then, for every isometiic
tsomorphism T: C(K,X) - C(L, Y¥) there are

a homeomorphism t: L - K;

& continuous map w from L into the space of isometrio {somorphisms

Jrom X to Y (provided with the strong operator topology) ‘
sueh that (Tx)(l) = w(l)a(i(l)) for every weC(K,X), lel.
o Proof. I' =1, ., by 48 (and 2.3(c)). Since I’ iy surjeetive, ¢ is
defined on all of L, ie. (Z%)(1) = Ty ,@(l) 1= u(D)a(t(l) for @ e 0L, X)
and ! e L. Considering 7™ instead of T we got 77 == T . ag well (whero
t': K —Land w': K —[Y,X],, are continuous mam;)'. Ly ol amd
Ty 0ty o arve the identity maps which easily implids that /ot = Id,,
tot" = Idy, w(lou'({(l)) =Idy, w'(k)ou(t'(k)) = Tdy (all lel, & eK}.
fimce the (1) (vesp. the u’ (k) ave bounded in norm by N == 1 (7Y == 1)
it follows that these mappings are in fact isometrie isomorphisms.

4.10. COorROLLARY. Let X be a Banach space having small norm intervals.
.Th(m X 'has the Banach—Stone property, i.e. the emistence of am isometric
isomorphism belween C(K , X) and ¢(L, X) (K and L compact Hausdorff
spaces) implies that K and L are homeomorphio. '
) Note. Since Z(X) is one-dimensional in this cage (1.7), the corollary
is also a comsequence of [3], Theorem 3.1.

4.11. CoROLLARY (Banach-Stone). Let K and L be compact Hausdorff
spaces, T: OK — OL an isomelric isomoirphism. Then there are o homeo-
morphism t: L -~ K and a function b e OL with R ()] =1 for every lel
such that (Tf)(1) = W (t(1)) for every f < CK, i< L. )

4.12. CorOLLARY. Let X be a Banach spaco hawing small norm inter-
vals, K a compact Hausdorff space, T an M-bounded operator from O (K, X)
to C(K, X). Then there is o funclion h, € CK such that T = M, (M ’rr’ tem
hot for @ e O(K, X)). AR

Proof. By 2.3(d) and 4.8, T =1, for suitable L,, ¢, v. Sinee
the‘ collection of M-bounded operators (1;;,1:1 Banach spxwoj gs; f‘; Trn:}ﬁ:‘:
ta.mv&? Banach algebra, 7' commutes with all multiplication ()pm'u.torb" M
h € CK (these operators are obviously M~boum’ied). This implies 17]1;7;1;
EO)(T2) (1) = h(t(D)(Tw)(1)for everyl e L,and every h € OK (allw e ({I, X))
so that (1) =1 for these I It follows that (Ta)(l) = (L) (1) 2= w(l) (T’IJ(Z))
for ¢ e O(K, X), le K. u(l) is an M-bounded operator (we only have
to apply the condition for M-boundedness of T to the subspace of c('msta,nt
functions {=| # e X}) so that, by L7, u(l) = hy(1)Tdx for a suitable h NHeRr
. (a,ll l € K). Let h, be the function I s Ro(l). by is continuous, since % oz =Tz
* 18 & continuous function for every z € X. Tt is clear that,T = Moh .

(]
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4.13. CororLLARY. (i) Let K be a compact Hausdorff space. Thew,
for every momzero multiplicative functional q on CK there is a ke K such
that q == 0.

(ii) Let K and L be compact Hausdorff spaces such that the isolated
poinds of L are dense in L, T: CK — CL a linear continuous operator,
1T << L. Then the following are equivalent:

(a) T is an ewtreme point of the unit ball of [CK, CL];

(h) T'is an nir-operator and, with I' = T, .., as in 4.8 (we will regard
u as continuous function from L to R), we have |u(l)| = 1 for every e L
(so that, in particular, Ly = L in this case);

(@) T is essentially mutliplicative, i.e. T(fg) = (TL)(Zf)(Lg) for
fr9eCE, and |(TL)(1)| = 1 for every 1eL; )

(d) 80T is an evtreme functional on UK for every isolated point  of L.

Note. Since for K = L = N the conditions of (ii) are satisfied,
the results of Kim ([9]) concerning the extreme operators in [I°,1%]
are contained as a special case. Note, however, that in order to avoid nota-
tional complications we restricted ourselves to real spaces (the results
in [9] are valid for the complex case as well).

Proof. (i): We claim that ¢ is an nir-functional. Let f € CK, ¢  [0; f]
be given such that g¢(f) # 0. g € [0; f] implies that 0 < gf < f* so that
gince multiplicative functionals on CK are monotone, 0< g(9)q(f)
< (g(f))%. Since ¢(f) # 0, it follows that ¢(g) € [0; ¢(f)], i-e. ¢ is an nir-
functional (2.2(ii)). For suitable a € R and % € K we have ¢(f) = af (k)

C(all f e OK) by 4.3(i). Since ¢ # 0 we have g(1) = 1 so that ¢ = 1.

(ii): (a) = (b): I is an nir-operator by 4.6 so that T =Ty ,, for
suitable Lq, t, %. |T)| = 1 implies that |« (l)] <1 for every I e L. Suppose
that |u(l)] < 1 for some I, € L. We write % = (1/2)(u; +ws) With uy, 2%,
€ OL, [l well <1y vy 7% % Ug, %y (1) = p(l) = 0 for 1 ¢ Ly. It follows
that T = (1/2)(Tppuu, + Trptu,) With Tropo #F T # T guy @ contra-
diction. We thus have |u(l)| = 1 for I € I, so that I, must be clopen in L.
Let H be the operator f i f(k)h (b, € X an arbitrary point, A = the
characteristic funetion. of L\L,). We have T = (1/2)((T+H)+ (I —H ))
with [T +H| < 1 so that H = 0. It follows that L = L,.

(b) = (e): This is obvious (note that T1 = w).

(¢) = (d): (1/(T1)(Z)) 80T = §, for some keX by (i). Thus 60T
€ {0y, —0,} = exD((CK)') (4.5).

(d) = (a): Suppose that T = (1/2)(Ty+T,), where Iy, T, e D([OK,
CL)). By hypothesis, we have (T,f)(1) = (Tf)(1) = (T.f)() for f e UK and
every isolated point of L. Since these points are dense in L it follows that
=T =1,
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" An approximation problem in L7([0, 2%]), 2 <p < oo

by
DANIEL M. OBERLIN* (Tallahasses, Fla.)

Abstract. We treat the remaining case (2 < p < o) of an approximation problem
earlier considered by Kahane and Rider.

For n eZ, let e,(x) be the exponential ef’“, and for fe L*([0, 2%])
define the Fourier coefficient f n) to be (2m)” f flz .L‘)d[l‘ Then the

Fourier series of fis > f(n)e,.

We consider the followmg question. If f e L*? (= L*([0, 21:] ), is f the
limit in tho L? norm of frigonometrie polynomials g such that g(ny = g(m)
whenever f (n) = j (m)? For p =1 a negative answer follows from results
of Kahane [2], while a construction of Rider [4] gives the negative answer
for 1 < p < 2. For p = 2 the question is of course trivial. The purpose
of this note is to give a negative answer for 2 < p < co. Our method
follows the broad outline of that of Kahane, but the details are quite
different. We mention that this problem is elosely related to a question
about closed convolution subalgebras of L? —see [5], [2], [4], [1].

THEOREM. Fiw p with 2 <p < oo. There cwists a collection {Ej;};';l

of pairwise disjoint fi%ite subsets of Z and o fungtion f e L such thal f is
= 0 off of U
in L? by polywammls of the form 2 b; 3 e,
nely
Proof. Inthe following, ¢ will denote a positive constant independent
of % but which may increase from line to line. Let » be an even integer
such that

constant on each Hy, , and such that f is not approwimable

r(1/2 ~1/p) > 1.

Lot ng =0, mg =1, ny = k1), my = (k+2)"n, (k=1,2, o). Lieb
Py = 0 and let {p,}., be a sequence of positive mtegers which increases
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