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On unconditional polyncmial bases of the space L,

by
Z. A. CHANTURIA (Tiflis)

Abstract. In all spaces Ly(0, 1) where p € (1, o) and for each &> 0 we prove
the existence of the ONS of algebraic polynomials {P,,} which forms an unconditional
basis in Ly (0, 1) and satisfies the condition

degP,, = v, < nlte
for m > ng(p, &), An analogous theorem is valid for trigonometrical polynomials. )

As is well known, J. Marcinkiewicz was .the first to prove the exist-
ence of unconditional bases in all spaces L,(0,1) = L, for p > 1. Namely,
he has proved that the Haar orthonormal system (ONS) is an uncondi-
tional base ([12], see also [14], pp. 397-423). In 1974 8. V. Bochkarev
proved that the Franklin orthonormal system is also an unconditional
basis in L, for all p >1 [1]. Z. Ciesielski [7] has introduced a new class
of orthonormal systems, which: contains the systems of both Haar and
Franklin, and has proved [8] that these systems are unconditional bases
in all L, for p > 1 as well. -

On the other band, although the trigonometrical system is a basis
in I, for p>1, p + 2 the basis is not unconditional. What is more,
V. F. Gapoghkin [10] -has shown that none of the uniformly bounded
gystems normed in L, can be an unconditional basis in L,, p # 2.

Tt .should ‘be rnioted that there is no unconditional basis in the spaces
€(0,1) and L(0, 1yat all: These results-are due to 8. Karlin [11] and A. Pel-
czynski [13], respectively. N

Let us pose the following guestion. ‘Does an orthonormal system of
polynomials (algebraic or trigonometrical) which forms an uneconditjonal
basis in L, exist for any p >1, p # 2, and if it does, then what minimal
growth of powers may that basis have} ; o

In 1971, using the Haar system, we proved [2] that in every L,(p > 1)
for each &> 0 there exists an ONS of trigonometrical polynomials {T,}
which forms an unconditional basis in I, and for n > %y(p, &)

nfte  for p>2,

1 1l/g = 1.
ntt for l<p<2, tp+llg =1

degT, =, < {
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In 1972 G. BE. Tkebuchava [15] proved that there exist unconditional
polynomial (in general, non-orthogonal) bases in the spaces L,(L<p<?2)
with the growth of powers ag n!*?/2+e,

Recently, using the Bochkarev theorem, we have essentially reduced
the growth of powers of nuneonditional polynomial orthogonal bages [571.

The purpose of the present paper is to prove the following theorem:

THEOREM 1. For any p (1, ) and any & > 0 there exists an ONS
of algebraic polynomials {P,}_, in the space L, (0, 1) which forms an uncon-
ditional basis in L, and satisfies the condition

deg P, =y, < o't

Jor n > ny(p, €). ‘

The proof of this theorem, ag well ag those of our previous ones dealing
with similar problems, is based on the following theorem on the gtability
of the process of orthogonalization, which we published in 1971 ([31,
see also [4]);

THEOREM A. Let {y,} be an ONS s ystem in the Hilbert space H and let
the system {p,} satisfy the condition

D ltn—@ally = < 1.

n=1

Moreover, lot vy, = (@i, £n)y & 50 an@ y,, = (P, xu) —1.. Then the
normalized system {f,}, which is obtained from (p,) by means of the Sehmidt
triangular - orthogonalization. method ((f,, ¢,) >0, n =1,2,...), satisfies
the following inequality : !

HXn "“fn”H <e ("xn "'(Pn“H'l' V’m + ]/Z ygn) .

fml
In addition we shall use some properties of Oieéielski systems.

TEEOREM B. Let {f{™}r, be a Cissielski system orthonormal in [0, 1],
Then )

(1) (see [81). The system { e s an unconditional basis in all I,
for p>1.

(2) (see [8]). There ewist constants o( v D) and o’(m, )" such that for
any finite set of real mumbers {a,} ‘

¢, 2| S|, < | St O, < oom, 2] St

* Here and in what follows ¢(n,m, p,...) are positive constants (in general
distinet in different formulae) which depend on the parameters in brackets only.
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(3) (see [7], . 289). The derivative of order:k— ™" of the function &
satisfies the estimation (0 <k < m-+1)

cr(m)nll2+k—-llp <’”f(m,k)”L < o(m)nlia+i-ip
n ‘D ~
for al 1<p< L, =C.
© We ghall also use the fo].lowmg

Lemuma. Let 1 < p < 2, lot {fI}2, be the Ciesielski system and let {a,;}
be an arbitrary finite set of real mwmbers. Then for amy sequence {P,}n_

from L, we have
Pl | X ans]-

“Za'n(fr(;m)"' ”)HLp <¢

By means of properties (2) and (3) of the Ciesielski system this Lemma
can be proved in exactly the same way as the analogous lemmas of [2]
and [5].

Proof of Theorem 1. Let p e (1,2) and s (0, 1) e given. Let us
take a natural number m = [10/¢]+1 and the corresponding Ciesielski
orthonormal basis {fi™}2,, for such an m. Assume that o, is the partial
sum of order , of the Fourier series of the function f{™ with respect to
the Legendre system {V/2n-+1P,(2s—1)}., orthonormal in [0,1], ie.

’n

0n(@) = X a(f)V2Zh+1Py(20~1),

k=0

0

) {2 S(ﬂlp“l) 2 I —

8=0

where i
1
a(fi™) = V2k+1- f fi{’"(t)P,,(zt—l)dt
Using property (3) of the Oleswlskl system, we can obtain the following
estimate (see [6]):
(1) vinl = (05, %) — 85| = I(%*fz("‘),f&"‘))l

c(m)zm—llz 1-—m
{ ¢(m)s Fm—1r m+s,n-—(m+5:2)

for all 4 and =,
for 7 #n.
Now let :
| for > 2%
Vp = {[230(1-}1)] . for n< 23[,,
where s, is a certain sufficiently large natural number, which we shall
define more exactly later. Note that according to (1)

as4+1l_1 28411

2 Yin =

n=2%

2m—1
S o1, < o=l < 0lm)

n=28
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Now let us estimate the sum

o 28+12y

I=) 3 %

Tml 08

Comsider two cases: (a) $ > 45, and (b) s < 48,. In thé first cage, using (1),
(2) and the definition of m and setting IV = [2°4], we have

N g8tlg o 28+l_g
— 2
3) I= E E Vint § E Vin
=1 g8 $=N-+1 g8
N 28+l

<c(M){2 2

LS RPY

N,
< o ,bzm—-l v%m-{-lz
= 0(’mz) ;2(2m+4)9
dex]

,,;Zm— 1 v‘im{- 12

R de Y,
~ zzm 1
n2m+5 z v%m—-z

{= N1

hd
1
+ 2 ,,;(Zm72)c—2}

T=N--1
sz 1,3\7;1—!-12 ‘ 1
2(2m+4)s

< o(m)2—4e.

< o(m) { T yam—zes

In the case where s < 4s,, we have
oo 28+1-1 g%y
,iﬂm—l i2m¥-1
@ 1-3 3 e
vgm—z = 2 ,,?m-n

i=1 g o8 Tl

[d ! —
fam—1
+ m—2%
i
12’0
2msg

< o(m)2%% { Tm—g

+ 2—a{((2m—-2)(1+.)-zm] }
* g%

< c(m) 2—30{5(211;—2)-—6] <e (m)z—lzao .

Let us take s, 50 large that

o0

) X tmel
6 DUl <olm D S

=0

el

20
<3 S
=~ 2m—3 “‘”‘:""——}

< c(m)z"sol(z”‘-z)‘—ﬂl < 0(%)2-16’“ < 1/4_

So Theorem A may be used. Therefore, if the s is i
ystem {Q,} is obtained
from {0,} by means of the Schmidt method, then uging (2;’,} (1) and (3)
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we have for s > 4s,
28+lg 28+l

© 3 uP-ad,<e > |

“ﬂlm) —Op ”.253 + b’nn[ + Z an}

n=38 n=28 =1
1
28+l pm—1 pmlU2 R
-4
<otm] 3 (Somr + =) +27]
oy ¥ Vn

< 6(,m){2'&[(1n+1[2)—(m—1)(1+¢~)] +2-—43} < c(m)2“".

Applying (4) we establish the same estimate for s < 4s,:
28+1y

@ S M-, < o(m)2-.

n+-28

Using (6) and (7), we have

o 28+1.1
e 3 1A Qa5
sl n=28
48p-1 )
< o(m) gstir=Ng—ny 1 N7 gstir-D =45l  g(m)2~tn0NP)
P i ]

Now if we choose s, 50 that
o(m)2 - < 9 < 1,

then according to the lemma

San =, < 0] X e, -

But since {fi™} is an unconditional basis of the space L,(0,1), by
a theorem of the Wiener—Paley type the system of algebraic polynomials
{Q,} is an unconditional basis in the same space and degQ, = v, < e
for n> 2%, .

Thus for p € (1, 2) the proof is completed.

But the case of p € (2, o) can be reduced to the previous one, for
if an orthonormal system consists of bounded functions and forms a basis
for the space I, (1< p < o), then it is also a basis in the conjugate space
Ly, llp+ljg=1 (see e.g. [9]; p. 118), and this completes the proof of
Theorem 1.

The following theorem may be proved in a similar way:

TaEoREM 2. For any p € (1, o) and any ¢>0 in thevspace L,(0,1)

n
there emists an ONS of trigonomatrical polynomials {T,(x) = 3 a,coskra)i,
k=0
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which forms an unconditional basis in L, and satisfies the condition
degT, = v, < w'"*

for n > ny(p, e).
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Isomorphic embeddings of some genmeralized power series spaces

by
V. V. KASHIRIN (Rostov)

Abstract. The necessary and sufficient condition under which the generalized
power series space Ly(a,, — 1) contains a closed subspace of the class (f); of all gpaces
Ly (bn, 1) is obtained in terms of (a,). In particular, it is proved that every stable
space Iy(a,, — 1) contains a closed subspace isomorphic to the space Ly(ay, 1).

1. In the present paper we consider special classes of Kothe spaces,
introduced by M. Dragilev (cf. [4]). For each fixed function f(u), € R,
which is odd, increaging and logarithmically convex for % > 0, and for
Ae(—1,0,1, o), we consider the class (f); of Kothe spaces (called
generalized power series spaces)

Ly{a,, 3) = limprl, (expf(i,a,),

where a,,1 00, 1,4 1. In the case of f(u) = u we have (f), = By, foo = B,
where R, and R, are the classes of all Kothe spaces isomorphic, respec-
tively, to the power series spaces of finite and infinite types.

We study the comparability of the linear dimensions of spaces
belonging to different classes (f),. In particular, we are interested in the
necessary and sufficient conditions, in terms of (a,), under which a space
Ls(a,, A) contains a closed subspace of class (f),. In the present article
we consider the most interesting case, namely A = —1, x =1 only.
For all the other pairs (A, ) the scheme of the proof remaing the same,
but the necessary and sufficient conditions, in terms of (a,), obtained
for different pairs (4, #) are different. All the cases were treated in the
preprint [8], which contains complete procfs. The statement of the re:?n._'lts
(without proofs) ean also be found in [10]. In Section 4 we state a unified
necessary and sufficient condition in terms of the properties of the class
of all continuous linear operators T': Ly(a,, u) — Ly(ay,, 4)-

Some special results, connected with the topic of this paper were
obtained earlier in [11], [9], [7], [3].

Let

() = lim (faw)[f(v)) (L<a< oo).


GUEST




