

Eventual continuity in Banach algebras of differentiable functions

by

H. G. DALES (Leeds, England)

Abstract. Question 1 of recent paper of Badé, Curtis, and Laursen is answered. An eventually continuous homomorphism from $C^{(n)}$ into a Banach algebra which is eventually continuous is proved to be $C^{(2n+s)}$ -continuous for each $\varepsilon > 0$, but an example is given which shows that it need not be $C^{(2n)}$ -continuous.

1. This note is a response to Question 1 raised by Badé, Curtis, and Laursen in [2].

If n is a positive integer, denote by $C^{(n)}$ or $C^{(n)}(I)$ the set of functions having at least n continuous derivatives on the unit interval, I = [0, 1]. With pointwise algebraic operations and norm

$$||f||_n = \sum_{k=0}^n \frac{1}{k!} \sup \{|f^{(k)}(t)|: t \in I\} \quad (f \in C^{(n)}),$$

 $O^{(n)}$ is a commutative Banach algebra. Let $\mathfrak B$ be a Banach algebra, let $v\colon O^{(n)}\to \mathfrak B$ be a homomorphism, and let k be a positive integer with $k\geqslant n$. Then v is $O^{(k)}$ -continuous if $v|(O^{(k)},\ \|\cdot\|_k)\to \mathfrak B$ is continuous, and v is eventually continuous if v is $O^{(k)}$ -continuous for some $k\geqslant n$. Two recent results proved by Badé, Curtis, and Laursen are the following:

Proposition 1.1. Let $v: C^{(n)} \to \mathfrak{B}$ be a homomorphism.

- (i) ([1], Theorem 2.5). If ν is eventually continuous, then ν is $C^{(2n+1)}$ -continuous.
- (ii) (from [2], Theorem 3.11). If the radical of $\mathfrak B$ is finite-dimensional, then v is $\mathcal O^{(2n)}$ -continuous.

On the other hand, it follows from [5], Theorem 3.4, that, if k < 2n, then $r : \mathcal{O}^{(n)} \to \mathfrak{B}$ need not be $\mathcal{O}^{(k)}$ -continuous even if \mathfrak{B} is finite-dimensional.

These results leave open the question, raised as Question 1 in [2], whether or not every eventually continuous homomorphism from $C^{(n)}$ into a Banach algebra is necessarily $C^{(2n)}$ -continuous. Here, I give an example which shows that this is not true (at least if the continuum hypothesis be assumed), but I prove in Theorem 2.1 that there is a sense in which

the number "2n+1" of Proposition 1.1(i) can be replaced by "2n+sfor each $\varepsilon > 0$ ".

In fact, the positive results can be given in the more general context discussed by Laursen in [7]. Let Y be a Banach space, let B(Y)be the Banach algebra of bounded linear operators on Y, let \mathbb{U} be a commutative Banach algebra, and let $\rho: \mathfrak{A} \to B(Y)$ be a homomorphism, not necessarily continuous. A linear operator S: $\mathfrak{A} \to Y$ is of class \mathscr{I} (with respect to ρ) if the map $S(\alpha \cdot) - \rho(\alpha)S(\cdot)$, $\mathfrak{A} \to Y$, is continuous for each a in \mathfrak{A} . The class \mathscr{I} is the class of intertwining operators. (A more general case is considered in [7], Definition 2.1.) Homomorphisms, derivations into modules, and centralizers are examples of such maps.

Now let Y be a Banach space, and let S: $C^{(n)} \to Y$ be of class \mathscr{I} . With definitions analogous to the above. Proposition 1.1 extends to this case. Let $\mathfrak{G}(S)$ be the separating space of S.

Proposition 1.2. Let S: $C^{(n)} \to Y$ be of class \mathscr{I} .

- (i) ([7], Theorem 5.5). If S is eventually continuous, then S is $C^{(2n+1)}$ continuous.
- (ii) ([7], Theorem 5.26), If $\mathfrak{G}(S)$ is finite-dimensional, then S is $O^{(2n)}$ continuous.
- 2. We now introduce the algebras with which we shall be concerned. If $\alpha \in (0, 1]$, let $\text{Lip}_{\alpha}I$ or Lip_{α} be the Lipschitz algebra (of order α) on I, so that Lip_aI is the set of functions f on I with $p_a(f) < \infty$, where

$$p_a(f) = \sup\{|f(x)-f(y)|/|x-y|^a: x, y \in I, x \neq y\}.$$

With pointwise operations, Lip, I is a Banach algebra on I with respect to the norm $\|\cdot\|_a$, where

$$||f||_a = |f|_I + p_a(f) \quad (f \in \operatorname{Lip}_a I)$$

and $|f|_X = \sup\{|f(x)|: x \in X\}$ defines the uniform norm on a compact space X. (Note that our two definitions of $\|\cdot\|_1$ coincide on $C^{(1)}$, and that $C^{(1)}$ is a proper closed subalgebra of Lip..)

If $\alpha \in (0, 1)$, then

$$\lim_{\alpha} I = \{ f \in \text{Lip}_{\alpha} I : |f(x) - f(y)| / |x - y|^{\alpha} \to 0 \text{ as } |x - y| \to 0 \}.$$

It is noted in [9], 2.1, where the basic theory of these algebras is developed, that \lim_{α} is a closed subalgebra of $\operatorname{Lip}_{\alpha}$ (for $\alpha \in (0,1)$) and that each is a regular algebra on I.

For $\beta > 1$, write $\beta = n + \alpha$ with $n \in \mathbb{N}$ and $\alpha \in (0, 1]$. Define Lip, I or Lip, by

$$\operatorname{Lip}_{\beta} I = \{ f \in C^{(n)}(I) \colon f^{(n)} \in \operatorname{Lip}_{\alpha} I \}.$$

Then Lip_g is a Banach algebra on I with respect to the norm $\|\cdot\|_{g}$, where

$$\|f\|_{eta} = \sum_{k=0}^{n} |f^{(k)}|_{I} + p_{a}(f^{(n)}) \quad (f \in \operatorname{Lip}_{eta} I).$$

See [8], §4, for example. In fact $||fg||_g \leq C||f||_g ||g||_g$ $(f, g \in \text{Lip}_g)$, where C is a constant depending only on β . If $\alpha \in (0,1)$, $\lim_{\beta I} = \{f \in C^{(n)}(I):$ $f^{(n)} \in \text{lip}_{\sigma}I$. Both Lip, and lip, are regular Banach algebras on I in these

If
$$\beta = n + a$$
, if $k \in \{0, 1, ..., n\}$, and if $t_0 \in I$, we set

$$M_{\beta,k}(t_0) = \{ f \in \mathrm{Lip}_{\beta} I \colon f(t_0) = \ldots = f^{(k)}(t_0) = 0 \}.$$

Write $M_{\beta,k}$ for $M_{\beta,k}(0)$.

Let Y be a Banach space, and let S be a linear operator from $C^{(n)}$ or Lip, into Y such that S is of class \mathcal{I} . Then S is Lip, continuous if $S|(\text{Lip}_{n},$ $\|\cdot\|_{\nu}$) $\to Y$ is continuous for some γ with $\gamma > n$ or $\gamma \geqslant \beta$, and S is eventually continuous if it is Lip, continuous for some γ .

The first result extends Proposition 1.2(i).

THEOREM 2.1. Let $S: C^{(n)} \to Y$ be of class \mathscr{I} . If S is eventually continuous, then S is $Lip_{2n+\epsilon}$ -continuous for each $\epsilon > 0$.

Proof. As in [7], Theorem 5.5, we can suppose that S has a singleton singularity set, say $\{t_n\}$. Let I(S) be the continuity ideal of S. Since S is eventually continuous, $|z-t_0|^q$ belongs to I(S) for some $q \in \mathbb{N}$, and so, by [7], 5.3, $|z-t_0|^{n+\frac{1}{2}\varepsilon}$ belongs to I(S) for each $\varepsilon > 0$.

Now fix $\varepsilon > 0$ and take $f \in M_{2n+\varepsilon,2n}(t_0)$. Set $g = |z-t_0|^{-n-\frac{1}{2}\varepsilon}f$ (with $g(t_0) = 0$). We claim that $g \in C^{(n)}$ and that $||g||_n \leqslant K ||f||_{2n+\epsilon}$ for some constant K. In fact, if $t \in I \setminus \{t_0\}$, $g^{(n)}(t)$ is a finite sum of terms $|f^{(n-j)}(t)|$ $/|t-t_0|^{n+j+\frac{1}{4}s}$ for $j=0,1,\ldots,n$. But

$$\frac{|f^{(n-j)}(t)|}{|t-t_0|^{n+j}} \leqslant \sup \left\{ |f^{(2n)}(s)| \colon s \in [t_0-|t-t_0|,\, t_0+|t-t_0|] \right\},$$

and so $|g^{(n)}(t)| \leq K_1 p_s(f^{(2n)})|t-t_0|^{\frac{1}{2}s}$ for some constant K_1 . Thus, $g^{(n)}(t) \to 0$ as $t \to t_0$, so that $g \in C^{(n)}$. The claim then follows.

The remainder of the proof is the same as that in [7], 5.5, noting that $M_{2n+s,2n}$ (t_0) is closed and of finite codimension in Lip_{2n+s} .

A similar proof establishes the next closely related result. It is only necessary to change the technical lemmas.

THEOREM 2.2. Let S: Lip₈ \rightarrow Y be of class \mathscr{I} . If S is eventually continuous, then S is Lip_{2S+s} -continuous for each $\varepsilon > 0$.

LEMMA 1. If $f \in M_{n+\alpha,n}$, where $n \in \mathbb{Z}^+$ and $\alpha \in (0, 1)$, and if $\beta \in [0, \alpha)$, then $f/z^{n+\beta} \in \operatorname{Lip}_{a-\beta}$ and $||f/z^{n+\beta}||_{a-\beta} \leqslant Kp_a(f^{(n)})$ for some constant K depending only on n+a and β . If, further, $f \in \lim_{n+a}$, then $f/z^{n+\beta} \in \lim_{n \to a}$.

Proof. Let $g = f/z^{n+\beta}$ with $g(0) = \lim_{t \to 0} g(t) = 0$. We shall estimate $|g(x) - g(y)|/|x - y|^{a-\beta}$ for $x, y \in I$ with $x \neq y$. We can suppose that y > x. For $h \in \text{Lip}_a$ and $[u, v] \subset I$, set

$$p_{a,[u,v]}(h) = \sup\{|h(s) - h(t)|/|s - t|^{\alpha} \colon s, t \in [u,v], s \neq t\}.$$

First suppose that $y \in (x, 2x]$. Then

$$|f(x)-f(y)|$$

$$\begin{split} & \leq \sum_{k=1}^{n} \frac{1}{k!} \, |x-y|^{k} \, |f^{(k)}(x)| + \frac{1}{n!} \, |x-y|^{n+\alpha} p_{a,[x,y]}(f^{(n)}) \\ & \leq \sum_{k=1}^{n} \frac{1}{k! \, (n-k)!} \, |x-y|^{k} x^{n-k+\alpha} p_{a,[0,x]}(f^{(n)}) + \frac{1}{n!} \, |x-y|^{n+\alpha} p_{a,[x,y]}(f^{(n)}) \\ & \leq K_{1} |x-y| \, x^{n-1+\alpha} (p_{a,[0,x]}(f^{(n)}) + p_{a,[x,y]}(f^{(n)})) \end{split}$$

for some K_1 , noting that $|x-y| \leq x$. Hence

$$egin{aligned} & rac{|f(x)-f(y)|}{x^{n+eta}\left|x-y
ight|^{a-eta}} \leqslant K_1 \left|rac{x-y}{x}
ight|^{1-a+eta} \left(p_{lpha,\llbracket 0,x
bracket}(f^{(n)})+p_{lpha,\llbracket x,y
bracket}(f^{(n)})
ight) \ & \leqslant 2K_1p_lpha(f^{(n)})\,. \end{aligned}$$

If $f \in \lim_{n+\alpha}$ and $\varepsilon > 0$, take $\eta > 0$ so that $p_{\alpha,[0,\eta]}(f^{(n)}) < \varepsilon/2K_1$, and then take $\delta > 0$ so that $(\delta/\eta)^{1-\alpha+\beta} < \varepsilon/2K_1p_\alpha(f^{(n)})$ and so that $p_{\alpha,[x,y]}(f^{(n)}) < \varepsilon/2K_1$ if $|x-y| < \delta$. Then $|f(x)-f(y)|/|x^{n+\beta}|x-y|^{\alpha-\beta} < \varepsilon$ if $|x-y| < \delta$. Also, $|f(y)| \leqslant y^{n+\alpha}p_{\alpha,[0,y]}(f^{(n)})/n!$, so that

$$\frac{|f(y)|}{|x-y|^{\alpha-\beta}}\left|\frac{1}{x^{n+\beta}}-\frac{1}{y^{n+\beta}}\right| \leq \frac{1}{n!}\,p_{\alpha,[0,y]}(f^{(n)})\left(\frac{y}{x}\right)^{\alpha-\beta}\frac{|(y/x)^{n+\beta}-1|}{|1-(y/x)|^{\alpha-\beta}}\;.$$

Let $\varphi(s)=s^{\beta-\alpha}\{(1+s)^{n+\beta}-1\}$ for s>0. Since $\alpha-\beta<1$, $\varphi(s)\to 0$ as $s\to 0+$, and so

$$\frac{|f(y)|}{|x-y|^{\alpha-\beta}} \left| \frac{1}{x^{n+\beta}} - \frac{1}{y^{n+\beta}} \right| \leq \frac{2^{a-\beta}}{n!} p_{a,[0,y]}(f^{(n)}) |\varphi|_{[0,y/x-1]}$$

$$\leq \frac{2^{a-\beta}}{n!} p_a(f^{(n)}) |\varphi|_{[0,1]}.$$

Again, if $f \in \text{lip}_{n+a}$ and $\varepsilon > 0$, we can take $\delta > 0$ so that

$$\frac{|f(y)|}{|x-y|^{\alpha-\beta}}\left|\frac{1}{x^{n+\beta}}-\frac{1}{y^{n+\beta}}\right|<\varepsilon \qquad (|x-y|<\delta).$$

$$\frac{|g(x) - g(y)|}{|x - y|^{a - \beta}} \leqslant \frac{1}{x^{n + \beta}} \frac{|f(x) - f(y)|}{|x - y|^{a - \beta}} + \frac{|f(y)|}{|x - y|^{a - \beta}} \left| \frac{1}{x^{n + \beta}} - \frac{1}{y^{n + \beta}} \right|,$$

the result follows in this case.

Secondly, suppose that y > 2x. Then

$$\begin{split} \frac{|g(x) - g(y)|}{\cdot |x - y|^{a - \beta}} &\leqslant \frac{|f(x)|}{x^{n + \beta} |x - y|^{a - \beta}} + \frac{|f(y)|}{y^{n + \beta} |x - y|^{a - \beta}} \\ &\leqslant \frac{1}{n!} \left(\left| \frac{x}{x - y} \right|^{a - \beta} p_{a, [0, x]}(f^{(n)}) + \left| \frac{y}{x - y} \right|^{a - \beta} p_{a, [0, y]}(f^{(n)}) \right) \\ &\leqslant \frac{1}{n!} \left(1 + 2^{a - \beta} \right) p_a(f^{(n)}) \,. \end{split}$$

If $|x-y| \to 0$, then, in this case, $x, y \to 0$. Thus, if $f \in \lim_{n+\alpha}$, then $|g(x) - -g(y)|/|x-y|^{\alpha-\beta} \to 0$ as $|x-y| \to 0$.

The result follows.

LEMMA 2. If $f \in M_{n+a,k}$ where $n \in \mathbb{Z}^+$, $\alpha \in (0,1)$, and $k \in \{0,1,\ldots,n\}$, and if $\beta \in (0,\alpha)$, then $f/z^{k+\beta} \in \operatorname{Lip}_{n+a-k-\beta}$ and $\|f/z^{k+\beta}\|_{n+a-k-\beta} \leqslant K \|f\|_{n+\alpha}$ for some constant K. If, further, $f \in \operatorname{Lip}_{n+a}$, then $f/z^{k+\beta} \in \operatorname{Lip}_{n+a-k-\beta}$.

Proof. If $g = f/z^{k+\beta}$, then $g^{(n-k)}$ is a finite sum of terms of the form $f^{(n-k-j)}/z^{k+j+\beta}$ for $j = 0, 1, \ldots, n-k$. The result then follows from Lemma 1.

LEMMA 3. If $f \in M_{n+a,n}$, where $n \in \mathbb{Z}^+$ and $a \in (0,1)$, and if $\gamma > 0$, then $z^{\gamma} f \in M_{n+a,n}$ and $||z^{\gamma} f||_{n+a} \leq K ||f||_{n+a}$ for some constant K. If, further, $f \in \text{lip}_{n+a}$, then $z^{\gamma} f \in \text{lip}_{n+a}$.

Proof. Let $g=z^{\nu}f$. Then $g^{(n)}$ is a finite sum of terms of the form $z^{\nu-j}f^{(n-j)}$ for $j=0,1,\ldots,n$. By Lemma 1, $f^{(n-j)}/z^{j}\in \operatorname{Lip}_{a}$ and $\|f^{(n-j)}/z^{j}\|_{a} \leqslant K_{j}p_{a}(f^{(n)})$ for some K_{j} $(j=0,1,\ldots,n)$. Also, $f^{(n-j)}/z^{j}\in \operatorname{lip}_{a}$ if $f\in \operatorname{lip}_{n+a}$. So it suffices to prove the result in the case n=0. We can suppose that $\nu<\alpha$. Then $|x^{\nu}-y^{\nu}|/|x-y|^{a}\leqslant K_{1}y^{\nu-a}$ for some K_{1} and $y^{a-\nu}|x^{\nu}-y^{\nu}|/|x-y|^{a}\to 0$ as $x/y\to 1$. So, if $y=z^{\nu}f$, then

$$\frac{|g(x) - g(y)|}{|x - y|^{\alpha}} \leqslant x^{\nu} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} + |f(y)| \frac{|x^{\nu} - y^{\nu}|}{|x - y|^{\alpha}},$$

and hence $p_a(g) \leq p_a(f) + K_1 p_a(f)$. Also, if $f \in \text{lip}_a$ and $|x-y| \to 0$, then $|g(x) - g(y)|/|x-y|^a \to 0$. The result follows.

LEMMA 4. If $n \in \mathbb{N}$ and $a \in (0, 1)$, and if J is a closed primary ideal of \lim_{n+a} , then $J = \lim_{n+a} \cap M_{n+a,n}(t_0)$ for some $t_0 \in I$.

Proof. This follows easily from the result of Sherbert ([9], 4.2) that, if $\alpha \in (0, 1)$, then each closed primary ideal of \lim_{α} is a maximal ideal.

Note that the above result does not hold with \lim_{n+a} replaced by Lip_{n+a} : see [9], 6.2.

Proof of Theorem 2.2. Let $S: \operatorname{Lip}_{\beta} \to Y$ be of class \mathscr{I} , and suppose that S is $\operatorname{Lip}_{\gamma}$ -continuous. By slightly increasing β if necessary, we may suppose that $\beta \notin N$. Suppose that $\beta = n + a$ with $n \in \mathbb{Z}^+$ and $\alpha \in (0, 1)$. Now $S: \operatorname{lip}_{\beta} \to Y$ is of class \mathscr{I} , and we define the continuity ideal I(S) with respect to this map:

$$I(S) = \{ f \in \text{lip}_{\beta} : g \mapsto S(fg), \text{lip}_{\beta} \to Y, \text{ is continuous} \}.$$

Since $\operatorname{lip}_{\beta}$ is a regular algebra, [7], 3.1, shows that S has a finite singularity set, which we take to be the singleton $\{0\}$. Since each closed primary ideal of $\operatorname{lip}_{\beta}$ has finite codimension in $\operatorname{lip}_{\beta}$, we can apply [7], 3.2, to carry through the argument of [7], 5.5, and conclude that $I(S) \cap \operatorname{lip}_{\gamma}$ is closed in $\operatorname{lip}_{\gamma}$. Hence, using Lemma 4 again, $z^q \in I(S)$ for some $q \in N$.

Lemma 3 shows that the map $f \mapsto z^{p}f$ is a bounded linear operator on $\{f \in \text{lip}_{\beta} \colon f(0) = \dots = f^{(n)}(0) = 0\}$, and this is what is required to ensure that the analogue of [7], 5.2, holds. As in [7], 5.3, it follows that $z^{\beta+s} \in I(S)$ for each s > 0.

If $f \in M_{2\beta+\epsilon,n}$ and $g = z^{-\beta-\frac{1}{\epsilon}}f$, then it follows from Lemma 2 that $g \in \operatorname{Lip}_{\beta+\frac{1}{\epsilon}}$. But $\operatorname{Lip}_{\beta+\frac{1}{\epsilon}} \subset \operatorname{lip}_{\beta}$, so that $g \in \operatorname{lip}_{\beta}$ and this suffices for us to conclude the proof as before.

3. In this section, we give the example which answers Question 1 of [2] in the negative.

THEOREM 3.1. Let n belong to N. If the continuum hypothesis holds, then there is a Banach algebra $\mathfrak B$ and a unital homomorphism $\mathfrak v\colon C^{(n)}(I)\to \mathfrak B$ such that $\mathfrak v$ is $C^{(2n+1)}$ -continuous, but such that $\mathfrak v$ is not $C^{(2n)}$ -continuous.

Proof. Let
$$M = \{f \in C(I): f(0) = 0\}$$
, and let

$$L = \{ f \in C(I) \colon |f(t)| = O(t^s) \text{ as } t \to 0 + \text{for each } \varepsilon > 0 \}.$$

Then L is an ideal in C(I) and $L \subseteq M$. Take

$$f_0(t) = \begin{cases} (-\log t)^{-1} & (t \in (0, 1]), \\ 0 & (t = 0), \end{cases}$$

so that $f_0 \in M$, but $f_0^n \notin L$ for any $n \in N$. Then there is a prime ideal, say P, with $L \subset P \subset M$ and $f_0 \notin P$.

Assuming the continuum hypothesis, there is a radical Banach algebra R and a unital homomorphism $\lambda\colon C(I)\to R^{\#}$ with ker $\lambda=P\colon$ here, $R^{\#}$ is the Banach algebra formed by adjoining an identity, say e, to R. (See [4] and [6]: the result is discussed in [3], Theorem 9.6.) In particular, $\lambda|L=0$ and $\lambda(f_0)\neq 0$.

Let $\mathfrak{B} = C^n \times (R^{\#})^{n+1}$ with coordinatewise addition and scalar multiplication, so that \mathfrak{B} is a vector space. Identify C with the subfield Ce

$$\pi_k(ab) = \sum_{i=0}^k \pi_i(a) \pi_{k-i}(b) \quad (k = 0, 1, ..., 2n).$$

Then $\mathfrak B$ is a commutative algebra with identity (1, 0, ..., 0). If $a \in \mathfrak B$, set

$$||a|| = \sum_{k=0}^{2n} ||\pi_k(a)||.$$

It is clear that $(\mathfrak{B}, \|\cdot\|)$ is a Banach algebra.

We next define linear maps $S_k \colon M_{n,n-1} \to C(I)$ for $k \in \{0, 1, ..., n\}$:

$$S_0(h) = \frac{h}{z^n} \quad (h \in M_{n,n-1}),$$

and, if $k\geqslant 1$ and $S_0,\,\dots,\,S_{k-1}$ have been defined, S_k is any linear map such that

$$S_k(h) = S_{k-1}(h/z) \quad (h \in zM_{n,n-1}),$$

 $S_k(z^n) = 0.$

Note that, if $h \in M_{n,n-1}$, then $h/z^n \in C(I)$: its value at 0 is $h^{(n)}(0)/n!$. Note also that $z^n \in M_{n,n-1} \setminus zM_{n,n-1}$, so that each S_k is welldefined.

For $f \in C^{(n)}$, define $\varrho(f) \in M_{n,n-1}$ by the formula

$$f = f(0) + zf'(0) + \dots + \frac{z^{n-1}}{(n-1)!}f^{(n-1)}(0) + \varrho(f),$$

so that $z^{-n}\varrho(f)-f^{(n)}(0)/n!$ belongs to M. Define $T_k\colon C^{(n)}\to R^{\#}$ by

$$T_k = \lambda \circ S_k \circ \varrho \qquad (k = 0, 1, ..., n),$$

and define $\nu \colon C^{(n)} \to \mathfrak{B}$ by

$$\nu(f) = \left(f(0), f'(0), \ldots, \frac{1}{(n-1)!} f^{(n-1)}(0), T_0(f), \ldots, T_n(f)\right) \qquad (f \in C^{(n)}).$$

We claim that v is an algebra homomorphism. It is clearly linear. To show that v is multiplicative, we first make some preliminary calculations. Take $h \in M_{n,n-1}$ and $k,l \in \{0,1,\ldots,n\}$. If l < k, then $S_k(z^lh) = S_{k-l}(h)$, and in particular $S_k(z^{n+l}) = 0$, so that $T_k(z^{n+l}) = 0$. If l = k, $S_k(z^lh) = S_0(h) = h/z^n$, so that $T_k(z^{n+k}) = e$. If l > h, $S_k(z^lh) = S_0(z^{l-k}h) = z^{l-k-n}h \in L$, so that $T_k(z^lh) = 0$. Also, if $h_1, h_2 \in M_{n,n-1}$, then $h_1h_2 \in M_{n,n-1}$. But $M_{n,n-1}^2 = z^n M_{n,n-1}$ ([5], 3.1(ii)), so that $T_k(h_1h_2) = 0$ for $k = 0, 1, \ldots, n-1$, whereas $S_n(h_1h_2) = S_0(z^{-n}h_1h_2) = z^{-2n}h_1h_2 = S_0(h_1)S_0(h_2)$, so that $T_n(h_1h_2) = T_0(h_1)T_0(h_2)$ because λ is a homomorphism.

109

Now take $f, g \in C^{(n)}$. For $k \in \{0, 1, ..., n-1\}$.

$$\pi_k(\nu(fg)) = \frac{1}{k!} (fg)^{(k)}(0) = \pi_k(\nu(f)\nu(g)).$$

Also.

$$\begin{split} \varrho(fg) \; &= \; \sum_{l=0}^{n-1} \frac{z^l}{l!} [f^{(l)}(0) \, \varrho(g) + g^{(l)}(0) \, \varrho(f)] \, + \\ & + \; \sum_{l=0}^{n-1} \Big[\sum_{\substack{i:j=0\\l \ j = n-1}}^{n-1} \frac{1}{i!j!} \, f^{(i)}(0) g^{(j)}(0) \Big] z^{n+l} + \varrho(f) \, \varrho(g). \end{split}$$

Hence, if $k \in \{0, 1, ..., n-1\}$,

$$\begin{split} T_k(fg) &= \sum_{l=0}^k \frac{1}{l!} \left[f^{(l)}(0) T_{k-l}(g) + g^{(l)}(0) T_{k-l}(f) \right] + \\ &+ \Big[\sum_{\substack{i,j=0 \\ i+j \text{ on } k-k}}^{n-1} \frac{1}{i!j!} f^{(i)}(0) g^{(j)}(0) \Big] e, \end{split}$$

so that $\pi_{n+k}(\nu(fg)) = \pi_{n+k}(\nu(f)\nu(g))$. Finally,

$$T_n(fg) = \sum_{l=0}^n \frac{1}{l!} [f^{(l)}(0)T_{n-l}(g) + g^{(l)}(0)T_{n-l}(f)] + T_0(f)T_0(g),$$

so that $\pi_{2n}(v(fg)) = \pi_{2n}(v(f)v(g))$. We have shown that ν is multiplicative, as required. Certainly, v is unital.

Fix $\varepsilon > 0$. If $f \in C^{(2n+\varepsilon)}$, then

$$\varrho(f) = \sum_{k=1}^{2n} \frac{1}{k!} z^k f^{(k)}(0) + z^{2n} \tilde{f},$$

say, where $|\tilde{f}(t)| = O(t^*)$ as $t \to 0+$. Thus, $S_n(z^{2n}\tilde{f}) = \tilde{f} \in L$ and $T_k(f) = f^{(n+k)}(0)/(n+k)!$ (k = 0, ..., n). Hence, on $O^{(2n+s)}$, r agrees with the map

$$f \mapsto \left(f(0), f'(0), \dots, \frac{1}{(2n)!} f^{(2n)}(0)\right),$$

which is clearly continuous. In particular, ν is $C^{(2n+1)}$ -continuous. Let $g_0 = z^{2n} f_0$, so that $g_0 \in M_{2n,2n}$. Then

$$\nu(g_0) = (0, 0, ..., 0, \nu(f_0)) \neq 0.$$

But g_0 is the limit in $C^{(2n)}$ of polynomials $p_u \in M_{2n,2n}$, and $\nu(p_u) = 0$.

This shows that ν is not $C^{(2n)}$ -continuous, and concludes the proof of the theorem.

Remark. A fairly similar example shows that " $2\beta + \varepsilon$ for each $\varepsilon > 0$ " cannot, in general, be replaced by "28" in Theorem 2.2.

References

- [1] W. G. Bade, P. C. Curtis, Jr., and K. B. Laursen, Automatic continuity in algebras of differentiable functions, Math. Scand. 40 (1977), pp. 249-270.
- ______. Divisible subspaces and problems of automatic continuity, Studia Math. 1 68 (1980), pp. 159-186.
- [3] H. G. Dales, Automatic continuity: a survey, Bull. London Math. Soc. 10 (1978), рр. 129-183.
- A discontinuous homomorphism from C(X), Amer. J. Math. 101 (1979),
- [5] H. G. Dales and J. P. McClure, Higher point derivations on commutative Banach algebras, I, J. Functional Analysis 26 (1977), pp. 166-189.
- J. Esterle, Injection de semi-groupes divisibles dans des algèbres de convolution et construction d'homomorphismes discontinus de C(K), Proc. London Math. Soc. (3) 36 (1978), pp. 59-85.
- K. B. Laursen, Automatic continuity of generalized intertwining operators, Diss. Math. 189 (1981).
- A. G. O'Farrell, Annihilators of rational modules, J. Functional Analysis. 19 (1975), pp. 373-389.
- D. R. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), pp. 240-272.

(1511)Received February 6, 1979