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Eventual continuity in Banach algebras of
differentiable functions

by
H. &. DALES (Leeds, England)

Abstract. Question 1 of recent paper of Badé, Curtis, and Laursen is answered.
An eventually continuous homomorphism from O{®) into a Banach algebra which is
eventually continuous is proved to be O@n+e).continuous for each &> 0, but an
example is given which shows that it need not be C2n).continuous.

1. This note is a response to Question 1 raised by Badé, Curtis,
. and Laursen in [2].

" If m is a positive integer, denote by 0 or 0™ (I) the set of functions
baving at least # continuous derivatives on the unit interval, I = [0, 1].
With pointwige algebraic operations and norm

n

Il = D5 (@) te)  (Feom),
Fo==0

| O™ iy a commutative Banach algebra. Let B be a Banach algebra, let
»: 0™ > B be a homomorphism, and let % be a positive integer with
kzn. Then » is 0®-continuous it »|(C®, ||-|,,) - B is continuous, and »
is eventually continuous if » is C™-continuous for gome % > n. Two recent
results proved by Badé, Curtis, and Laursen are the following:

ProposrTION 1.1. Let »: (™ B be o homomorphism.

(i) ([1], Theorem 2.5). If » is eventually continuous, then v is CEr+1.
 continuous.
(ii) (from [2], Theorem 3.11). If the radical of B is finite-dimensional,
. then v is OC™-gontinuous. ‘

On the other hand, it follows from [5], Theorem 3.4, that, if % < 2n,
then »: 0™ — B need not be O™-continuous even if B is finite-dimensional.

These results leave open the question, raised as Question 1 in [2],
whether or not every eventually continnous homomorphism from ¢™ into
a Banach algebra is necessarily O¥™-continuous. Here, I give an example
- which shows that this is not true (at least if the continuum hypothesis
be assumed), but I prove in Theorem 2.1 that there is a sense in which
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the number “2n--1" of Proposition 1.1(i) can be replaced by “2n--¢
for each & > 0”.

In fact, the positive results can be given in the more general con-
text discussed by Laursen in [7]. Let Y be a Banach space, let B(Y)
be the Banach algebra of bounded linear operators on ¥, let % be & com-

mutative Banach algebra, and let ¢: A — B(Y) be a homomorphism, not _

necessarily continuous. A linear operator 8: A — Y iy of class # (with
respect to o) if the map S(a-)—e(a)S(*), Y- ¥, is continuous for
each o in . The clags # is the class, of intertwining operators. (A more
general case ig congidered in [7], Definition 2.1.) Homomorphisms, deriva-
tions into modules, and centralizers are exampley of such maps.

Now let ¥ be a Banach space, and let §: ¢ — ¥ be of clags 5.
With definitions analogous to the above, Proposition 1.1 extends to this
cage. Let G (8) be the separating space of S.

ProposITION 1.2. Let 8: 0™ — X .be of class £, .

(i) ([7], Theorem 5.5). If 8 is eventually continuous, then 8§ is C2+1.
continuous.

(i) ([7], Theorem 5.26). If G (8) is finite-dimensional, then § is C*n)-
continuous.

2. We now introduce the algebras with which we shall be concerned.
If @ €(0,1], let Lip,I or Lip, be the Lipschitz algebra (of order a)
-.on I, so that Lip,I is the set of functions f on I with p,(f) < oo, where

2.(f) = sup{lf(@) —f)/le—y|°: o,y eI, @ #y}.

With pointwise operations, Lip,I is & Banach algebra on I with respéect
to the norm ||-||,, where

Wil = Iflz+24(f)  (feLip,I)

and |f|x = sup{|f(#)|: © € X} defines the uniform norm on a compact
space X. (Note that our two definitions of ||« |, coincide on 0™, and that ¢W
is @ proper closed subalgebra of Lip,.)

If ae(0,1), then

lip, I = {f eLip.I: |f(2)—f(¥)l/lw—y|*~>0 as |w—y| - 0}.

It ig noted in [9], 2.1, where the basic theory of these algebras is developed,
that lip, is ‘a closed subalgebra of Lip, (for a (0, 1)) and that each is
a regular algebra on I.

For =1, write § =n-+a with n.e N and « (0, 1]. Define Lip,I
or Lip; by

Lip;I = {f e 0™(I): f™ e Lip,I}.
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Then Lip, is & Banach algebra on I with respect to the norm ||-||;, where

Iflls = 3@l +pu(f™)  (f e Lip,I).
k=0

See [8], §4, for example. In fact |ifglls < Clifllslglls (f, g € Lip,), where €
is a constant depending only on 8. If ae(0,1), lip,I = {f e C®I):
f™ elip,I}. Both Lip, and lip, are regular Banach algebras on I in thege
cages. '

Ig=n+aiftke{0,1,..,n}, and if ¢, € I, we set

Mpulte) = {F e LippT: f(t) = ... =f®(tp) = 0}.

Write My, for M,,(0).

Let Y be a Banach space, and let § be a linear operator from €™
or Lip, into ¥ such that S is of class #. Then 8§ is Lip,-continuous if 8j(Lip,,,
I-H,) =* ¥ is continuous for some y with y > n or y > g, and 8 is eventually
continuous if it is Lip -continuous for some p. .

The first result extends Proposition 1.2(i).

TeEOREM 2.1. Let 8: 0™ — Y be of class #. If § is eventually con-
tinuwous, then 8 is Lip,,, .-continuous for each & > 0.

Proof. Asin [7], Theorem 5.5, we can suppose that § has a gingleton
singularity set, say {t,}. Let I(8) be the continuity ideal of S. Since §
i eventually continnous, |z—1%,/? belongs to I(S) for some g € N, and so,
by [7], B.3, |z—1,["¥ belongs to I(8) for each & > 0.

Now fix £> 0 and take fe My,,,,,(%). Set g = [z—1,|~" ¥ f (with
g(t) = 0). We claim that g € 0™ and that |gll, < Elflsps. for some con-
stant K. In fact, if ¢ e IN{t,}, g™ (t) is a finite sum of terms |f@~(1))/
[ft—t,"HF¥ for § = 0,1, ..., n. Bub

(n—1) (¢
'[-{_—tl—ﬁ;),l < Sup {1 (8)]: 5 € [ty [t—tol, fot B—tolT},
0 .

and so |g™ (8)] < K,p,(f&™)[t—1,* for some constant K,. Thus, g™ (¢) -0
ag t—> 1y, 80 that g e 0. The claim then follows.

The remainder of the proof is the same ag that in [7], 5.5, noting
that M, .., (f,) is clogsed and of finite codimension in Lip,, ..

A similar proof establishes the next closely related result. It ig only
necessary to change the technical lemmas.

TEmorEM 2.2. Let §: Lip,— Y be of class . If 8 is eventually con-
tinuous, then S is Lipy,., -continuous for each ¢ > 0.

Luvva 1. If fe M, ., where n € Z¥ and a € (0,1), and if f &[0, a),
then fl" eLip,_; and |f /2", s < Ep, () for some constamt K depen-
ding only on n-+a and B. If, further, f elip, a, then fle"*F elip, ;.
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Proof. Let g = f/z"*? with ¢(0) =limg(t) = 0. We shall estimate
-0

lg{®) —g ()| |lw—y|*~? for @,y e I with @ # y. We can suppose that y > a.
For h eLip, and [%,v] = I, set

Paum(h) = sup{ih(s) —h(t)|/ls —1|*: ¢, e [u, v],s 5 i}.
Firgt suppose that y e (@, 2¢]. Then
\f (@) —f ()l '

a1 1
< D T 0=y F P @)+ 10—y P (F7)

=1
. n 1 . 1
< Z m!‘ [ — ?l|kmn—k+°29a,[o,x](f(n)) -+ il |-’”,— i’/|"+"17a,[m,y](f(”))
o1

< -Kl lw ":?/lwn_”-u (pu,[o,z] (f(n)) +.pa,[a:,v] (f(ﬂ)))
for some K,, noting that |o—y| < 2. Hence
If (@) —f @)l |o—y|me+?
o Flo—yF ST e |
< 2K, p.(f").
It felip,,, and £>0, take 9> 0 so that P, ,(f™) < /2K, and
then take & >0 so that (3/7)'"** < &/2K,p,(f™) and so that p, g, (f)

< ¢[2K, if |#~y| < 8. Then |f(@)—Ffy)|[z" PP lo—y|*? <eif lx—y] <.
Also, [f(y)i <Y Do (™) 0!, so that

Fol | 1 1] _ 1 on (Y F 1@ o)+ —1]
lw—y =P [a™*P y"+ﬂi<n!” wton(f )(ZE) L—(y/w)~* "

Let @(s) = s {(1+s)**F —1} for s> 0. Shce a—f<1, p(s)—>0 a8
8- 0+, and so .

Il | 1 L | _ oo
lx__mﬂ-—ﬂ l|a,n+li‘ - yn+ﬁl| < n! pﬂ;[“»"l(f(n)) |‘P|[0. Hae—1]

(.pa,[o,z] (f(n)) +pu,[m,v] (f(")))

a—

Pt
< l ?a(f(“))lf}’{[o,u-

Again, if f e lip,,,, and ¢ > 0, we can take § > 0 so thatb

1fl 101 :
[a,_yla—ﬂ llwnﬂl - yn-ivﬁll <& (lw—yl<d).
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Thus, sinee

lg (=) —g(y)| 1
g7

1f (@) —F )l

lo—yi*~*

1 1
PR yn+ﬂ

If (@)

lo—y|*?

+

?

the result follows in thig case.
Secondly, suppose that ¥ > 22. Then

lg(@) —g(¥)| (@)

a— =~ —
w—yl=? T et gyt

1
St

1
<@ +2° 0 p, (f™),

17 )

v le—yl?

x

g ) y | ()
Pajo,a(f )'[‘“w“:jy— Da,o,n (S ))

-y

If |z —y] - 0, then, in this case, , y — 0. Thus, if f lip,,,, then [g(z) —
—gW/le~y*"? >0 as |e—y| > 0.

The result follows.

Levus 2. If fe M, ., where n € Z%, ac(0,1), and ke {0, 1, ..., n},
and if pe(0,a), then flo**? eLip, o i p and |f/* lyyarp < Elflpsa
Jor some constant K. If, further, f € lip, , ., then fl2*+# elip, o 4.5

Proof. If g = f/**?, then g™ ig a finite sum of terms of the form
fika) k4P for § = 0,1, ...,n—k. The result then follows from Lemma 1.

Levwma 3. If fe M, .., where n e Z* and a€(0,1), and if y> 0,
then 2'f e M, 0, 0nd [2fll,ro < Elfllypa for some constant K. If, further,
felip, .., then 2¥f elip, ..

Proof. Let g = ¢f. Then ¢ is a finite sum of terms of the form
#~Ifm=9) for j = 0,1, ...,n By Lemma 1, f®#9/f e Lip, and [f* /|,
< Kyp,(f™) for some K; (j = 0,1, ..., n). Also, f*~ [ elip, it felip, o
So it suffices to prove the result in the case n = 0. We can suppose that
y < a. Then |a¥ —y"|/|z —y|* < K,y*~° for some K, and y*~* lo* —y*|[le —y|°
-0 ay ofy »1. So, if g =", then

19 (@) —9(3)] If (@) —F(9)l
lw—y|* -y

and hence 2,(9) < p.(f)+Kp.(f). Also, if felip, and |z—y|—>0,
then |g(2) —g(¥)|/le—y|* — 0. The result follows.

LeMMA 4. If n e N and ae(0,1), and if J is a closed primary ideal
of P, ., then J o lip, an M, .o, (L) for some 1 € L.

Proof. This follows easily from the result of Sherbert ([91, 4.2)
that, if ae(0,1), then each closed primary ideal of lip, is a maximal
ideal.

w‘}'__y)’l
lo—y*’

<o L1
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Note that the above result does not hold with lip,,, replaced by
Lip,,.: see [9], 6.2.

" Proof of Theorem 2.2. Let 8: Lip; — Y be of class #, and suppose
that 8 is Lip,-continuous. By slightly increasing f if necessary, we may
suppose that f ¢ N. Suppose that f= n--e with # € ZT and ae(0,1).
Now 8: lip; - ¥ is of class 4, and we define the continuity ideal I(S)
with respect to this map:

I(8) = {f elips: g — 8(fg), lips—~ ¥, is continuous}.

Binee lip, is a regular algebra, [7], 3.1, shows that § has a finito
singularity set, which we take to be the singleton {0}. Since each closed
primary ideal of lip, has finite codimension in lip,, we can apply [7], 3.2,
to carry through the argument of [7], 5.5, and conclude that I(S)nlip,

is closed in lip,. Hence, using Lemma 4 again, ¢ ¢ I(8) for some geN.

Lemma 8 shows that the map f — 2"f is a bounded linear operator
on {felips: f(0) = . =f™(0) = 0}, and this is what is required to
ensure that the analogue of [7], 5.2, holds. As in [7], 5.3, it follows that
2+* e I(8) for each & > 0.

I feMy,,, and g = #~¥f, then it follows from Lemma 2 that
g e Lip; 4. Bub Lipg,,, < lip;, so that g elip, and this suffices for us
to conclude the proof as before.

3. In this section, we give the example which answers Question 1
of [2] in the negative. .

TeEOREM 8.1. Let n belong to N. If the continuum hypothesis holds:
then there is a Bamach algebra B and a unital homomorphism v: 0@ (I) > B
such that v is 0% V-continuous, but such that v is not O.continuous.

Proof. Let M = {fe0(I): J(0), =0}, and let

L ={fe0(I): |f(t)] = O() as t->04 for each &> 0}.

Then L is an ideal in ¢(I) and L § M. Take )
(~logh)™*  (te(0,1]),
0 (t=0),
8o that f, e M, but f' ¢ L for any n € N. Then there is a prime ideal, say P,
with Lc P < M and f, ¢ P.

Assuming the continuum hypothesis, there is a radical Banach algebra
E and a unital homomorphism 4: O(I) - B* with ker A = P: here, B¥
i the Banach algebra formed by adjoining an identity, say ¢, to R. (See [4]

and [6]: the result is discussed in [3], Theorem 9.6.) In particular, A|L =0
and A(f,) # 0.

Let B = C™ x (R¥)"! with eoordinatewise addition and sealar mul-
tiplication, so that B is a vector space. Identify € with the subfield Ce

fo(t) =
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of B*, and let m,: B — R¥ be the projection map of B onto the (k+1)-st
coordinate for k € {0, 1, ..., 2n}. If a, b € B, define the product ab in B by
k

mab) = 3 ma)m_3) (b =0,1,..

i=0

, 2n).
Then B is a commutative algebra with identity (1,0, ...,0). If a €8, seb

2n
lal = ) lim(a)].

k=0

It is clear that (B, ||-[) is a Banach algebra.
We next define linear maps Sy: M, ,.;—> O(I) for ke {0,1,...,n}:

I3
Bol) = =

., 8,_, have been defined, S, is any linear map

(h’ € Mn,n-l)i

and, if %> 1 and 8, ..
guch that
8 (k) = Sy_1(R/?)
8 (") = 0.

Note that, it ke M, , ;, then h/e" e O(I): its value at 0 is ‘h(") (0)/n!.
Note also that 2" € M, ,_,\eM, ,_,, so that each 8; is welldefined.
For f e 0™, define o(f) € M, . by the formula

(hesM, 1),

n—1
F=F O+ O+ o+ 5 O+ e,

go that 2~ o(f) —f™(0)/n! belongs to M. Define Ty: O™~ E¥ by

T, =A0800 (k=0,1,...,m),
and define »: 0™ B by
1 n—1. (n) .
() = (FOLF O, ooy gy fOOO, Ty oy Tul) (£ 0)

We claim that » is an algebra homomorphism. It is clearly linear.
To show that v is multiplicative, we first make some preliminary calc:u-
lations, Take he M, , , and k,1e{0,1,...,n} I Z<Zc, then 8,(z'k)
= 8,1(h), and in particular 8, (@ =0, so that Tp(e"t) =0.IE 1 :—=kk,
8, (#°h) = 8y(h) = h[e", so that Ty (e"+¥) = e IE1 > %, 8(#h) = 8,(F*h)
= "h e, so that Ty(#h) = 0. Also, it hy, hye M,,,y, then Rk,
eM:, .. But M3, , =2"M,, . ([6], 3.1(i), so that T’°(h171§?,, =0
for k=0,1,..,n—1, whereas S,(hha) = So(¢ "hihe) =2 "hily
= 84(h1) 8o (hy), 80 that T, (hyhy) = To(hy) To(hs) becaunse A is & homomor-
phism,
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Now take f, g e (™, For ke {0,1,...,2—1},

1
m(»(f9)) = ﬂ(fG)(k’ (0) = m»(£)»(9)).

Also, .
n—1 )
o) = X S I0(0)elg) +97(0) o]+

=0

n-1 n—1 1
+ 2[ 2 i1 f(i)(o)g(f)(o)]z”+l+ e(Flelg).
I=0  1,d=0 i
t4femntl

Hence,ifk e {0, 1,...,n—1},

k
1
To(fe) = )+ U0 Tsilo) +90(0) Ty (N1 +
Pt

80 that s (¥(f9) = s (#()#(g)). Finally,

1
T.(f9) =21—!Lf(l’(0)1’ ~{9) + gD (O T,y (f) 1+ T () To(g),

I=0

so that m,, (»(f9)) = 7 (»(f)#(g)). We have shown that » is multipli-
cative, ag required. Certainly, » is unital.
Fix ¢>0. If f € (%9, then

2n .
1 .
o) = D] T fB(0)+4F,
. k=1
say, where |f(t)] = O() as t—0+. Thus, 8, () =fel and T,(f)
= fOD0) f(n+E)! (k =0, ..., n). Hence, on 0@"t9, .y agrees with the map

7 (£0,510), .cr oy 00

Which is clearly eontinuous. In particular, » is 0" D_gontinuous.
Let gy = 2**f,, so that g, e M,y 5,,- Then

() =(0,0,...,0,5(fy)) #0.
But gy is the limit in 0®™ of polynomials p, e M,, ,,, and »(p,) = 0.
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' This shows that » is not (©™-continuous, and concludes ‘the proof of the

theorem.

Remark. A fairly similar example shows that “28-¢ for each £ > 0”
cannot, in general, be replaced by “28” in Theorem 2.2.
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