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Spectral extension and power independence
in measure algebras

by
GAVIN BROWN (Sydney)

Abstract, Supposo Ghat gy, ..., 4, ave measures in some subalgebra N of the
convolution slgebra M (&), where @ is a locally compact abelian group. When is the
joint spoetrum. of gy, ..., iy in N the same as their joint speotrum in the whole Banach
algebru® Tt iy shown that the independent power hypotheses which are effective
in tho case m = 1 oan bo adapted to give positive results, but that there are serious
obstructions to wmultidimensional gpectiral extension. theorerns.

1. Introduction. The underlying problem is the practical one of
determining spectral properties of those bounded linear operators on IL*
which commute with translations. In view of Wendel’s representation
of these Ll-multipliers as convolution operators, one may, of course,
regard much of the difficulty as that of spectral extension in M (@), the
commutative Banach algebra of all regular bounded Borel measures on
a locally compact group G , .

Joseph Taylor’s cohomological investigations (summarized in [12])
have led, in particular, to a deep but simply stated criterion for extension
of gpoctral valwes; while a much shallower result of W. Moran and the
present author, [4], gives a condition for extension of individual homomor-
phisms (generalized characters) which has proved to be a powerful tool
in applications. Abstract convolution measure algebra results of these
two types from part of a methodology which has been developed over
the yoars by many authors, notably Wiener and Pitt, Williamson, Sreider,
Hewitt and Kakutani, Varopoulos. A characteristic technique has been
to use mensuro theoretio singularity to deny the existence of algebraic
relations, then to use the resulting “glgebraic independence” to demon-
ghento that there is no obstruction to extension. In this regard we foel
that Willinmson’s analysis of the Wiener-Pitt phenomenon in terms of
“indopendent power” elements which need nob themselves be based on
independent gubsets of the line, [14], has been particularly influential.

Tlero we show that existing notions of (polynomial) power indepen-
dence fail completely to give joint spectral extension results. We substitute
a stronger comeept of “full polynomial independence” which avoids the
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straightforward obstructions. However our positive results are proved
. only for elements based on independent sets of the underlying group and
we exhibit a new obstruction phenomenon of a more subtle kind.

The theorems just discussed focus on simultaneous. extension of
spectral values over sets of measures rather than on extension problems
for generalized characters themselves. The latter question is also consi-
dered and it is shown, in particular, that a conjecture of Moran and the
author (listed as Problem 845 in [6]) is true.

Section 2 organizes the technieal background necessary for a disca-
ssion of spectral extension —the results there are essentially known.
In Section 3 we settle the conjecture mentioned ecarlier and show the
obvious ways in which spectral extension can fail. We give a more satig-
factory definition of polynomial independence in Section 4 and obtain
various positive results. Section 5 describes some unsuspected structure
in M (@) which places limitations on extension theorems.

Preliminary versions of these results formed the basis of (unpublighed)
addresses to the Edinburgh and London Mathematical Societies (Newcastle
1976) and a PAN colloquium (Jablonna 1976). Hospitality is gratefully
acknowledged.

I thank the referee for some helpful comments.

2. Technical background.

(2.1) Spectra, homomorphisms generalized characters. In order to
discuss spectral extension it is necessary to decide upon an appropriate
notion of subobject and to fix some motation.

We follow Taylor in defining an L-subalgebra of M () as a norm-closed
subalgebra. ¥ with the additional property that ue M(G), ve N, 4 < »
(p is absolutely continnous with respect to ») implies that x e N. It will
be a technical convenience to focus attention on unital L-subalgebras
80 we make the convention that, given a subset X of M (@), N (X) denotes
the L-subalgebra of M (@) generated by X and 8(0). (This convention
is intended to embrace mild abuses such as N (u,, u,) for N ({1, uso}) and
N(u; A) for the L-subalgebra generated by x and the atomic measures,
{0(g): 9@}, on G. Beeause N(|ulful) = N (), provided that p is
non-zero, we loge nothing by normalizing all generators to be probability
measures.) )

Given a unital L-subalgebra ¥ and p in %, we dofine the spectrim,
Sy (u) of u in N, in the usual way, by

Sy () = {2z €0: 28(0)—p has no inverse in N}.
We write also, 4(N), for the Gelfand space of N , 80 that
By (u) = {p(e): p e 4(N)}.
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GiveR fyy - -y py 0 N wo define the joint spectrum, Sy (uy, ..., wy), of these
measures in N, by

Sy (p) = {(‘P(/‘l)’ veny (P(ch)): @€ A(N)}
In the case where N == M(G), we write simply 8 (uy, ..., u) for Sy (g, ...

ey :“Ia)' P
It is a further convenience to represent the homomorphisms of N

as generalized characters. Thus wo rogard each ¢ in A(N) as an element
¢ = (Pu)uery OF tho produet [T L°(u), subject to tho consistency conditions
neN

(i) p < v implies g (@) = @, (@) (4 26 @),
(i) uonl@-+9) = pu@)uy) (4 X7 e (@, 9)).
Morcover the subset of all ¢ in JJ L®(u) which satisfy (i), (i), and

neN
sup gl = 1, endowed with the produet of the o{L*®(u), L*(u))-topologies,
N

may be regarded ay 8 concrete realization of 4(N). (This deseription, due
to Sreider, [107], amounts essentially to a recognition that A(N) is the
projective limit of the maximal ideal spaces of the single generator L-sub-
algebrag of N. Thus the content is formal, but the formalism is par-
ticularly appropriate to spectral extension.)

For phyy .o, 4y € M(G), wo write

Mooy ooy i) == {{@uys ++or D) @ € AN (piay 05 i)}y
Mrgoltiny <oy piy A) == {(‘pul: XY} ‘Puk): P e AN (pyy ooy 5 A}y
Apay -oey i) = {(Puyy ooor Puy): PE AM (@)},

k
and regard these sets as topological subspaces of [T L®(u;) endowed with
the product of the ofL™(p,), I (u,))-topologies. =

PROPOSITION L. Aioo(fhyy --vy pig) 8 topologically isomorphic with
AN (g ey pir)-

Proof. The obvious restriction map from AN (uy, ..., ) to
Aroo(thys o+ -5 i) 18 continuous and surjective so that the content of the
proposition reduces to the assertion ths;m this map is injective. Because

4
N{pyy <oy py) == N (o), Where o = exp(iZ; |wel), every measure in N (g, - ..
ceey i) I8 abrolutely continuous with respect to some (infinite) ]ingam ‘
combination of the monomials |us|™ |ual"> ... |ug"® (where we write
|10 == 8(0)). It follows from the consistency conditions (i), (ii) of the
definition of generalized character that each ¢ in AN (py, ..., ) is deter-
mined by thoe coordinate funetions g, , ..., @, The result follows.
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(2.2). Local spectra and extension. Spectral extension results are effec-
tive only where we can compute local spectra and there is a serions diffi-
culty in this regard in the case of M (@). In particular there is no distine-
tion between a single generator L-subalgebra and a countably generated
IL-gubalgebra unless the mode of presentation iy taken into account. In
fact, given {u,}o_; in M (@), we may choose (positive) normd,lwmg constanty

{a,}o.1 Such that w
Then w? <€ o and

= exp( Za,, |4p]) I8 & probability memsure in M(G).

N ({pnloer) = N(0) = L} (o).
Now we obtain the simple looking statement that

digo(@) = {f e L*(a): fo+y) = f(@)f(y) (0 X ac. (@,9))}-

When it comes to the practical problem of checking the criterion on the
right hand side of the last formula, we are at once faced with the problem
of deseribing the w X w null sets and typically this involves finding suitable
generators {u,}y.; for L'(w)! Moreover even when this has been done the
semicharacter property of f typieally involves delicate arithmetic —algebraic
considerations. (See e.g. [7].) Accordingly the practical localization problem
is not that of describing 4,,(w) for every probability measure w in M (G)
which satisfies w? < w, because this project iy unrealistically ambitious.
An apparently more reasonable programme is to seek to descxibe “simple”
clagses of w for which it is possible to deduce information concerning
Aioo(®) and Sy, (w), then to find and use extension theorems to convert
this to information coneernmg A(w), S(w); Aie(wy, ws),
8(w,, ws), ete.

Progress to date has not involved joint spectral extension theorems
but here we state the two main spectral extension theorems which are
already known. Both are valid in general convolution measure algebras
(the second remains valid under even weaker hypotheses) but we confine
attention to M (@).

In order to state Taylor’s result we recall his definition that the spine
of M(@) is the L-subalgebra generated by the group algebras, i.e. the
spine is @IA(G,), where 7 ranges over the set T of all locally compact

group topologies on & which are at least as fine as the original topology.
The spine is closed under the involution, ~, defined by
i(B) = p(—E)y (B Borel, ueM(@)).

TemoREM 1 (Taylor). Let N be a unital L-subalgebra of M (G) such thai
the intersection of N with the spine of M (@) is ~-closed. Then, for every u
in N,
B =By

A(wlv “’a)"
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CQOROLLARY. If p in M(G) is hermitian [i.e. p ==
S(M) == ‘S’luo(‘u) .

Degpite its simple appearance the corollary was proved by a long,
ingenious, and highly technical excursion through cohomology theory and
the proof has defied all atterpts at simplification. The next result is as
gimple ag it looks butb gives more information in those particular situations
where it applies.

THEOREM 2 (Brown~1\/[omn) Let N be a unital L-subalgebra of M(G).
Suppose that ¢ belongs to A(N) and satisfies

lpu(@)| == 1L for all uin N.

Thon there exisis v in A (M (G)) such that p(u) = p(u), for all u in V.

CoROLLARY. For each u in M (@), the unimodular elements of A(p)
belong to A(p).

‘We noted that extensgion theorems should be combined with deserip-
tions of local spectra for “simple” measures. Moreover it is not unreasonable
to deseribe “gimple” in terms of the local spectrum, provided there are
regulty ensuring that measures of the appropriate kind exigt in abundance.

A probability meagure 4 in M (@) is said to be monoirochic (respectively
strongly monotrochic) if each element of 4(u) (vosp. dy.(p)) has constant
modulus. x is said to bo tame (respoctively strongly tame) if each element
of A(u) (vesp. dige(n)) i8 of the form ay, where @ is a complex number
whose modulus does not exceed one @nd y belongs to @, the dual of @.

The existence of large classes of strongly tame meagures (most Riesz
products and certain infinite convolutions) wag established in [1]. (It
should be noted that the hypothesis that the support of 4; contains O
was omitted from the statement of Proposition 7 of that paper, and that
the formula in the tenth line of the proof should read

i], then

(# 9.6, @),

#(8(dy) *7N)"JHN s (0 (dy) % Ty) J*TN“)

Uonvergent convolutions of diserete probability measurcs are mono-
trochie (a8 noted in [8]) and the ideas go hack to an oxample, for the caso
G = Z(2)°, given in [11].

It » i o monotrochie probn.blhty mewsure in M(G) then eithor u
belongs to Rad L (@) for some v in T or §(u) is the unit disc.

(2.3) T'he r6le of independence. Apart from the fact wo need the next
proposition. later, wo write the proof in such & way ag to focus on the
problems present in the general determination of loeal spectra. That
makes it possible to abbreviate some later proofs. The proposition itself
is essentially well known and may bo regarded as an elaboration of results
of Hewitt and Kakutani in [9]. (See also Sreider [10].) The existence of
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a perfect independent subset of G was, of course, a significant resuit of
the original papers.
PROPOSITION 2. Let K be a pe'rfect subset of G which 48 independent in

the sense that, for ny, ...y, €%, by, -.., b, e K,
Ny Foy + Moot oon 0K, =0 dmplies mky =0 (I<i<r).
Let Kq, ..., K, be disjoint subsets of K and 1ot piy -y iy be continuous

), ey U —
oy thy3 A)) 8 isomorphic with [] LS (ug) xGq -

probab@l@ty measm es comcentrated on K,U(— K,), respec-

tively. Then A(N (py, ..

(L2 (p;) denotes the unit ball of L™ (w;) and Gq is G endowed wilh t/m
discrete topology.)
COBOLLARY. Under the conditions of the proposition,

Ay -

Proof of Proposition 2. To preserve the notation u" for the nth
convolution power, let us write x™ for the n-fold product & X p X .. X .
Tt is a convenience to write also u® = 8(0), @° == {0}. The idea is to show
that given f; e LF(u)y & =1,...,8; ¥ € Gy, we can build a generalized
character ¢ on N (g, ..., ,us;A) which is uniquely determined by the
properties that

9’6(0)($) = yp(a) {8(g) ae.),

y ) = Aygoliny -+, py3 A) = Aioo(:“l: eeg )

for all ¢ in &,

(F/A@ = f(@) (u; n0.), ford=1,...,8.

It is clear that the rest of the proof is a straightforward exercise along
the lines of the proof of Proposition 1 and that there would be no hope
of proving this for arbitrary f; in the absence of a strong independence
condition. Accordingly let us fix fi,...,f;; » and see what consistency
conditions arise. We note that every member » of N (py, ..., t,; -4)18 & count-
able linear combination of measures, each absolutely continuous with
regpect to some monomial, 3(g)*ufix ... xups so the consistency condi-
tions must be 1mposed on subsets of full measure with regpect to produch
measures of the form 8(g) X plMl % ... x ul™'. We may write the typical
element of the support of the 1amter measure in the form (g, 04, .-, 1),
where each v; = {(i, 1), ..., #(¢, n (7))} € ™. Writing 3 for the opmu.mn
of summing all coordmates (so that 3 is a map from G X G x ... <"
to @) it is clear that we must define the coordinate of ¢ which lm in
L‘”(c?(g)* s el by the formula

(Pv(z (g) 01y -4y ”s)) = p(¢) I]fi(m(@:f))

This imposes two sets of consigtency conditions. For each fixed monomial
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=0,1> 2,
this. is a serious constraint in the gener(.lyl cm@) a.n(l we muqt mke account
of overlap of different monomials. All these problems vanish in the inde-
pendent case under discussion after we make the preliminary observation:
that we may suppose that x(é, j)  @(4,j") for § 5= j'. (This is a simple
congequence of Fubini’s theorem because the measures u; are supposed
continnous and we work 8(g) e x ... xp a.e) It is now clear
that the independence of I implies that E(g, Vg, eey 0) determines the
voetor (g, ¥y, .-+, ¥,) Up to a permutation nf the (001'(1ind.tos of each w,.
Accordingly we can certainly fnctor through 3 and the meagures () * pyt
oty B(RY % ™ L. e plts are mntmally singular unless g == hy my = my,
G=Ly 00,8

Proof of Corollary. Beeause of the special nature of the result
this can be tackled by purely Banuch algebra methods as in the original
papers. It is also posgible to apply Theorem 2 because the unimodular

* elements of ] 1 L% (1) ave (woalk*) dense in that space.

On this bﬁmbls of his analysis of the Wiener—Pitt phcnomcnon, William-
son, [14], emphasized that several results depended only on the lack of
algebraie relations in M (@) for measures supported on independent sets.
Tn other words the independence phenomenon occurs in the measure
algebra rather than in the underlying group and may be exhibited by
meagures which are not supported on independent sets. Moran and the
awthor in [4] and later papers developed this theme by relating William-
son’s concepts to properties on generalized characters. Terminology is
by no means standard, so we must give some definitions.

DeFINITION 1. Let F be a family of positive meagures in M(@). F is
called polynomially éndep(mdem if

R
Mok ., x ik are mutnally singular,

(%) P L % gk,
WRENEVOL fhyy «- ey fig, ATO dm’rinot measures in F and (g, .., Ng); (Mg, « o0y My,)
are distinct lc-tuples of non-negative integers; k =1;2,... If (%) can
be sharpened to the assertion that every translate of uf1# ... % puk is gingular
to (every translate of) ™ ... %k, then F iy called strongly polynomially
independent. In. the spoc'ml case where I ig the singleton {u}, the state-
ment that F is (strongly) polynomially independent may be recast in
the form, u has (sirongly) independent powers. (As before pu® == 4(0).)

The next two results are simple generalizations of regults in [4], [6].

PROPOSITION 8. The probabilily measures fuy, -.., gy tn M(G) are
strongly polynomially independent if and only &f i (pay «ory the} A) containg

8

[ O, where O; denotes the constant functions in I ()
Trsl

I
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Proof. Consider the proof of Proposition 2. Because there is no
problem in factoring through 3 for constant functions, o similar argument
8

shows that [ 0; = dj.(prry ++vy p1e5 A) when {gy, ..., u,} is strongly poly-
Gl

nomially independent.

Suppose conversely that e A(N (g, .-, fhy; A)) satistios Ppy 55 14,
1 <4< s, where the r, are distinet real nwmbers in the interval 10, 1[.
Suppose that o is absolutely continuous with respect to both 8(g) % plix
cooxpls and S(R)xpMx ...owpls. Using (i) and (i) of tho detinition of
generalized character” we see that |p,! is constant and equal to both
[Pay (@772 ... 153 and gy (B)[ 97" ... 9% Because point  measurey are
invertible @, (), Pamy (k) have modulus one, and it follows readily that
By +eey thy are strongly polynomially independent.

PrOPOSITION 4. The probability measures wy, ..., pg in M(G) are poly-
8

nomially indepe;ndam if and only if A(uy, ...
denotes the unimodular constani functions in L% (u;).

) thg) contains [] U,, where U,

qeml

Proof. At the local level the result is proved in a manner similar to

the lagt proposition. Extension is guaranteed by the corollary to Theorem 2
The next result is an easy consequence of Theorem L and Prop-
osition 3. It can also be proved via Proposition 4 and the corollary of The-
orem 2 a route which is more elementary and entirely so when ¢ = R.
PROPOSITION 5. Let u be probability measure in M(Q). Lf either u is
hermitian and has independeni powers or if u has strongly independent powers,
then S(u) = D. ,

3. Failure of extension.

(8.1) Measures with strongly independent powers. In [6], the one-
dimensional Vorslon of Proposition 3 was applied to certain Bernowulli
convolutions (such as Cantor measure) to prove strong mdopondence in
a quick indirect way. In view of the remarks at the end of (2.2) we now
know that a Bernoulli convolution or a Riesz product, g, cnjoys the prop-
erty of having strongly independent powers it and only if A (u) containg
some constant function lying strictly betweon zoro and one. Does this
extend to all probabiliby measures? A negative answer was conjecturod
in {6] and we now coufirm this. Thus we show that Proposition 3 needs
to be localized although Proposition 4 does not.

LeMmA 1. Let vy, v, be strongly polynomially independent probability
measures and let y = §(vy-+}%v,). Then u is strongly independent but A (u)
contains no element whose modulus is a constamt stricily between 0 and 1.
Moveover there is an idempotent in Ay, (1, A)Nd(u).

Proof. Note first that {v,, »}x5,} is a strongly polynomially indepen-
dent set. In fact »7(si*7,)? can overlap #](s? #v,)® only if p-+2q = 728

3
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and ¢ == §, in which case p == rand ¢ = 8. It is also easy to see that 7, + =,
is strongly independent if {z,, z,} is strongly polynomially independent
(because in the latter event 7P+% certainly cannot overlap +]z] unless
p-+g = r-+s) and it follows that u is strongly independent.

Now suppose that ¢ € AM (@) and that |p,| equmls (p a.e.) some con-
gtant 7. Becouse vy, <€ u, it follows that @y, | = 7 (v, a.e.). Hence for
(915 g2y ¢5) in a set of full measure for v, Xy X w“

k(/"vllwlr]‘*m(gl + g2 -k gﬂ)l = g2 |%2 (.’Ia)l =< k.

The fact that »]sr, € u now forces 7% == r and we have shown that 4 (n)
admits no ecoustant whose modunlus lies strictly between 0 and 1.

A gimilar argument shows that the idempotent which is zero on the
sapport of ¥, and one on the support of #, cannot belong to 4(p). On the
other hand fhis idempotent does belong to Ay, (4, A), as can be seen by
an application of Proposition 3 with py == vy, gy = »i%»,. This completes
the proof of the lemma.

Remarks. (i) The lemuma gives a strong affirmation of the conjecture
in the semse that we may ehoose u to be a hermitian measure in My (G).
Perhaps the easiest choice is to take »;, », concentrated on K,\u(—HK,),
K,u(—XK,) as in Proposition 2, where K is chosed by Korner’s technigues
to be a set of multiplicity. It is also possible to use Riesz products.

(ii) The last part of the statement indicates a limitation on generaliz-
ations of Theorem 2, but similar counter-examples were already known.

Faced with these examples we may feel that it was quite unrealistic
to demand a constant funetion in the first place. However the next result,
which is much more delicate, comes close to showing that Proposition 5
cannot be improved in any generality.

ProprosITION 6. Let G be @ non-discrete locally compact abelian group.
Then there i8 a strongly independent hermitian measure, u, in M(G) with the
property that for each ¢ € AM(G) such that @, 0,

osssup{le,(g)|: ¢ e supportu} = 1.

Proof. We take from [3] the cxistence of a family (v,),., of tame
singular hermitian probability measures indexed by the positive reals
and lying in 37, (@) such that

(1) 8(g)»», Ly, whenever s # ¢,

(1) pqqy 2%, are equivalent measures.

Let us choosa a countable set, X, of positive real numbers which
has zero a8 a limit point but which is independent over the rationals.
We enumerate X as (1,)%.; and define the measure u by

00

=¥

n=1

2%,

1
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‘To check that p has strongly independent powers, we consider an overlap
between 6(g)*u?, u% In view of (i) this would foree (at leust) ono re-
lationship of the form )

Za @ = ), Mo,z fan =P, Zb

n=i N l n=1 n=:l

where the a,,b, are non-negative integers. Hach relation is of eourse
finite and the independence of X ensures that p == ¢

Now congider any ¢ € AM () which ig not identically zero on pu.
Then there is some n such that ¢, =0 and, by tamenoss, los,,| is & non-
zero constant. In fact, for each i3~ 0, || i8 & non-zero constant and (in
consequence of (ii)) .
(s, 0).

@uyl gl = 10y, |

It follows that there existy some & with 0 << k << 1 such that

[‘prtl = & (t > 0)

Now it is clear that
esssup {|p,(g)l: ¢ € supportp} = supk® == 1.
n

This completes the proof.

(3.2) Failure of ewtension. To ask for a full gencralization of Taylor’s
extension theorem (Theorem 1) would be to ask that, given a wunital
L-subalgebras N of M (G) whose intersection with the spine of M(@) is
“-closed, one has perfect extension of generalized character, i.c. every
element of 4(N) extends to 4 (M(G)). This is clearly too ambitious altho-
ugh we are not aware of any counter-example existing in the literature.
It is a little more plausible to seek to extend Proposition 5 to the case
of joint spectra. We now give a result which settles all these questions
in the negative — even for M,(@). The technigue is not very far removed
from that used in proving Lemma 1.

ProrosirioN 7. Let G be a non-discrete locally compaot abdlian group
and let m be any integer sirictly greater than one. There exists a strongly poly-
nomially independent family {u,, ..., p,} of hermitian probability measures
in My(@) such that

o by 4)

Broo(fr1 +- =2 Qoo (finy vovy Hy) == D
“but :
S(.u‘u(l)! vy ;ua(g)) 7!: Da,
whenever 8 > 2 and o permutes s of the integers 1, ..., n. In fact, if {vy, ..., v}

is a strongly polynomially independent famwl/y of hermatian  probability

icm
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measures in My (@), then we may take
i

Py = * Vg
el

T=1,...,7

The proof is left to the reader. The existence of suitable families may
be established by means of independent sety of multiplicity or using Riesz
products. It is clear at this point that polynomial independence is simply
the wrong concept for use in joint spectral extension theorems.

4. Full polynomial independence. In view of the examples in the
lagt section our gearch for joint spectral extension results should not be
too ambitious. In particular, we may as well concentraté on the higher
dimensional analogues of Proposition 5. Thus we will consider strongly
polynomially independent families of probability measures subject to
gsome additional hypothesis. To be satisfactory, the extra condition should
be conerete in nature and, at least in prineiple, capable of direct veri-
Llc.mon in apphoatmns

DEFINIIION 2. We say that the family {u;: ¢ =1,...,§ of prob-
ability meagures in M (@) is fully polynomially mdependem 1f it is strongly
polynomially independent and has the additional propex'fy that, for each
§ ==1,...,8 and every positive integer n,

8
(3w Lupara).

imbik]

The extra hypothesis ig so strong that it is by no means obvious that
M(@) contains fully polynomially independent subsets. However the
natural elementary examples arise from independence in the underlying
group. The next proof is another example of the way extension results
for generalized characters allow us to avoid computational arguments.

LavmA ‘2. Let K be a perfect independent subset of G and Ky, Iy, ... K,
digjoint subsets of K. Suppose that pi,, ..., u, arve continuous probability
measures concentrated on K,U(—K,), ..., K,u(~—K,), respectively. Then
{B1y <oy o} 15 @ fully polynomially independent subset of M ().

Proof. We know from Propositions 2 and 3 that the family is strongly
polynomially independent. Now fix some j in {1, ..., s}. In view of the
corollary to Proposition 2, there is a generalized character x in AM (G)
such that x, =0 and y, =1, foré =1,...,8;% 5 j. We gee that g, =
for every measure » in the ideal generated by u;, and the result Eollows

Now we obtain an extengion theorem for fully polynomially inde-
pendent subsets of certain subalgebras of M(G). Given a perfect inde-
pendent subset K of @, we let N(K) denote the L-subalgebra of M(@)

_ generated by the discrete measures on @ together with the continuous

moasures on KU ( —K). Although N (K) is strictly smaller than the algebra
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of measures concentrated on the Raikov system generated by Ku(—K),
it is nevertheless the case (cf. [13]) that the orthogonal complement of
N(EK) is an ideal.

THEOREM 3. Suppose that K is a perfect independent subset of G and
that {gy, -+, g} 18 @ fully polynomially independent subset of N (). Then
Sy eq ) = D%

It will be convenient to delay the proof of Theorem 3. Before procec-
ding, we note that full polynomial independence is not a necessary condi-
tion in such results.

PROPOSITION 8. Let K be a perfect independent subset of G and I(;, K,
Ky, I, disjoint subsets of K. Suppose that vy, vy, vy, v4 are CONINUOUS Prob-
ability measures concentrated on K UK, K,0—IK,, K,u-—I,

Uys s are strongly polynomially independent oand satisfy  S(py, )
= Siolptrs ts) = D?, but are not fully polynomially independent.

Proof. In order to verify strong polynomial independence, we consider
whether every tranglate of a non-trivial measure of the form »f (v, w,)
is orthogonal to all measures of the form wg*(vlw,,)d. In view of the terms
in »g, 4, overlap would certainly be impossible unless b == d == 0. This
reduces the problem to a comparison of +»§ and »§ and it is eleax that we
have strong polynomial independence. On the other hand u, fails to be
singular to vg* p,, 80 that full polynomial independence is violated in & basic
way.

To complete the proof we must check that S(u,, us) cquals D% We
do this using the definition of »,, »,, 5,7, and the corollary of Prop-
osition 2 to justify the assignment of arbitrary constant values 2,, 2., 25, 2,4,
of modulus not exceeding one, to the functions y, , £, %, » %, COXrespon-
ding to some y in AM(@). In fact let us £ix 0 < vy, 7, < 1, 0,4, 6, and prove
that (r,6"; 7,6™) belongs to S(uy, #s). The required prescription is
2y =60 2y =6 2y = (29— 1)) g = (2r,—1)e" "%, where we
note that |27, —1| <1, for ¢ =1, 2. The rest is gtraightforward.

‘We now give an analogue of Proposition 4. The proof is quite simple
but did mot present itself imnediately —perhaps because it is an odd
mixture of measure algebra and Banach algebra methods.

PROPOSITION 9. Let u, » be probability measures in M(G). Equivalent
are

(1) u™ LyxM(G) for. each positive inmteger w,
and

and e, = 0.

COROLLARY. Let {py, ..., ue} be a strongly polynomially independent
subset of probability measures in M (Q). The set is fully polynomially inde-
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pendent if and only if there exists, for each ¢ = 1, ..., s, a generalized charac-
tor o in AM(G) such that &f) =1, (j # 1), and &ff) = 0.

Proof of Proposition 9. Suppose first that there is some ¢ in A M (@)
with ¢, =1, ¢, = 0. It follows that e,,, = 0, for every w in M (@) and this
denies the possibility of overlap between w=*y and any power of u.

Accordingly we concentrate on the converse problem where we are
given u, v satisfying (i). We can, of course, extend (i) a little to obtain the
statement that every power of u is orthogonal to the L-ideal, I, say,
gencrated by ». Let ns consider the canonical quotient map ¢: M(G)
- M(G&)/I (where we regard the objects as Banach algebras rather than
as measure algebras). We gee that, for each positive integer n,

lg (™) = int{p"+ ol wel} =1,

and, therefore, that q(u”) has unit spectral radius in the quotient algebra
M (G)/I. It follows, of course, that there is some complex homomorphism ¢
of M(@)/I such that |p(g(s))] == 1. Then y = pogq is » member of AM (G}
with the property that |y(u) =1 and X(M (G)*v) == (0. Because y can
be represented as a generalized character with g, e L®(u) and because p
is a probability measure wo see, in fact, that x,(g) is constant x4 almost
everywhere and hag unit modulus. The formula ¢ == |y now defines a gener-
alized character in AM (G) with &, =1 and e, =

It is casy to obtain the corollary by repeated application of the prop-
ogition. Tt is worth noting explicitly that the proposition is an extension
theorem. The corresponding result in which (ii) becomes the similar state-
ment with 4M (@) replaced by 4(API), where 4 is the L-algebra gen-
erated by u, I the L-ideal generated by », is the simple “local” version.

The next proposition gives the main step in the proof of Theorem 3.

ProrosIrxoN 10. Let K be a perfect independent subset of G and suppose
that the continuous probability measures u, v form a fully polynomially inde-
pendent subset of N (K). Then, for each v satisfying 0 <r <1, there exists
x € AM (@) such that x, =1 and »" (y) = 1.

Proof. We know from Proposition 9 that there exists ¢ e AM(G)
such that e, =1 and s, =0, and we can and do suppose, without loss
of generality, that ¢ is idempotent (congider e.g. lim |s[”). Let us regard &
as 1 generalized function and consider its restriction to ¥ = M (KU —XK),
the Banach space of continuous bounded Borel measures on KU (~—IC).
This gives an orthogonal splitting

) =E1@Esy
where :
B ={wel: ¢ =1}, H;={vek: ¢, =0}

and this enables us to define a convenient family of generalized functions


GUEST


94 - G. Brown

5

in the unit ball of the dual of B. In fact, for each t in [0, 1], we doefine & by

W =1 (weh), =1 (wel).

In fact (cf. Proposition 2 and its Corollary) we may obtain a family & of
generalized characters of 4M (@), whose restrictions to B give the family
of generalized functions just defined. (It is even possible to choose eanoni-
cal extensions, first to N (K) by stipulating, say, that the generalized
" character is one on all digercte meagures; then trivially o M(G) using
the fact that N (K)* is an ideal.) The important feuture for us is that the
map F: [0,1]-[0,1], defined by

F() = [ () =

is continuous. Moreover

v (6,

F0) =" (V) =2"(c) =0,
F(1) = [1dv(g) =1.

- It follows, from the intermediate value theorem, that given r in [0, 1], we
may choose ¢ so that
2" (e®) = F(1) =r.

Bince e(,f) =1, for all #, the proof is complete.

Remarks. It was not strictly necessary to use Proposition 9 in the
previous proof because, of our conecrete knowledge of AN (K) — but,
a8 u, v need not belong to M,(Eu( —K)), the abstract argument soems
quicker. :

It is now a simple matter of generalized character techniques to finish
the proof of Theorem 3.

Proof of Theorem 3. Note first that the measures uy, ..., u, are
probability measures, by hypothesis, and continuous because of strong
polynomial independence. Now fix a vector (r e, ...,r6%) in- D
We know frorn Proposition 4 that polynomial independence guarantees
the existence of & generalized character 6 in. AM(G) such that 0,, == ¢,
4 =1, ..., & Now we tix some i, and apply Proposition. 10 to obtain & gene-

- ralized character x® in AM (@) such that

ue (1) = 7.

{The appropriate choices are » == u;, (8 —1)p = 3 u,;, where the sum ig
over the indices from 1 to g, with the exception of ¢.) Having done this for
each ¢ =1, ..., 8; we define y in AM(G) by

xﬁf}al,j¢i;

= 0.0 L 4®,
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and it is easy to cheek that

,uf () = 'r,-e""i, G == Dy eeey 8.
This eompletes the proof.

5. The new obstruction. It is by now reasonably clear that the two-
dimensional case is typical of multi-dimensional spectral extension prob-
lems, so we will save some effort by taking s = 2 from now on.

TurorEM 4. Let G be o non-discrete compact abolian growp. There ewist
tame hermitian fully polynomially independent moasures py, g in Mo(G)
with the property that 8 (py, ps) s of measure zero in Syoo(fay fa) = D

Proof. We fix some infinite dissocinto subset A.0f the dual group of &
and suppose that A has been expressed as the disjoint union of three
infinite subsets Ay, 4y, 4;. We suppose further that an enumeration of
each of thoge sets has been fixed, so that wehave A, = {8}, 4y = {Patnets

and A, = (9,32 Lot us fix also somo sequence (r,)p.; of real numbers
oo

satisfying 0, <% n =1,2,...; r,~0; and D'k == oo, for every
positive integer k. we=l

The required measures will be defined as Riesz products on A. Thus we
exploit the fact (cf. [1]) that a tame hermitian probability measure u
ariges as the weak* limit asg N -~ co of

N
T T (41" (0 (0 4-8) (14 1™ (@) (@t P0)) (Lot 17 (00) (Yt ) 5
=
where 1 denotes Haar measure on G and the numbers PCANS (‘I?n),
" (w,) are chosen arbitrarily in [0, 4] In fact we make the following
choices K
My (on) = Ty - # ("/’n) = 0;
/u’; (Gn) = ”21 .u; (pn) =0, f“; (Tl’n) == Ty e
(Hore = doos indeed. denote the usual congtant, but could be replaced by
any real number ¢ greater than one, such that {1, t} is independent over
the rationuls.) o
Tn checking full polynomial independence we need & criterion for
singularity of measures and it is convenient to employ the following ono
which we gavein [2];

(i) SI’ U.X’,nc'lwl —and(ozl’ 2z 00,
neal

:“; ('Pn) == ‘rnf

& -
(ii) E sup ‘ f .X,,X,,de‘ - f Xndw,; f X,H_,“.'da){ . < 00,
im0 4,n -
where the X, are square integrable, ensures that the probabiliby measures

wy, w, are mutually singular. (In the special cage when w;, w, are both
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Riesz products, (ii) is trivially true and the criterion reduces to one given
in {8].) Consider first the case where w; = puf, ®y = uy* o, where i a a posi-
tive integer and w is any probability meagure in M (G). We choose X,
Although w, need not be a Riesz product, condition (i) is cerbainly satis-
fied and condition (i) becomes 3 72
to M(G)*u,. A similar mgumcnt usmg Py, Shows that each power of u,

is orthogonal to the ideal generated by u,. To eompleto the ve.ri'fzimtion
of full polynomiwl independence we nay consider w, == §(g,)* wipl,

Wy = 8(gy) *¥ulxp3, X, = 0,. As noted earlior (ii) holds; while (i) beeomes
the statement that 310, (¢,)r4""™ —0, (9.)7%H|* diverges. The two moeasures.
will therefore be singular if 3’|¢ FhmgoHE |2 diverges. Moxeover we e write

PR ] gL

w-here b > 0, .md 'z/ = ya — ¢~ (b —d)=|. Since r, - 0, the only W;\fy that (i)
. This latter event oceurs only if @ =- ¢ and
b = d. We have now verified that {p1, po}is fully polynomially inde mndent.,

We now know that S,(uy, e)- equals D* and it remains only to
checlk that S(uy, us) is of zero measure in D% In fact it will be shown that
8(uy, pa) is the union of the following sets:

{(r", 1" e 0<r <15 0y, 0, € R}, {(ré™,0): 0<r <
{0, re): 0<r<1, 6,cR}.

Thefirst step willbe to check that, for every y e AM (@) with (% uy) " (x)
# 0, we have 2ugl == 12, [*. To see thiz we introduce the Riesz product »
defmecl like gy, gy bV the vwluos of its transform on 4. In fact we stipulate
that »" (6,) = 7,2 (@) = v (y,) = 0. Also we interpolate o one-par-
ameter family {»;: ¢ > 0} so that v, =» and »,,, is equivalent to Pk Vg,
for all s,# > 0. (This is done as in [3] The only reason we cannot uge
a one- pa.mmetel semigroup is the condition that all Fourier coefficients
]raltl: not greater than one half.) Now we observe, by checking transtorms,
fhat

e B o
(%) My ¥V == 0%y U kY = Py kg = Yy

Let us fix some y e AM(G) such that neither u; (y) nor u, (x) is zero.
It follows from the preceding relations (x) that Viwn (%) 5% 0 and hence that
»" (x) # 0. Because. » is & tame probabilibty measure, it follows that
»" (lxl) 0. Arguing as in the proof of Propoﬂltlon 6, we sece that there
is some positive r with

L, 0, e R},

2y =o', for all t> 0.

We apply (%) again to deduee that

KT =12 gulr = r1¥7;

= Py

diverges. It follows that wf is singular
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and heuce that

(%) ! =1y [ gy| =17

Now we are in o position to determine 8{uy, ys). By Proposition 5
S (ug* @) equals D. On the other hand, apart from the number one, the
Fourier-Stieltjes transform of u,*u, lies wholly inside the dise of radius
one quarter. Becauso u,, u, are tame we see that there mugt be values of »
arbitrarily close to one, for which |y, x| equals r*7. By considering
powers of thie corresponding generalized characters and applying Prop-
ogition 4, wo seo that S (u,, us) containg the seb {(#¢™, r™e'®): 0 < r < 1;
0y, 0, r(m.l} Also, by T’ropommon. 9, there exists &V, &® e AM(G) such
that &f) -~ el) =0, 6f) == o) =1, so that §(uy, ps) contains also the
sets D x {0}, {0} % D. Lot us now verify that we have deseribed all possible
olements of 8(uy, ug). The only conceivable difficulty is associated with
homomorphisms, x, which do not annihilate p %w,. Any such y must
satisfy formula (xx) for some r in ]0,1[. However, in view of ta,meness
and the original definitions of the measures, this shows

1(1:

Ty, o = 69,

o GO
Tug = YLy Ly

for y,, ya,ys in G, and real a, ay, a4, 1, wWith 0<7 < 1. However wo
evaluate (*) on tho genceralized character F,x to obtain

(/1;: (yiPa)] == L == |,qu (ve7s)l

and hence may take yp, ==y, == y,. It follows that

s ()] == gz (I
and the proof is complete.

Congideration of the proofs of Theorems 3,4 indicates that the obstruc-
tion to joint spectral extension results is u certain lack of connectedness
in the maximal ideal space. We can make this more explicit by conside-
ring a pair u,, pe of probability measurves in any abstract convolution
meagure algobra . Strong polynomial independence corresponds to the
existence of generalized chavacters v taking the values ¢, 6’2 on
gy gy TOBpoctively. Full polynomial independenco corresponds to the
added oxmlzurmn of goneralizod charncters o, 6@ with o) =1, &f) =0,

,(21) = 1, a“'g =20, We can gaaranteo speetral extension by domandmg
that L(l) & ba are-connocted to x% in :

{pedN: pz=0, uf (p) =1}, {wedN: p2 0,4 (v) =1},

respectively. We have not stated this extension theorem as & formal
result because we have heen unable to translate it into a concrete condi-
tion like full or strong polynomial independence.

The referco has made the interesting remark that yet another condition

7 — Studia Mathematica 70. 1
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for polynomial independence can,be considered:
e L (e (@) O (e M (6),

(€ T))

for all positive integers n,, n,. In this connexion he notes » complementary )

example to Proposition 4 which can be obtained by similar arguments.
In fact there exist Riesz products oy, g, in My(@) such that S(ey, 05) = D2,
Retaining the notation that A, = {0,}, 4, == {p,} are disjoint Bub&m‘ﬁ
of gsome infinite dissociate seb <, we may characterize gy, 2 by 01 (6,)
s= 8y == Ga (@a)s 01 (@n) == By == 03 (0n) where (s,), (t,) are mull sequenves
whose entries are real numbers lying between 0 and %, so chosen fhatb
sk, Sk diverge and limi, ;% == 0 for all positive intogers k. Now let ¢
N=rod M

be the Ricsz product on A with ¢ (0) =1, ¢ (g,) == 0 and note thab
0% gy = 0% o€ @i xM (@), for all positive integers k. leon 2 real nnmber ¢
with 0 < » < 1, there exists y such that y, =r. It follows that Yoy ==
and that y, == 1. After a similar argument, with the roles of 0,, ¢, mtu‘
changed, we see that S(oy, ¢s) = D%

The simplest way to find examples of monotrochic measures g1, 0q
satistying S8(g¢., 02 = D? seems to be to consider a pair of Bernoulli
convolutions '

1”*%(5

)+ 8(—2a)s ea = &( () -+ 6
for suitably chosen ,,y,. (For example we may fix some sequence (a,)
of positive integers such that a, tends to infinity, write p, = @145 ... ,
and choose «, to be the reciproeal of p,,_,, ¥, to be the reciprocal of p,,, .
Assuming, for convenience, that 8 divides &, , we can see that exp (2mip,,-,/8)
converges to 1/¥/2 in the O‘(L‘”(gl), I'(g,))-topology and to 1 in the
o(L(g,), L*(g,))-topology. Also we reverse the réles of ¢,, ¢, when consi-
dering exp (2m4p,, [8)).

The preceding paragraphs indicate several directions for further
work. Very little is known concerning concrete examples (in particular
for other values of x,, yn in the Bernoulli convolution case) of moasures
satistying S(gy, ;) == D% Variants of “full polynomisl independence”
such as condition (x#*) present themselves and the relationship with
conunectedness properties of the maximal ideal gpace may reward further
investigation.
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