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A note on weak estimates for
, oscillating kernels

by
G. SAMPSON (Buffalo, N.Y.)

A})etruct. In this paper we prove weak type L estimates for kernels of the form
K =Tlj with applications to K () = ¢3!®/(1+1z]) (0< e< 1). In a later paper,
we will use these methods to solve an L7 endpoint problem, 1< p < 2.

Introduction. In an earlier paper [5], we discussed the L* to
I? (1< p < oo) mapping properties of the kernels k(@)™ with fairly
general conditions on f(x)and %(z). Other authors such as Fefferman [6], [7],
Carleson-8j6lin [2], Sjolin [11], [12], and Hormander [8], have given
weak (1,1) estimates for some of these kernels. As a matter of fact, their
results apply to kernels with compact support. I mean by that,
that the kernels oscillate badly about the origin, but have virtually no
oscillation at infinity. Zafran [14] and others have handled similar kernels.

In this paper, we discuss the weak mapping properties for the kernels
k(@)™ 0 < a <1, (see Theorem 3). In fact, we can prove that a class
of kernels k(z)e”® satisfies a weak type mapping property for a fairly
general f(z) and k(z) = O(|z[™").

In §5 we show that for some of these kernels (namely e'*!°jx), Hor-
mander’s condition fails (see (1))

Acknowledgement. I wish to thank Arnold Lent and Abrabam Na-
parstel for their helpful suggestions. And mostly, W. B. Jurkat for sugges-
ting the problem.

§0. Notation and definitions. Here, we discuss kernels K = K§
on R! where “little” % satisfies the Hormander condition,

(€] sup [ dalklo—y)—k@)] =B, (< ),

Y20 g|>2ly]
and ¢ oscillates in a somewhat regular fashion and g € I°. As far as the
notation is concerned, § will be a known function, and in those cases
where ¢ has a well-defined Fourier transform (e.g. g € I?), then g will be
the Fourier transform of g.
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‘We shall further agsume that

@) sup dar ()| 1§ (@ —y) — §(a)] = B, < oo.

0= WIS [g13a1y)
Our applications in this paper will be to problems where & (@) = O(|lz|™),
in this case condition (2) resembles a famous expression due to Hardy [3],
p. 571, namely

@) flé(m)l% (fo=0).

We thus view (2) as a weak Hardy condition. Furthermore, we shall
agsume
@3)  sup do k(@)1 (o—y) —§ ()]
WIZ1 (g Sy

=B; (< o0) for some 7> 1.

I should point out that when = 1, then if K = k§ and both (1) and (2)
hold, then K would satisfy Hoérmander’s condition (1). Thus, K would
be of Calderén-Zygmund type and thus well understood.

By L§° we mean the class of L™ functions with compact support.
Throughout the paper we will assume thas for f € L,

(4) K"‘f(w) =kj*f(@) =lim [ K

=0 |1>e

§ (O f(x—t)dt exists for a.a. @.

DeriNrrIoN 1. If T is a linear operator defined on LY into I? so that

IZFll, < Bifll,

where B is a positive constant independent of f, then we say that I' maps L?
into I* continuously. We denote the smallest B by ITly,,. Thus, e.g. [|Kl|,,
< oo, i.e. K maps I* into I* continuously as a convolution.

Among our results we prove that for 0 < a <1,

I

(see Theorem 3).

When we use the letter: c, we mean an absolute constant. When we
use the letter B, we mean a constant that depends exclugively on any
one of or all of the constants B,, B,, B oy W25 19 Nl -

In this section we prove the key

flz|®

¢B,log(2+ 171
> l}’< ——-—-—%-(;.————)—Ilfﬂu

*f(@)

§1. A representation theorem.
lemms of the paper.
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LovwvA 1. Let K = kg and feI'. If k, g e L™, then for each 2> 0
there ewist pairwise digjoint intervals {I,}y so that

(5) AL [If@)ld< 24,

I

(6) F@I<a

80 that for eaoch w

for a.a. t¢Q,0Q =QI,,

(1) Exf(@) 2 [ ai( (blo—t)—k@—0)§@—f B 50— -

=l

-y dt(k(w~t)—k(w-cj))xj(t) LIt [ duf ()i (o— )+

=1 Il

+Z [ atk@—0) 5015 f duf(u)§(@—u)

F=1
+ [ @K (@—0)5() 25(5)

where ¢; 18 the center of I;, x; is the characteristic function of the interval 1

and @ 18 the complement of the set Q.
Proof. Given A > 0, since f € L', there exist pairwise digjoint inter-
vals {I;};° so that () and (6) are satistied. We note that

®) [ atk(@—1)§(@—1)f(t)d
={f @th@—0f) 1e(t)§ (@—1)—

- 2 [ dsle(a—1) 55 () 1L, f duf(w)j(@—w)} +

=1

+{[ #r@—0§ @010 20+

+ 3 [ dth(a =00 L f duf (u)j (@—w)}

Gl
= I4I1
where here Q is the complement of the set Q. Since the equation in (8)

holds formally, we just need to check that all the integrals on the right
make sense. But all the integrals on the right do exist for all x, since
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k,g € L*® and f e I'. Now for ¢, the center of I;, we get

I =§’(f dik(w—1)§
j=1

(@ —8)f(8) x5 (8) —

— [ dth(@—1) )11, fduf(u)g?(m—u))
Y]

= ' [ @(io(@—1) —Te (29— ;) 1)

Jr=l
{@—0f@) =1L [ duf(u)d (@—u)}
X

and hence the lemma follows.

§ 2. Weak estimates. As stated carlier we shall be studying kernels
K = kj. We will only be concerned with problems where

9) ' Ik (a)] < B, lol ™"
Now let us begin by defining (s > 0)
E* (1) = E(0)g,(0) = kp§ = W§

where y, is the characteristic function of the interval (—s~', s™!) and
we Bet

K,(0) = K () —E*().

‘We note that |K, ()|
And we set

< B, |78, and %* has support in (—s~%, §~1).

&
(10) h(s) = sup
\ 1< apl<izi<zivl”

do |k ()]

where 7 (= 1) and is given in (3). Note that when s > 1, then h(s) = 0.
TEroREM 1. Let K = kg, K* = k°§ ond fe I'. Suppose that (1), (2),
(3) and (9) hold. If
M k:é e L*,
(H) 1K,y < oo,
hen for each i> 0,

Ho: |E"*f(2)] > A} < oB

( (8)) £l

where h(s) is given in (10) and B = (1-+By+ B, + By -+ B, + K}, , + 1ll.0)%
(Note these constants ¢, B are independent of s, 2 and f.) To avoid any
confusion by the h/ypotheszs we mean that & sausfws (1) and (9) and the con-
ditions in (2) and (3) hold. (Note the role of k and § in (2) and (3).)
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Proof. Given 1> 0 and feT', we get from Lemma 1, pairwise
disjoint intervals {I;}{°, so that (5) and (6) hold for f and from (7),

) E'sflo) = {Z J @ @—0~@= )i 0~ 050 ()~

J=

—Zfdtlo (8—1)— k(3 —¢;)) (£ lI[fdufu)g z— u)}

(s

{ fdtk’ @= 05057 fduf(u)g(m w)
F=1

+f cma“(w—t)ﬁ(w—t)f(t)xa(t)},

where ¢, is the center of I Q U I; and Q is the complement of Q.
5=
Set IF = (a;—2|L;, b;+21I,) w1th I; = (a;, b;) and set Q* UI;,

then Q"] < f -

For I in (7') we note that,

a N fdwfdﬂk’(w—t)—k(w—c)|x,(t){|ﬁ(w—tmf<t)l+

=1 g

’ +T f aul ()1 1j (a—wl}

<gfdt%1<* ) [ @@y @ *‘oj)l{llyllw(lf(fl-i—ulfdu]f(u)[}

= |!§||m fdtxy(t){lf i)l+m fdulf(u)]} fdw[k”(m—t)—k"‘(m—cm.
J=1 &

But since & satisfies (1) and (9), it follows that,
<o(Bi+By)ljle [ IfI-
Q
And hence,

(12) o ¢ Q*: (B4

1> 22 < ~———~+— 19 1o 17 11 -
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For II in (7') we note that,

Im = Zfdtk" @=0m(0 fduf(u)g(w w)—§ (@ —1)) +

j=1
+2 [ @k (0~ 1)§(@—1)7(t) xgtt
=11, +1I.
Bince K = kg e L} and & satisfies (9), it follows that
(13) 1E®ly,z < 20By+ 4| K,

Let us assume (13) for the moment, we will give a proof of it at the end
of the section. Henee for IIg, since [f(f)] << A for t ¢@Q,

”Kﬂ*l(}f”z = HK"llz 2 ”XQf”z < IIK"IIz 2 “f“”z

< A%(20B,+4 K], ,) If 112
Hence,

(14) [{o: 1K 251 > 3| < A7 (20B, + 4 | K 0)? f I
Now to estimate the eritical term IT,, i.e.

2 fdtk”(w——tx, tam fduf(u ) (§ (2 —w) —§ (0 — 1)) -+

IIjI<1

+ D [ aww@—ngm ] fdufu) (§ (@ —u) ~ § (a—1).

1141>1

Here, 3 sums over those intervals I, for which |I;} <1 and '3 sums
over those intervals I; for which 1Ll > 1.
But we note that, .

4 1 . ”
as > Of i [ duk’(%t)m(t)myf du | ()] 1§ (@—) —§ (1)

. 1 , \ ,
<> d’”‘(‘)lTA_,,f aulfw) a_f B0 (1) 1 (0—) — § (a—1)

(sinceforx ¢ Q% tel; > jp—t| > 211 = 2ju—1, for u, te L, and |1, < 1,
this implies by (2) that) .

’ 1 y
<5 3 [ an fd«ulf(u)lsBaJIfl-
I
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And now to handle the term with the “lar ge intervals”. For the inter-
vals I;, where |Ljj>1, we set Z; = {(u,1): u,t el; and |u—it| <1}
and F; = {(u,%): u,tel; and ju—t| > 1}. We are left with,

Z fks(m_t)x,.(t)m fduf(u)(é(w—u)_,é(m—-t)).
I

Now,

Jao| X [¥@—nmg fdufu)g(w wW—j (@)

Qr
< >'(f txj(t)l—mljfdulf(u) x

x fdmlks(w—t)lIﬁ(w—u)-é(W—t)lej(u, 0+

4[4% 7 fduifu)! f ol (@) 1§(0 =) — (o1 + 1z, (1, 1)

—!—Z’,fdtm(t)l;—ﬂI’Idztlf(”)logjdmlks(“—t)]lﬁ(w““)“é(w“t)[X

S ZFj(“a 1)
B, [ I+
Q

+2"fdtx,(t)|%l fdulf(u)l

+ 3 [ fdulf [ apw @@ —i@—v)

2ol
(ivi=1)
where p = v—1t and o —u =g—t—(u—1) = p—y and » ¢ Q%
< By [1f1+21§l.1(s) [ If1+3B, [ If1.
g ¢ ¢
Thus,

(16) o #Q*: [Ty > A} <

ap [B(@)11d () —4 (p —9)| +

2lyl<ipl<alyl”
(lvl=1)

E=n 1k 2 i
A :

2 — Studia Mathematica LXX, 2


GUEST


118 G. Sampson

Hence, from (14), (15) and (16) we get

¢ (Bz +By+ B+l lloo () +
+ (B, + ”Kllz,z)ﬂ) IF 1l

And since |@*| < 5/1|f|,, then from (12) and (17) we get our result. We
are left with showing (13).

LevmaA 2. If
(@) sup [ |E()Idt< B (< o),
e esitisze

(i) 1Kz < oo,

(1]1) K eI/loc;
then
(18) sup | [ B (t) g (1) 62| < 2B+ 4 | K]l

y ma

S

A7) o ¢Q": > 2} <

Jor all real numbers m and a. Here, x,, i the characteristic Sfundtion of
the set [—m,m].
Let a and m be given. Then,

Ko™ g (@) = | [ E(8) 67500 1, (0 1)
=| [ Byt vat [ K)oy, @i

Hl<m 1t>m
<{ ) K(t)e"“‘”“)dt' +B = K(a, m)+B.
ti<m
If .
(19) . K(a,m)< 2B,
then we are finished. Otherwise,
K(a, m) > 2B

and this implieg,
Ko™ % sy ()| > } K (@, m)  for o] < m.

Hence,
4K,
2m < |{z: at _elize
m < |{w: Ko im0 > I (0, | < o
and hence
(20) K(a, m) < 4|K],,,

and (18) foIloWs from (19) and (20). Thus, the lemma follows.
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§ 3. More on weak estimates. Again we have K = kj. In Theorem 1
we deal only with a part of K, i.e. K = K’ 4+ K, and it (Theorem 1) only
applies to K* In this section, we will get weak estimates for the entire
kernel K.

TaeoREM 2. Let K = kj, K°® =kyj and K =K°+XK,. Suppose
that k and g satisfy conditions (1), (2), (8) and (9). If

(i) &, g e L,
(i) K], < oo,
and
(iii) there emists a positive constant f > 0 so that

I, ()] < mlj—ssj for all » and all s<1, a

then, for each A >0,

B
[o: 1B *yz(@) > 2} < 07(1+h(11/ﬁ)) 1,

Jor each finite measurable set B, yy is the characieristic function of the set H.
Proof. Let 2> 1. Since

[ 1B xgg(@) do < | K2, | B,
this implies that
Pfo: | Exyg(@) > 2 <K}, 1B
thig implies
[F:a8
)

(21) [{o: |E* g (0)] > A} < Bl for ix1.

Now let 0 < A< 1. Choose s = A%, then
|{o: 1K * g (@) > 22}]

< {o: |E*xxg(@)] > A +{o: |E % qm(@)] > 2]
By Theorem 1 we get that,

<& (LR B +fo: 1K, 0 2(o)] > 3.
But,

©

[ Esm@raw= [ 1R @0 @re

—00

oo 1 . L] l .
<B [ mrpl@ie =B [ o lis@P

-~ 00
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00 <]
i1
i fdmuﬁ—l—mz fxE Yo~ dy J 2 (W) €% duw
—00 -0
i (w—v)

= B? fd@xE('v) fdwxg(w) fodwa—-—

U - 2

B2 o -~}
== [ [ dwyglo)eties

(u=1) o B2

< — B = BAB|  (u =17,

hence

(22) 2l 1K, 1m(@)] > 1] < eB* AT

and we are through.

In Theorem 2, we showed that a certain class of kernels map charac-
teristic functions y, weakly. In fact, we will show that we could replace
characteristic functions yz by f e Ly and still get the same estimates.
Actually, we use the idea of K. H. Moon [9].

TerorREM 2'. Let K =1lj, K, =ky,g and K =K°+K,. Supposs
that k and § satisfy conditions (1), (2), (3) and (9). If
(i) k,§ e L,
(i) Kl < oo,
and .
(iii) there ewists a positive constamt 8 > 0 so that

N BS
|K3(w)| < W

for all @ and all s < 1, then, for each 4 > 0,

[{o: |Exf(@)| > 2} < (1+h PN F Iy

Sor oll fe I
Proof. By Theorem 1, we get that

[{o: |E®xf(@)] > 2} < eB

1-+h(s)
( T )llflh

for each f e I'. Where ¢, B are independent of 8, A and f. Following the
proof of Theorem 3, it suffices to deal with the terms (21) and (22). Since
the arguments are similar, we will just treat (22).
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Tt # > 1/s, then by (iii) above we get that

L N N 2B
3@ = |, (0) — e @] < -
where
K@) 1ls<|zl<n,

K2 (%) =
- (@) 0 elsewhere.

And hence as in (22) we get that

¢B®

(22") ‘{m: |2 g ()] > A < e |B|
for cach finite measurable set B. Now we argue as in [9]. Since the argu-
ment is well-known and straight-forward we will simply give a sketeh
of it.

Let 0 < feL” and be a simple functmn Since K" e I', there exists
an k" e, so that

Kosf ms BPxf.

Now we can decompose the plane (or the line) into compact cubes {I.}
where dia(T;) is small and f(#) = o, for @ € I;, (i.e. f is constant on I,).

Now consider compact cubes Fy, < I, so that |F,} = (oz/e) |I;] where
a =mupa, = ||fll, and set B, = |JF,. And then it follows thab
13 k

K #f ()] < @l K5+ g, +4
and by (22') the proof is complete.

§ 4. Applications. Here, we will give applications, ie. gshow weak
estimates for the kernels k(s)e"®!°, 0 < a <1, where k(z) is one of the

kernels,

1 . log (log (4 -+ |a1)) 1 0

7 @*0 wlog (2 -+ |w)) @ #0), zlog (2 + |»]) (@70
1 log (log (4 + [21)) 1

dFlehlog@+ o))’ (L+la)log@+la])

Actually, we ean prove a more general theorem, i.e. for kernels (w) e,
where k() = O(|z|™") and f is a real-valued, even funection with further
conditions on f' and f’. However, the number of conditions placed on &
and f would be somewhat prohibitive. Thus, for the sake of gimplicity
we will just give a proof for the functions

1+ |a|’

Ey(@) = Iylo) ™ (0<a<1), 1<j<6,
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where
logy(4 -+ |o|)
ky(2) =1/ 2 #0 i [t AL il
1 () [z {2z #0), s () log @ ¥ l)
and so on.

TeEOREM 3. Let 0 < a << 1. Then, for the Lernels
E(n) = k()e®’, j=1,2,...,6,
we get,
¢ .
@ o |Exf(a)l > A < —Ai L +b@)0fl,  for  A>o,
and

(b) &y fllp < 0 [Ifllp

Cfor l<p<oo, j=1,...,6.
Here, ¢, is a positive constant independent of f, while ¢, is independent
of both f and 1. Also,

Ry (2) +hy () < clog(2+17%)
hy(2) -+ (2) < clog {log(4+27%))
and
hy(2) +hg(2) < 0.
{Note the estimate (a) holds for all f e I and (b) holds for felI? 1< p
< oo).
Proof. We will work the case K, (v) = 6/®° /5 (# + 0), the proofs
for the other b cases being similar.

) To show that our convolutions are well-defined say for all feZ,
ie. to show (4) for all f e I*, we note that,

< e et
f —flo—yat = f—(G—T—)—f(m-—t)dt—l-

1
1 1}t/
+ fte-na+ [ fo—ya
=1 161 ’
exists for a.s. . And,
% it
l{w. ] § —t—f(m—-t)dt’>3l}|
—oo
it

< <Ifh+

fo:

[

=1

f(w—-t)olt'>2}’.
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‘We will now show that the kernel
Fe

t

1 <1,
0  elsewhere

(1—x: ()} where () = {

satisfies the conditions of Theorem 2'. Here, k(t) = (L—x;(1))/t and
§ (1) = ",

Tt is easy to see that (L— y.(f))/¢ satisfies (1), and in fact, B, < 2.
To show that & (f)¢""" satisties (2), we note that,

6. 1y]
o]

[gfle—vi® _ gflal®| where o} > 2(yl,
0 < a< 1, and ¢, is a constant that depends only on a. Here, for lyj < 1,

we get,

L\ gemvi® _gtel*| gy < o, 191

dx
l$| W——ag 0a[?/l“< Cay
lzl=21y| . let=21y]

hence B, < ¢,. '
To show (3), we choose » = 1/(1—a) (r > 1) then for |y| >1,

dz

dx
glz—y|® _ Hlxl® -
|6 € | Im[ < oa |('l| I$I2_a

||yt (t—a) =2yl V(A=)
écalylwr))l‘:; < Gy -

hence B; < ¢,.
Now to show that [|K,[, ;< oo or equivalently that

I(kg) € L.

'We note that by Van der Corput,

gm+1

—om a
it/ ko £ ghzt
&
wal< ST+ )2
1< <o m=0!'ym _om+1

!
<0227,2m(1—a/2) < o0.

m==0

L= e s '
‘We are finished once we show that ——?—(—23”” satisfies (iil) of Theorem 2.
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We choose 8 <1 and consider,

i hd

gy — o

(23) g giat

101=1/s i=0 els<itigaltYs

iod iltla ®
¢ i 18
< — ”‘dt’< 3 3

=0

(2l —I)I—aln

s<ti<2t s
e
<"ﬂ8””2 s < Bus™  (a #£1) (a>0),
I=0 L
Thus, the § in Theorem 2’ becomes a/2.

Integrating by parts and estimating we get,

it
A cli‘ ‘
el , y
s 1 1 a1
<Tal -i—m-i—m f It] *‘“dtq.m [t~ dt,
Ys<ltl<y - s<iti<N
and. hence,
(24) s “””‘4”,
Ye<li Ch
Putting (23) and (24) together, we get
6’l|£[u B .
e (1 %()) (@) |< WE
Note that
1 B <1
%) = {0 elseth/zre (<),
eﬂtla ‘
Now sinee

3 (1—x1(t)) satisfies Theorem 2', that implies for f e I!

Gl

1o

But for A< 1

(L= (8) %S (@) | >

B,
/1} ‘ < 31— (L By (A1) f Ly«
(b (%) = 0 for A>1),

(7)) = sup

-3 ’
1<yl qu|v|<|x|<2|u|1/(1—“> ]m[

clogz.
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We note that in estimating h,(A**) which applies to the kernel

log(log (4 + 1)) e

oge iy © O

we get that,

log(log (4 + lo}))
» lollog(2+ o)

c,log (log(4+471).

hy(#) = sup

1 A—2a
ST <lal <y Y-

<o, _sup log(log(4+yD)<
1<lyl<a—
The other 4 cases (i.e. solving for hg, h,, ks, hs) are similar to the ones
given and the proofs will be omitted.
Now we shall show part (b) of Theorem 3. We need the following
expression:

1 [
2
(25) f ) it [ 9;1&,) da
[] 1

where & > 0 and preassigned and g,, g, are non-negative functions defined
on (0, co). This U, is a non-negative number that plays a role in the next
lemma.

LeMyMA 3. Let T be an operator defined on all fumctions f e LY. If for
each A >0,

[{@: [(Txg) (@) > 4| < |Blmin (g,(A) /4, g2(4)14)

then
1T yzlp <2U.|B|

for 1+e<p<2—e, ¢ > 0. Note the lemma is valuable only when U, < oo
and 0 < & < 3. Also, no other condition on the operator T is required.

Before we prove the lemma, let’s see how it applies to the kernel
%1, Since ¢t maps I? into I* continuously and from part (a) of
Theorem 3, we geb

4 {W ,1/;12).

Hence from the lemma we see that g, (4) = B,log(2+1/4) and g,(4) = B
Thus, we see that U, < oo from (25) for each & > 0. Thus, from the lemma
we get that

'iilll':l

log (2 +1/4)
— * g (@) (—7—“‘"

> a} ‘ < B, |B|min

ITyelh <pB, U B for 1+e<sp<2-—e

and by Stein-Weiss [13], we get part (b) of Theorem 3. (Note that Stein—
Weiss only applies to linear operators.)
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Proof of Lemma 3. Let ¥ be a given measurable set and 1+
<p <2—e¢. Then,

o 1
f (s | Tygla) > B|dd = f o | Tyy(o)| > B dA+
[ [

o 1 o
1. ga(2) Y]
+1f 2= w: [Ty > A]dr< |E|(bfdlm +1f m%ﬁ%_lﬂ).

Since 1+e<p<2—6s=>¢e<p—1,2—p and hence
IT%zl7 < U, |H|
and the lemma is proved.
§ 5. Hormander’s condition fails. I would like to point out that the

kernels K,, K,, K,, K, do not satisfy Hérmander’s condition, i.c.

(26) sup K (o —y) — Ky (@)l dw = +oo

U0 g Sagy| - '

for ¢ = :.L, 2, 4, B, while for 4 =3 and 6, Hormander’s condition holds.
I will work the case where Ky(z) = é'®" /3 (» 5£0), all the other
cageg are similar. The proof will follow once we can show that,

it _ gito—u dn > logy
® 2

(27)
<a<oy?

for y > 1. We note thait,

1e1/2 — Y2 12 4
¢ —;ﬂm 2 > o _;1@_”)1/2 i =§- —%Re [eie! g~ le=v)'
Thus, (for y > 1)
2y 22
(28) f 16“"1/2—6‘;(”‘“”)1’2]ﬂ;logy—Ref W Ho-y)ifR giclf?
v z b3 v

For fixed y (y > 1), set
f@) = (@—y)** —a*

Then, f'(#) = }(z—y)" 2 — 3572, and

r=2y.

2% ,
f (w) eﬁ(m) .

2%
(29) f @ef(z—uwz&—ixl/z - f d_ﬂf______.__
a® B R T

icm®
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N .
Now, the function ———— iy increasing as a function of z, for » >y > 0.
In fact, af'()
d1 1 11 1
f(@) (o+(@—9)+ (@—y)Pat?) -

dwof@) 2o (@_y®
ml/z (m_y)llil

- >0,

p for

z>y>0.

Thus for y > 1, by the second mean value theorem for integrals,
oy?

’ 1 ! {1) —
J B i@ @ = 0.

By (28), (29) and (30) we are through.
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