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which forms an unconditional basis in L, and satisfies the condition
degT, = v, < w'"*

for n > ny(p, e).
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Isomorphic embeddings of some genmeralized power series spaces

by
V. V. KASHIRIN (Rostov)

Abstract. The necessary and sufficient condition under which the generalized
power series space Ly(a,, — 1) contains a closed subspace of the class (f); of all gpaces
Ly (bn, 1) is obtained in terms of (a,). In particular, it is proved that every stable
space Iy(a,, — 1) contains a closed subspace isomorphic to the space Ly(ay, 1).

1. In the present paper we consider special classes of Kothe spaces,
introduced by M. Dragilev (cf. [4]). For each fixed function f(u), € R,
which is odd, increaging and logarithmically convex for % > 0, and for
Ae(—1,0,1, o), we consider the class (f); of Kothe spaces (called
generalized power series spaces)

Ly{a,, 3) = limprl, (expf(i,a,),

where a,,1 00, 1,4 1. In the case of f(u) = u we have (f), = By, foo = B,
where R, and R, are the classes of all Kothe spaces isomorphic, respec-
tively, to the power series spaces of finite and infinite types.

We study the comparability of the linear dimensions of spaces
belonging to different classes (f),. In particular, we are interested in the
necessary and sufficient conditions, in terms of (a,), under which a space
Ls(a,, A) contains a closed subspace of class (f),. In the present article
we consider the most interesting case, namely A = —1, x =1 only.
For all the other pairs (A, ) the scheme of the proof remaing the same,
but the necessary and sufficient conditions, in terms of (a,), obtained
for different pairs (4, #) are different. All the cases were treated in the
preprint [8], which contains complete procfs. The statement of the re:?n._'lts
(without proofs) ean also be found in [10]. In Section 4 we state a unified
necessary and sufficient condition in terms of the properties of the class
of all continuous linear operators T': Ly(a,, u) — Ly(ay,, 4)-

Some special results, connected with the topic of this paper were
obtained earlier in [11], [9], [7], [3].

Let

() = lim (faw)[f(v)) (L<a< oo).
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It is known [4] that the funetion f is always either rapidly increasing
(z(a) = oo0) or slowly increasing (z(a) < oo for all a).

From now on we shall agsume that f i3 rapidly increasing. Otherwise
we have (f), = (f).; = By, but this means that L, (a,, —1) e (f), for
all (a,).

2. DEFINITION 1 (¢f. [12]). Assume that X = Ly(a,, 1), ¥ = Ly(b,, p).
The pair (X, X¥) is said to satisfy the condition R, written (X, Y) e R,
if every continuous linear operator 7: X — ¥ is compact.

Let (1-],) and ([|-]l,) be systems of norms determining the topology
in the spaces X and ¥, respectively. Denote by (6,)y m =1,2,..., the
coordinate sequence (0,0,...,0,1,0,...), where the nth coordinate
of ¢, is equal to 1. Assume that T': X - X is a linear operator and

T(e) = D)t 0
i=
The next lemma is‘ well known.

Levwva 1, An 6pemtor T: X —+ Y is continuous iff for every p there
ewislts @ g = q(p) such that

) sup 3 (161 ledlp/legly) < oo

7 A=l
The operator T is compact iff there exists am index q such that for every p
2) sup D) (it lealp/legly) < oo
dea]

Lemma 2 (cf. [6]). Suppose that X, Y are the generalized power series
spaces whose systems of norms are (I 1)s (Ul llp)y respectively. If

(3)  3dpVgdg VpaAp. VgV, &y, > co

lexllp  lealy e, lenl
T < ]j]ngup P . .._n...,l__’
n Hekﬂ”pz Ienlq n ”ekn”p len’ql

then (X, ¥) e R.

Lmvwia 3. If there is a constant & > 0 such that for every (k,), %, - oo,
etther '

(4) ' limint (b, /a,) < 1— 8
n
or
(5) liminf(bkﬂ la) =1,
n

then (Lj(“m 1), L}(bm —‘1)) €R.
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Proof. Let us verify relation (3) of Lemma 2 for the matrices |e,|,
= expf(4,a,) and |e,l, = expf(u,b,), where 1,11, u,t—1. For a fixed
index p, sueh that |u, |-(1—8) < 1 and for a fixed index ¢, we pick an
index ¢ with ¢ > g5, 4, > (1~ ) ltp,| and for p, we let p, > p.

Assume that inequality (4) holds for a fixed sequence (k,). Since f
is rapidly increasing, we have

Iimnsup {t lleg, oy /1101, l1n) * (lenlg/1€nlq,))
= lim sup exp (f(uy, by, ) —F(tpbs,) +F (g @) —F (g, @)
= N Sup exp (£ (g )+ (fp, b)) — f gy 1))
> 1 Sup exp (£(1a,,) + (g, (L — 0) ) — 1 (3, 0,,)) = o0,
where liminf in relation (4) is attained on the fubsequence (m;).
If (5) holds for a fixed sequence (k,), then the inequality [tp,| < g, |
implies
1171}1 ((lex, lp/ les,loy) * (1Enlgy/16nlq)
= Himexp (f(upbs,,) —F(tipydi,,) +1 gy 00) —F (g ,))
< Hmexp (£ (uyby,) — (1, Br,)) +F(dgy bs,,)) = 0.

The relation (L (a,, 1), Ly(b,, —1)} € R follows from Lemma 2.

3. Lmva 4. If there ewist a sequence {p(r));, ¢(r)}co, and subse-
quences of imdices (kr(s))ﬁ_l, r=21,2,..., such that for fived s, m (s + m)
we have

(e (5) Ry (), = @
and such that for all s = r the following estimates are fulfilled:
(6) Ve, &> 0 lim(1/s)expf(e-b,) = oo,
(7 1—1/p(r) < try/bs < 1—1/p(r)+1,

then the space Ly(a,,
I’f (bn9 1)‘

Proof. We shall consider the subspace X of Ls(a,, —1) defined by the
block basic sequence (w,), where

—1) contains a closed subspace isomorphic to the space

@, = D (1/5) (expf{(t 0 /205 +1/2)B5)) 01 g

r=1

5 — Studia Mathematica 71.2
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r=1

) ‘We shall prove that the space X is isomorphic to the space L,(b,, —1), Write I, = |a,), 1, By (7) we have
To this end, it is sufficient to show that the relations ]
@) Vg 7,1y < 65 llenllys I, = g (1/s)exp (f((l/2) (g, ey /) +1)be) +f(/‘e‘ak,(s))‘"f()~gbs))
‘ ‘ 1 = 5
(9) Vqdo i ([enloflenl) = o0 > D (1/s)exp (f((l —1120(1)) b))+ (ol = L/{p () + 1)) ) £ qus))

hold, where (|- |,) and (|- ||,) are systems of norms for Ly(a,, —1), Ly (b, ,El),

respectively. By definition we have > (Lfs)exp(f([1—1/2¢(m)) by)+f (o1 =1 /(g (m) + 1))8,) —F(4gbs).

s By inequalities (10), (11), (6) and the fact that f(w) is rapidly increasing,
Iy, = 2(1/8) GXI)f((%,(s)IZba+1/2)ba)°x1’f(/‘11“lc,-(s))7 it is eagy to show that :

re=l

1 (|2, ]/l ll) = EmI, — oo.
leul, = eX2F Ryt v (15 lo lle, ) im o0

This completes the proof.

OOROLLARY. Hvery stable space Lg(a,, —1) contains a closed subspace
s isomorphic to the space Lg(a,, 1),
lz,l, < ) (1/s)exp (f((1~1/2(¢(7')+1))”a) +f((L1-1/ ‘P(’>)ﬂmb~))' Proof. By definition Z,(a,, —1) is stable iff I,(a,, — 1) is isomorphic

=t _ to the space Ly(a,,, — 1) iff lim (ay,/a,) = 1 (cf. [4]). This condition permits
For a fixed index p we can find an index m such that us (cf. [7]) to find subsequences (k,(n))%,, r =1 s 2, ..., such that for

| I-(l (l/(p('r)))>1 fized ¢,j (¢ # j) we have
ol (L —

for all # = m. Also we can find a ¢ with
2> 1—(1/2 (p(m)+1)).

We check relation (8):

where 2,11, p,1—1. From (7) we obtain

{k,(t): r =1, 2, ey 030 {E () 7 = 1,2,...,j} =0,
but ‘

1“‘1/9’(7')<a’k,(s)/"'s<1_1/(‘)9(7')'|‘1)’ r=1,2,...,

where k,(s) = o(j;,8), o(j, n) =271 -(2n—1) and

m L3

@l < ) (Ls)expf (L~ 1/2(p(m)+ 1)5,) + 3 (1/s) sy [ <1 (o) < a0
= =1 .
! - forn =r.
< 1—1/2 1|5 .
P (f ((2—12{pm)+2) “)) +1 Lesa 5. If 3 (ny)V (ny ) Wr3 (K, (5)) :
< Zexpf ((1 —1/2(¢(m) +1))bs) < 2 el (12) 1—-1jfr <Uminf(ay g Bosey) <1 (r =1,2,...),
8
Now we pass to relation (9). For every fixed index q we find an index m then there are subsequences (I,(s)), (m(s)) such that
such that
(10) 1—(1/2p(m)) > 4. 1—1/r<]jjn(aq”(")/am(")) <t =52
Since pu,1 —1, we can find a 6 such that Proof. Using (12) for =1, we construct subsequences (p,(s)),
(my(s)) = (n;) such that
(11) L—{1/2g(m)) > ol (1= (L/(p(m)+1).

0 < 8y () gy < M (1) < 1.
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For r = 2 and for the already constructed subsequence (m,(s)) we pick
subsequences (p,(s)) and (m,(s)} < (my(s)) satistying tho following in-
equality:

for s>2.

v

1—(112) < i) [y < M(2) < 1

Proceeding in the same way, we construct subsequences (p,(s))
and (m,(s)) = (m,_,(s)) with

1—1/r <ty (o) /ey << H{r) <L
for 2> r. Using the diagonal method, we find subsequences (m,(s)) and
(t(8)) = (p,(s)) such that
1-1/r< h',;n(a,r(,,) [Pungng)) < M (r) < 1.
Finally, letting m(s) = 1I,(s), we have
1I-1pr < lim(azr(s)/%(a)) = li‘:n((al,.(a)/bmx(ns)) “(Bungng) [ty(s)) << M (r) < 1.

TewOREM 1. The space Ly(a,,, —1) contains a closed subspace of class (f),
tff there exist subsequences (n(s)) and (k(8)), r = 1,2, ..., such that for all
8 = r the following estimate is fulfilled:

(13)

1=1fr < gty <e(r) <1 (r=1,2,..).

Proof. Sufficiency. Without loss of generality we may assume that
the sequences (b,) (b, = @) and (@%,(s)) have properties (6), (7) and for
fixed s, m (s 5= m)

(kr (3));‘:10 (kr(m)):‘nsl =@.
By Lemma 4 we assume that the space Ly(a,, —1) containg a cloged
subspace isomorphic to Lf(an(,), 1). :
Necessity, Assume that condition (13) does not hold, but there is
a subspace X of L,(a,, —1) which is isomorphic to a space L,(b,, +1).
From Lemma 5 it follows that, for every subsequence (n;), we can. find

a subsequence (ny,) and a constant 8 > 0 such that, for every sequence
(k,)y &, — o0, we have either :

liminf(a,,s/b,%)) <1l-—é¢ or lilninf(ak‘/bnj(')) = 1.
8 8
Using Lemma 3, we have

(Lf(bn(j(s))i 1)7 Lj(a‘m _"'L)) eR.

Now it is easy to show that L(a,, —1) has no subspace isomorphic to
Ly(bpyiay: 1), and we get a contradiction.

icm®
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CororLLARY 1. If the space Ly(a,, —1) is isomorphic to its subspace
of codimension one, then Ly(a,, —1) contains « closed subspace of class (f),.
Proof. It is known (cf. [4]) that L,(a,, —1) is isomorphic to its
elosed hyperspace iff a,,,/a, - 1. We find subsequences (I,(n)) such that

1—1/r < ty gy gy DUD U ny—1 /0, < L—1]r.
Hence we have
1 -—1/7‘ < at,.('n) /“n == (al,.(n)-lla‘n) (alT(n) /alr(n)—l) < M(’)") <1

for all 3= N (r, M). It is not difficult to find sequences (n(s)) and (k,(8))
satigfying relation (13).
CororLrAry 2. If

li.mninf(a,,,b,rl/an) s lf(L—0)>1, 0<d<l,
then the space Ly(a,, —1) has no subspace of the class (f),. :
Proof. For axbitrary fixed subsequences (k,(s)) and (n(s)) we have

(1) if %.(s;) < n(s;), then lin; inf(akr(aj) /an[aﬂ) <1-—-6,

(2) if %,.(s) = n(s) for all § > g,, then

lim jnf(akr(a)/aun(a)) = 1.
8

Hence condition (13) is not satisfied.

4. Obviously, if X, Y are infinite-dimensional Kothe spaces and
(X,Y)e R, then. ¥ has no subspaces isomorphic to X. On the other
hand, it may happen that X has no subspace isomorphic to ¥, but (¥, X)
¢ R (cf. [9]). We ghall introduce relation R,, weaker than R and with its
help we shall state a unified condition under which the space Ly(a,, 4)
has a subspace of the class (f),.

Lot us assume that X = Ly(ay,4), ¥ = Lg(b,, u) be generalized
power geries §paces.

DrrFINITION 2. We write (X, X¥) e R, if for every absolute basis (w,)
for X every subsequence (w,;,) containg a subsequence (@) such that
for every continuous linear operator T: X — ¥ the restriction of T' to
the subspace of X genexated by (@ (ye)) 18 compact.

The next three lemmas are obvious.

 Lemma 6, If X~X;, T~Y, and (X, Y) e R,, then (X,, X,) € By.

Imvwma 7. If (X, Y) € Ry, then X has no subspace isomorphie to X.w___

Luovmma 8. If (X X) e R, then (X, Y)eR,. ‘ s

Lemma 9. (X, X) e R, if there ewists an absoluie basis (@,) for X such
that every subsequence (@) conlains a subsequence (yqy) such that,
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Sor every comtinuous linear operator T: X — X, the restriction of T to the
subspace of X generated by (Bn(s(5)) 18 cOmpact. .

Proof. We shall show that every abgolute basis (z,) for X has the
property mentioned above. First we find positive numbers (4,), & subse-
quence (k,), k, — oo, and fundamental systems of norms (|- lp) and ([,
for X such that (cf. [1]):

(14) Vpaq }'u : |zn|7)/”mk(n)”q < 0(_’[)) < o9,

(15) V53 (Bpgmylle/ A 120l < O(8) < o0.
Further, for every subsequence (n;) we find a subsequence (nys) such
that (Bon(jis))) I8 strictly increasing.

An arbitrary continuous linear operator 7' acting from the spaco X
with the basis (z,) to the space ¥ with the basis (y,) can be defined by the
matrix (i), where &, = y;(T(2,)) and y; is the sequence of functionals
for Y, biorthogonal to the basis (y,). By Lemma 1,

Vpag swp ) (al -y eale) < o(p) < oo,

i=1

where (|- [;) is t.he system of norms determining the topology in the space Y.
“;f shall consider the operator 7,: X - ¥ defined by the matrix (),
where

Linis) = Aatio i) = Y (Tn @rpugziap)))

and %, = 0 for the remaining pairs i, #. T i3 continuons since by (14)
for g we can find a ¢, such that

VopIg, sup 3 (ol - lyilh 1)

n =1

< SﬂPZ(l%l'l%lﬁ/ll%l!q) <o(p)0(p) < oo.

N ]

By the assl_mlption of Lemma 9, we can find a subsequence (Toms))
(1710"(,-(3){)), fc]}r tWhl](:}lh the restriction of the continuous linear operatior
1+ X — Y to the subspace of X generated by i act
This means that ¢ ‘ v (%(m(s))) 'm Oomp«lOt-

oc‘l~
Ag:Vp sup 2 (e mgey oty Wil 19 lgy) < () < 0.

icm®

177

Isomorphio embeddings
Applying inequality (156) for the fixed index ¢,, we find ¢; such that

g,V 5up 3 (om0l 1)

(=38

< O(p)sup Z‘(ltf,mal-im,-lm!,’;/!lwk(mm)llq) < oo,

8 feal B

By Lemma 1 thoe last inequality means that the restriction of I' to the

subspace of X generated by (#,,) I8 compact. That is, (X, Y)e R,.
Remark. All the results mentioned above and connected with the

rolabion By, ean bo proved for nuclear Kothe spaces (cf. {2], [6]).
Tumormm 2. The space Ly(a,, —1) has no subspace of dlass (f); iff

(I’](a'n’ 1), Ly(ay,, ""‘1)) ekR,.

Proof. Sufficiency. Let us asyume that (16) holds. Xf L.(a,, —1)
containg a subspace of class (f),, then condition (13) takes place. This
means that there exist a subsequence (n(s)) and a subspace Z of Ly(a,,, —1)
such that Z is isomorphic to Ly(,y, 1). Hence (see Lemma 7) {Ls(@n(s), 1),
Lya,, —1)} € By. Therefore relation (16) does not hold either. This contra-
dietion completes the proof of the sufficiency,

Neoossity. I Ly(a,, —1) has no subspace of class (f), then, by The-
orem 1, relation (13) does not hold. Moreover, by Lemma 5, every subse-
quence (n;) has & subsequence (ny) for which relation. (12) is not true
for the ordered Pair (ang): %) BY Lemma 3

(L!(a'n(j(a))’ 1), Ly(ay, *“1)) eR.
The space Z generated by the bagsis subsequence (¢, for Ly(a,,1)
is isomorphic to Ly(@(y, L), Therefore (2, Lp(a,, —1)) e R. Hence,
by Lemma 9 we have (16).
Acknowledgement. The author thanks Professor 0. Bessaga for his

interest and for his help in the preparation of the English version of fhis
toxt.
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On donination and separation of ideals
in comumutative Banach algebras

by
W. Zelarko* (Warszawn)

Abstract. Wo introduce and study the coneept of domination property and
approximate domination property of ideals in commutative Banach algebras, and
conneetions of thoso coneopts with separation of ideals by means of annihilating nets.
Among other results wo show that domination and separation properties coincide, as
well as the approximate domination and ‘hounded separation properties.

1. Separation of ideals. All algebras in this paper are assumed to be
commutative, complex Banach algcbras with unit, unless otherwise stated.
The unit element will be designated by e.

The maximal ideal gpace of an algebra A will be designated by M(4),
and its Shilov boundary by I'(4). We shall treat elements of M (4) both
as ideals and as multiplicative-linear functionals: We say that an ideal
I < 4 consisls of joint topological divisors of zero if there is a net (2,) < 4,
Ieall 5 & > 0, such that liinz,,m e 0 for all @ & I. In this case we say that

the net (z,) annihilates I and write (2,) LI, or (2a) ¢ I+. The symbol £(4)
will designate the set of all (not necessarily closed) proper ideals of A,
including the zero ideal, consisting of joint topological divisors of zero.
The m.embers of 1(4) will be called shortly l-ideals. We put also £(A4)
=1(4)nI(4). It is known thet the closure of an l-ideal is again an
videal, £(4) is o cloged subset of W(4) containing I'(A) (cf. [9]), and
every Il-ideal is contaived in & maximal ideal M belonging to £(4)
(ef, [6]).

[:1]1) DrrINITION, We say that an ideal I < A can be separated from
an dlement w, ¢ I if theve is a net (2,).1 T and 2,@ +> 0. We say that two
idealy J, and I, can be separated if one of them can be separated from an
clement of tho other, We say that an ideal I < A has the sepaxra%m prop-
erly 3 it can be sepurated from ench element @ ¢ I. If in above definition
we replace nets by bounded nets, we obtain the concepts of bounded
separation of an ideal J from an element @, bounded separation of two

* This paper was written during the authors stay at the University of Kangag
in second semester of 1978/79.
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