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On donination and separation of ideals
in comumutative Banach algebras
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W. Zelarko* (Warszawn)

Abstract. Wo introduce and study the coneept of domination property and
approximate domination property of ideals in commutative Banach algebras, and
conneetions of thoso coneopts with separation of ideals by means of annihilating nets.
Among other results wo show that domination and separation properties coincide, as
well as the approximate domination and ‘hounded separation properties.

1. Separation of ideals. All algebras in this paper are assumed to be
commutative, complex Banach algcbras with unit, unless otherwise stated.
The unit element will be designated by e.

The maximal ideal gpace of an algebra A will be designated by M(4),
and its Shilov boundary by I'(4). We shall treat elements of M (4) both
as ideals and as multiplicative-linear functionals: We say that an ideal
I < 4 consisls of joint topological divisors of zero if there is a net (2,) < 4,
Ieall 5 & > 0, such that liinz,,m e 0 for all @ & I. In this case we say that

the net (z,) annihilates I and write (2,) LI, or (2a) ¢ I+. The symbol £(4)
will designate the set of all (not necessarily closed) proper ideals of A,
including the zero ideal, consisting of joint topological divisors of zero.
The m.embers of 1(4) will be called shortly l-ideals. We put also £(A4)
=1(4)nI(4). It is known thet the closure of an l-ideal is again an
videal, £(4) is o cloged subset of W(4) containing I'(A) (cf. [9]), and
every Il-ideal is contaived in & maximal ideal M belonging to £(4)
(ef, [6]).

[:1]1) DrrINITION, We say that an ideal I < A can be separated from
an dlement w, ¢ I if theve is a net (2,).1 T and 2,@ +> 0. We say that two
idealy J, and I, can be separated if one of them can be separated from an
clement of tho other, We say that an ideal I < A has the sepaxra%m prop-
erly 3 it can be sepurated from ench element @ ¢ I. If in above definition
we replace nets by bounded nets, we obtain the concepts of bounded
separation of an ideal J from an element @, bounded separation of two

* This paper was written during the authors stay at the University of Kangag
in second semester of 1978/79.
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ideals and bounded separation property. One can easily see that ingtead
of using all bounded nets, we can limit ourselves to nets (z,) with |z | =1
for all a.

The above concepts make sense only for f-ideals, and particularly
when all ideals in A are I-ideals. The latter holds when IMM(A4) = £(4)
and this condition is satisfied for regular algebras, i.e. semi-simple algebras
such that for every closed subset F' = I (4) and M, ¢ F there is an cle-
ment ® € 4 whose Gelfand transform 2" is zero on F and " (M,) £ 0.

The Aull of an ideal I = A is the set h(I) = {M e M(A): I < M}
and we say that two ideals I, and I, in 4 can be separaled by means of
spectral synthosts it h(IL,) # h(I,). An important example of regular al-
gebras are the group algebras L, (@) for LOA groups &, or rather these al-
gebras when & unit is adjoined. An important theorem of Malliavin [38)],
[8] states that for a non-compact LCA group @ the algebra L, (@) always
containg closed ideals I, == I, with h(I;) = h(L,).

The motivation for the study of the concept of separation by means
of nets is to provide a tool which works better than spectral synthesis.

The following results are proved in [107:

1.2. PROPORITION. If two ideals I, and I, of a regular Banach algebra
can be separated by means of speciral synthesis, then they can also be
boundedly separated. .

For a regular algebra 4 and for any closed set F' < M(4) there always
exists a unique smallest ideal Iy with h(I}) = F. Tt is

Ib ={wed: s (_M ) = 0 for all M in some open neighborhood of F}.
1.3. PROPOSITION. If A is regular, then for any closed F < IM(A) the
ideal 13 has the separation property.

Since usually the ideal I3 is non-closed, the above proposition shows
that it is possible to separate an ideal from its closure. ‘

1.4. PROPOSITION. There ewists & regular algebra A and two ideals I, I,
in A which can be separated, but cannot be boundedly separated.

2. Domination property.

2.1. DEFINITION. We say that an. element x e A is dominated by

elements oy, %y, ..., o, € A if there exists a constant ¢ > 0 such. that for
all z e A the following holds true;

N n
@ ezl < € D szl
qam=)
_In this case we write z < (2y,..., 2,). We gay that an clemont v e A
is dominated by an ideal I = A itw < (@, ..., »,) for some n-tuple (wy, ..., ®,)
of elements of I. In this case we write » < 1. We say that an ideal I = A

@
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has the domination property if the relation & < I implies @ € . The family
of all (not necessarily closed) ideals in A with domination property will
bo Jesignated by D(A4).

We say that o family F = (I,) of ideals of A is directed, if for any
I,, I, € I there oxists I, € I' such that L,uI, = I,.

2.2, ProvosimioN, Let A be a commutative Banach algebra with wnit.,
Then

(i) £(4) = D(A) = T4,

(i) If I, e D(A), then O I, eD(4),

@ity If (L) is a dirooted family of ideals and I, € D(A) for all a, then
UL, e D(A).

’ Proof, (i): Lot M e£(A) and @, @y 0v, @y € M. IL 2 < (@, .00y ),
then any neb annihilating M annibilates » also. Since M is maximal, we
hawve @ € M and go M e D(A). T I ¢1(A), then the unit element ¢ iy domi-
nated by some cloments in I and ¢ ¢ I. Thus I ¢ D(4).

(ii): I I = T, and @y, ..., », € I, then any element o dominated
DY (@ oevy @) i8 i I, Tor all @ and so & & I Thus I e D(4).

(iii): The proof follows immediately from Definition 2.1.

Remarlk. Since the ideal I} can be expressed as a union of & directed
tamily of ideals which are intersections of maximal ideals, then Prop-
osiﬁi()‘n 1.3 is o consequenco of above proposition and Theorem 2.8 below.

9.8. QOROLLARY. D (A)NI(A) = £(4).

9.4, CororrAwy. Twery ideal in D(A) s contained in maximal
ideal which also bolongs to D(4). )

ProprmM 1. Suppose that IeD(4). Does the closure I belong to
D(4),too?

2.5. COROLLARY. If Q2 is o compact Hausdorff space, then every closed
ideal in A = O(Q) s in D(A).

The proot follows from tho fact thab A islai ;l"egillar algebra and every
> ideal in A is an intersection of maximal ideals. o
dﬂm%lﬁ&‘] ::20, however, non-closed ideals in A4 =0[0,1] wh;ch are'
not in D(A). Tf wy(#) = ¢ and I is the principal ideal z,4, then the clement
() «= tgint~! is dominatod by I and does not belong to I i .

9.6, TamMMA. Lol J2 bo' a set of indices and Lot {(23),es)s gevlﬁ ba_a ]fa,m'aly
of mets of clements of A indewed by the same directed sysiem btof indioes y.
Then there owists a single met (2,) = A such that

{wed: g0-+0} = {red: a0}
. eeld ¥

If, moreover, ||g|| = 1 for all yin 8 and all g & B, then {2 = 1 for all a.
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Proof. Put
J ={zed: Lu—0}.

R ¥

If J = A, then we can assume a = y and put 2z, = 22 for an arbitrarily
choosen fixed ¢ e R. Suppose then that J = 4 and form a new directed
system of indices g in the following way. We put § = {F,, F,, k}, where
P, = F,(p) is a finite non-void subset of ANJ, Fy = F,(f) is a finite
non-void subset of J and % = k(f) is a positive integer. Write f§, > g,
if for the corresponding sets Iy, F', and integers %k we have I, () = F,(f,),
Fo(B) = FaoBo), and E(By) = k(Bs).

By assumption, to any « ¢J there correspond an index g = o(w)
and a positive constant ¢(z) such that ‘

lim sup [P s = ¢(2) > 0.
¥

Now, to each index § we associate » indices a;(8), ..., a,(f), where n

is the cardinality of 7 (8), and order them in the following way. If a = a,(8),

o' = o;(f'), then a> o' if > f, or in the case when g = g’ if ¢ >i'.

In this way we obtain a directed system of indices a. Define now the net

(2,) in the following way. For a = a,(8) write F,(8) = (@, ..., @,), F4(p)

t;; W1y -y Y) and put 2, = z;’,‘”f) where y € § is choosen in such a way
at

eyl <1/k(f) for j=1,2,..,m
and

2 g, > Yo(s,).

Such an index y exists because of definition of o(#,) and because the net
(2%, annihilates J. This is clear that the net (z,) annihilates J and
does n(t annihilate A\ J since for any # e AN\ J we have

lim sup|j#z,2| = 4e(®) > 0.

2.7, THEOREM. Let A be a commutative Banach algebra with unii e.
Then an ideal I = A has the domination property if and only if it is of the
form

(2) I={xecd: 2,20},

where (z,) 18 @ net of elemenis of A which does not tend to zero.

n Proof. Suppose that I is a subset of A of the form (2). Since 2, -~ 0,
it is a proper ideal in A. If @ < I, then relation (1) shows that 2,20
and so zel. Thus Ie D(4). Suppose now that IeD(4). We ghall
construct a directed system § of indices y such that for each @ ¢ I there

©
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is & net (2, (@))yey in It with 2, (@) > 0. Once we have the family of nets
(z,(m)), o € AN I, then Lemma 2.6, with R = ANI and 28 = 2,(«), provides
us with & net (2,) which realizes formmula (2). The directed systems of
indices y will consist of pairs y == (F, k), where F is a finite subset of I
and % is & positive integer. For y =: (¥, k) and p’ = (F', k') we write
y>y UF o I and k> k. Fix an element » ¢ I. Since I'has the domination
property and @ ¢ I, for each y = (F, k), I == (,, ..., #,) = I, there exists
by formula (1) un. element 2, () guch that

n
1 == [y (@)-all >k D) w2, (@)].
fum ),
It follows that (za(m)) 1T and 2,() @ +> 0. The conclusion follows.

2.8, Tymoney. An ideal I < A has the domination property if and
only if it has the soparation property.

Proof. If I & D(4), then by formula (2) the ideal I has the separation
property. If I ¢ D(4), then there is an element x ¢ I which is dominated
by an a-tuple (@, «.., 8,) < L. Formula (1) implies that every et an-
nihilating I must also annihilate #, and so I cannot be separated from .

Tor an arbitrary ideal I & (4) there always exists a unique smallest
ideal in D (A) which contains I. It will be denoted by I”, The proof of the
following proposition is left to the reader.

9.9, ProposirioN. LetI e t(4d). Then
IP e [ = (T eDA): Ted} = {ped: a<I}.

THeve for o family N of nets of elements of 4 we put N-- = {we A: g,6>0
for all (z,) € N}. The symbol I++ denotes (I+)*+. We have also N L= NLL
and I+ = I+4% for any family of nets N, containing at least one net which
does not tend to zero, and for any ideal in 3(4).

For two jdeals I, J e §(4) write I < J if for each @ e I we have » < J.
Ono easily sees that I < J is equivalent to each of the following relations
P < J, I < JPorIP < J2, also I, < Iy, Iy < I inply Iy < Iy. Tho relations
I < and J <= I imply I? = J?, go they imply I = J in the case where
I,JeD(A). One hus also I+ = IPL for all I ei(4). Bince two ideals
I,J el(4) can bo goparated it and only it I L g J+, wo have the following

910, PROPOSUION. Lwo ddeals I,J el(4) can bo separaied if and
only if IV o6 g7,

Another characterization of D (A) will be obtained by means of the
concept of extonsion of wn algebra.

An ewlension ov superalgebra of A is an algebra B with unit which
contuing A under & unital topologieal isornorphism. In this pituation we
write 4 = B, By u theorem of Lindberg [2] we can always replace the
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norm in B by an equivalent norm, so that the embedding in question
becomes an. isometry. Thus without loss of generality we can consider
only isometric extensions of A. If I is an idealin 4, then for any extension
B> A we denote by I the smallest-ideal in B containing I. Iy will designate

n .
the closure of I in B. We have Ip={Xub: a;eI,b B} If
1

I et(4), then Iy et(B), so it is 2 proper ideal in B. We put I2 = (I5)?
for any I et(4), A = B. Under this notation we have

2.11. PRrROPOSITION. An ideal I e t(A) is in D(A) if and only if for each
extension B > A we have

I=1I2nA4.

Proof. Taking B = A we see that the above formula implies I = I
€ D(4). Suppose now that I e D(4). Since obviously I = IZn 4, we have
to show that I2NA < I. So leb » e IZNA. Tf (2,) LI, then (z,) | Iz. But
I2 = I3t and Iy = I, thus (2,) | IB and so 2,2 — 0. Thus w e I+ =T
and I2ndc 1.

In [10] we posed the following domination eonjecture: If & < (2, ...
..y @,) = A, then there is an extension B > 4 and elements by, ...,b, € B

such that
n
& = 2 ®;0;.
1

(Clearly every element in A of this from is dominated by (wy, -.., #,).)
However, as was recently shown by Vladimir Miiller [4], this conjecture
fails in general. Nevertheless, in some instances the conjecture is true
and ‘we have the following domination theorems.

2.12. TEEOREM (Arens [1]). If @,y € A, » < y, then there is extension
B o A and element b € B such that

© =yb.

2.13. TurorEM ([111). If A is a uniform algebra and & < (v, ..., x,)
< A, then there is an extension B = A, which is also a uniform dlgebra,
and elements by, ..., b, € B such that

T = Zwibf.

In order to obtain results on separation of ideals in some algebrag
without unit we need an extension of Arvens theorem. An approximate
identity for 4 is a net (8,) = A such that 6,2 — @ for all w e 4. We do not
assume that the net (4,) is bounded.

2.14. PROPOSITION. Let A be a commutative Banach algebra with an
approzvimate identity (8,). Let 2,y € A and suppose that there is o positive ¢

©
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sueh that for all e A
3 lwe) < C'lly=]).

Then there ewists a superalgebra B > A and an element beB such that
L = yb.

Proof. Let 4, == 4@ Ce be A with an adjoined identity ¢ and with
the norm given by |w-|-Aell == ||| 4-12] for x €A, e C. Relation (3)
implies [lo(z--A8,) <% Clly (2--48,)|| for all z € 4, 4 e C. By passing to the
limit we obtain |jo(z-- Ae)l| <2 ly(z--e)ll, 8o @ <y in A4, and we apply
Arens domination theorem,

Tor w not necessarily unital commutative Banach algebra 4 and
0o & A ilenote by I, (wy) thoe smallest ideal in A eontaining af, i.e. I, (w,)
= {afy Ao yed,deCh

Weo shall use Proposition 2.14 in the proof of the following result.

2.15. ProrvosmroN, Let A be a commutative regular Banach algebra
either with wwit dlement or with an approvimate identiy. If », e A, 0 € o(,),
and 0 is not an isolated point of the spectrum o(w,), then all ideals I,(w,),
n=1,2,... can be mutually separated.

Proof. It iy clear that an clement  is dominated by I, (w,) if and only
it » < af, 8o by Proposition 2.10 it is suificient to show that for n > m
the element o cannot e dominated by #f. Suppose then that af < af.
By Theorem 2.LL wo huve aft = baf for an element b in gome extension B
of A. We have ‘

(4) (e —baf™™) = 0

and theroe is & sequence f, € Yi(4) with 0 = f,(wo) — 0. Since A is regu_lg.r,
we have M(4) = I'(4) and all functionals f, can be extended to functio-
nals 7, in M(B). Since Fy(v,) = 0, relation (4) implies 7y, (0) Fy(2g)" ™™ = 1
for all &, and so J,(b) ~ co. A contradiction, since |F,,(b)| < Ibll, and the

conclugion. follows. ) )
‘Wo cloge this section with the following questions.

Propumy 2. For which Banach algebras is the domination conjecture
true? . .

Proprum 3. Lel A be w regular Banach algebra with wnit element.
Do all closed. ideals in A belong to .D(4)? ‘ .

PROBYE 4.(F) Suppose That © << @y 00y @) A. Does ‘oh:re exist an
extension B o 4 and elements by, ..., b, € B such that & = .}Eﬂ%bﬂ Here
wo do not assume that B is o Banach algebra, but any topologic'a‘l algebra
containing 4 under & homeomorphie imbedding preserving the unit element.

(2) A mogative anwwer to this problem Las been given in [12] [added, in proof}.
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3. Approximate dominatjon.

3.1. DurINITION. Let 4 be a commutative Banach algebra with unit
element ¢ and let I be a (proper) ideal in 4. An clement z € A is said to
be approximately dominated by I if for each &> 0 there exist elements
@y ...y @, € I such that for all z € 4 we have

lwzll < ) lwgell -+ s el

=l

(8)

In this case we write # < ,I. We say that an ideal I < A possesses the
approximate domination property if the relation 2 < ,I implies e 1.
The family of all ideals in A possessing the approximate domination prop-
erty will be designated by D,(4).

3.2. PROPOSITION. If A is as above, then Dy(A) < D(4).

Proof. The relation » < I clearly implies » < ,I. Thus if I e Dy(4)
andz<I,thenz<  I.Soweland IeD(4).

3.3. CoroLLARY. Dy(4) < #(4).
3.4. PROPOSITION. Hwery ideal in Dy(A) is closed.

Proof. Let I eD,(A) and y eI. For any given > 0 we find an
element @ e I with |lo—yll < e Since [yz]| = [{y —@)2-+ze] < joe] + e |
forallzed,theny < ,J andsoyel. Thus I = I.

3.5. PrOPOSITION. Let A be as above. Then

(1) £(4) = Dy(4),

(ii) If I, € Dy(A), then I = (I, € Dy(4).
a

Proof. (i): Let M eZ(4) and choose 2 net (2,) M, g, ) = 1. It
# < M, then relation (5) implies that for each s > 0 we have lim sup s,

< ¢ 80 limloz,[| = 0 and by the maximality of M we have a; eM. So
M eD,(4).
(i): I @< I, then » < I, for all a, 8o @ € I, for all ¢ and o  I.

3.6. THEOREM. Lot A be a commutative Bamach algebra with wnit e.

Then an ideal I = A has the approvimate domnamon property if and only if
it 18 of the form

(6)

where (2,) i3 a net of elements of A suoh that |jg,)| = 1 for all a.

Proof. Suppose that an ideal I < 4 is of the form (6). If w< 1,
then relation (8) implies that for each &> 0 we have lim sup Jloe, | < & and

= {wed: 2,00},

80 wel. Thus I eDy(4). Suppose now that I e Do(4). We should have
a directed system § of indices y such that for each x ¢ I there is a net
(2 (@) LT, ll2,(@)|| =1 for all y e 8, and # ,{®) @ +> 0. Once we have the

icm®
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family of nets {#,(») e It, we AN I, with lle, (@) = 1 for all y € 8, then,
by Lemma 2.6 with R < ANT and 2§ = 2,(w), we obtain the desired net 2,

The gystem § is exactly the same ag in the proof of Theorem 2.7. Fix an
element @ ¢ I and e > 0. Sinee I has the approximate domination property,

then foreach y = (T, &,), I, = (®y, ..., #,) = I, there exists by formula (5)
an element 2, (o) with iz, (w)l =1 &uch that

=10 Z (I 2, (0

LT

(M

llwz, (@)1 o)+ e =
(we uso in the negution of (8), &, instead of o). Relation (7) shows that
e, (D) <5 [l /Ty Tor all p = y,, where y, = (Fy, k,) and o; ¢ Fy. Since
%, - oo, this implie that z, (@), — 0, Since we can take for @; an arbi-
trary olomont of I, this implies (W(uo) I_I. On the other hand, formula (7)
ghows that @z, (»)-- 0. The conclusion follows,

3.7. TuroREM. An ideal I < A has the approvimate domination prop-
erty if and only if it has the bounded separation property.

Proot. It I e Dy(4), then by formula (6) the ideal I possesses the
bounded separation property. If I ¢ Dy(4), then there is an element « ¢ I
guch that for each e > 0 there are elements @,, @, ..., , € I with

(8) el < 3 oyl + o e

for all z € 4. Lot (=,) LT and [j2,] = L for all a. Formula (8) implies that
llmsup 2, 2| < &, and since it holds for all ¢ > 0 we have hmz @ = 0.

Thus every bounded net (2,) annihilating I annihilates o 'ulso and so I
does not possess the bounded separation property.

For an ideal I eZ(4) denote by I* the set of all nets (2,) in I with
llgoll = 1 for all ¢, and denote by I™ the smallest ideal in D,(4) which
containg I. The proof of the following proposition is left to the reader.

3.8. ProposiTIoN. Let I ei(d). Then
IP0 m [P0 o= [ = M {J e Do(4): T J} = {w e d: & < I}

If in the relations following Proposition 2.9 we replace D by D,, < by
<, and 1 by 4k we obtain again valid relations. In particular we obtain

3.9. ProrosruonN, If I,J el(d4), thon I can be boundedly separated
Jrom J if amd only if IP0 5 J™,

If for I e }(A) and for an extension B o A we put I8 = (Ip)" and
IR0 == (I5)™ wo obtain the following proposition whose proof is similar
to that of Proposition 2.11.

3.10. TProvosrrion. Let I et(d), Then I e Dy(4)
oaoh ewtension B = 4 we have

if‘ and only if for

I2en4).

8 — Studla Mathematica 7.2
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We do not know any -example of an ideal I e Dy (4) for a semi-simple
Banach algebra A which is not of the form

9 I=N{Mef(A): I= M.

By Proposition 3.5 every ideal of this form is in Do(4). We s?aall now ghow
that for uniform algebras Dy(A) coincides with the ideals of the form (9).

3.11. PropostrioN. Let A be a uniform algebra with unit ¢. Then
overy ideal in Dy(A) s of the form (9).

Proof. It is shown in [8] that for a uniform :ngebra. 4 we have
I'(A)=£(4). Let I e Dy(A)and consider the imbedding A = B = O(I'(4)).
Sinee every closed ideal of B is an intersection of maximal idoals (ef. e.g. [7]),
we have

(10) Iy =\ eM(B): I < T} = N{H e M(B): I < I}
Thus
IpnA = (\{MnA:  eM(B), I c Hnd}.

But the intersections IfnA, IT € W (B) are precisely the elements. of
I'(4) = £(4). So

IpnA = " {M e £(4): I < M}.

The conclusion will follow if we show I = Izn4. But this follows
immediately from Proposition. 8.10, since by formula (10) and Prop-
ogitions 3.4, 3.5 and 3.8 we have IR0 = Ip.

3.12. COROLLARY. For uniform algebras the spectral synthesis sep-
arates better tham bounded nets. So by Proposition 1.2 separation by spectral
symithesis is for uniform regular algebras equivalent to separation by bounded
nets.

* Another type of ideal in D,(A) which must be of the form (9) is given
by the following result.

3.13. PRrOPOSITION. If A is a semi-simple algebra and a € A, then the
ideal I = a™ is of the form (9). ‘

Proof. Let 8 = {M e£(4): a" (M) 0}, I wea, then az =0
and. so @¢” (M) = 0 for all M €8, Thus a* c M for all M ¢ S, Pub

J =(\{M: Mef}.
8o ot = J. If & e J, then o (M) = 0 forall M e § and so * (M)a* (M)

= 0 for all M e £(A4). Since I'(4) = £(4) and A is semi-simple it follows
that #a = 0 or & € at. So a* = J and the conclusion follows.

It A is not a semi-simple algebra, then there are ideals in Dy(4)
which are not of the form (9). For example, if 2, € A is an clement such that

@ =0 and @yradd s (0), then o € Dy(4) and ag is not of the form (9).
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Such an element @, can be found in the convolution algebra L, (0, 1)
with. unit adjoined.

PromreM 5. I8 every ideal in Dy(4) of the form (9), if 4 is a regular
algebra?

The following problem is an analog of the domination conjecture,
it is not disproved by the Miiller example.

ProprEM 6. Let # <, I = 4. Does there exist an extension B o A
such that w e IpnA4?

We give a proof of this conjecture for uniform algebras.

3.14. PROPOSITION. If A i8 & uniform algebra and o <, I, where I is
an ideal in A, thon there s an emtension B = A such that w e IzNA.

Proof. Let B = ( (I ’(,A). If I is not contained in an ideal M e I'(4),
then I == B and 80 #elznA. Otberwise Iy = ({M e M(B): I = M}
and Iyn4d = (\{M e£(4): I = M}. By Proposition 8.5 we have Iz NA
€ Dy(4). Since I < Izn4, the relation @ <, I implies = <, Iznd4 and
80 welynA,
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