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STUDIA MATHEMATICA, T. LXXI. (1981)

On bases and the shift operator

by
J. R. HOLUB (Blackshurg, Va)

It X is & symmetric Banach sequence space, § the shift operator on X, and =,
a finitely non-zero gequence, characterizations for basic sequences (and bases) in X
of the form {8"x)}5.¢ are given in terms of the behavior of zeros of the polynomial p (2)
aggociated with. »,. A fundamental difference is shown to separate the case X = I
from all others and this difference is discussed in detail. Additional results including
charactorization of subspaces of the form [§%x,] in X and remarks on the more general
situation in which «, is an arbitrary member of I are also given.

- § 1. Introduction. Let & denote the set of all finitely non-zero complex
gequences and {e,};., the sequence in & defined by ¢, = (1,0,0,...), 6
= (0,1, 0, ...), cte. If @ iy any symmetric norming function defined on #
([1], p. 71], then the set X of all complex sequences {a,}r_, for which

Lim sup P{a,} ¥, = 0 is a Banach space having {6,}*°, a8 a symmetric
N—roo Mzl

basis. Particular examples include the well known IP-spaces (1 < p < - o0),
¢y, Orlicz spaces [4], Lorentz spaces [4], the spaces G and @, of Macaev—
Gohberg—Krein [1], etic. For each such space X the shift operator S defined
by Se, = €,.1,n =0,1,2,...,is an isometry of co-rank 1 whose spectrum
is the closed unit dise in the complex plane.

A very natural and interesting problem which suggests itself is the
following :

If @y = (1, ay, s, ...) is in X, when is {S"we}o., @ basic sequence
(or even a basis) in X?

For an arbitrary sequence , in X the solution of this problem is
known only in the case X = I* [2]. In this paper we solve the problem
for the special cage where @, is finitely non-zero. The most interesting
and significant aspect of the solution is the way in which it distinguishes
the space I* from all other spaces X.

In particular, if X 1 and @, = (1, @y, @y ..., ay, 0,0, ...), We
show the following ave equivalemt: ‘

(i) {8™@o}., is & basic sequence in X.

(i) {8™ @}, is & basic sequence in X which is similar to {6,}nwo-

(iii) 'The polynomial p(2) = L-+a,2+ ... +aye” hag no zero on
the circle |2] = 1.
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That is, the basic sequence properties of {S"z,}; , are comploetely
determined by the existence or non-existence of zeros of p(2) on the circl'o
|| =1 and every basic sequence {S"z,}n., is (Jsomorphically) the same
as {e,}>,. The situnation in I' is considerably more complicated, as the
example of the basic sequence {8"z,}5, in I with 4, = (1, —1,0,0,...)
indicates. Yet even here we can characterize the basicity of {S™z,)% .
in terms of p(2). Namely, we show that {8™u,}52, is basic in I* if and oxify
if p(») has no zero of multiplicity greater than one on the circle [ —~_1
and that, in this case, the isomorphic type of the basic sequence {8"w,}
is completely determined by the zeros of p(e) on |z| == L. Thus there
is a richness in the theory for X = I' that is missing in the other cases
and which we explore in some detail. Related problems and extengions
of these results are also discussed.

§ 2. Preliminaries. If {w,}7., is a sequence in a Banach space X
the closed linear span of {x,} is denoted by [x,]. The sequence {=,} is s:ui(i
T;o be minimal if @, ¢ [#;);4, Tor all n. Tt is easy to see that {m,} is minimal
if and only if there is a sequence {f,}x., = X* for which (f,, @) = 6
for all m, n. In this case {f,} is called a biorthogonal sequence to {,} and tﬁz;
system {z,, f,} a biorthogonal system. For simplicity, we often omit explicit
mention of {f,} and say “{,} is a biorthogonal system”. Tt sup ||| < oo

n

and sgp Ifall < + oo, we call {=,, f,} a bounded biorthogonal system. A se-

quence {@,} in X is called a basic sequence if it forms o Schauder basis for
an]. Two basic sequences {z,} and {y,} are said to be similar if thero
is an invertible operator T': [m,]— [y,] for which Tm, = y,.

.It is well known that if {,} is a basic sequence in X for -which
0<11;\Lf]]mn]| ss&p l@all < oo, there is a biorthogonal sequence {f,}

in X* for which sla;p Ifull < -+ o0, ice. {2,} is a bounded biorthogonal system
in X . II'l certain cases the converse is also true. The following simple gen-
eralization of a rfasult of Szankowski and Zippin [6] is crucial to all of
our work and gives a sufficient criterion for this phenomena to oceur.

.TI-IEOREM 2.1 [6]. Let {e,}n be a basis for a Banach space X Jor which
0 < inflle,|| < suplie,| < +oo, et & be a positive integer, and Jor oaoh
n

n
n=0,1,2,.. l& &, =¢,+aMe, - &l ;
: ot a ne1 oo a6, 0. Then {032, is
a basic sequence in X. if and only if it is o bounded biorthogonal sy.jta,';r}: '

T the: esults which we well | H ) wil HO

wo other ves i 3 C I © mown, and which w ] )
3 5 O . k}

I’e[)(}&‘]edly, are: '

LamyA 2.2. If {@,}5q is a sequence in o Bamaoh space X, I' a bounded

linear operator on X, and {Tz,)2 ., a b 1 be :
/ A ounded biorthogonal system i
then {z,} is a bounded b'iorthogoamrlb system in X, ! etom o
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Levma 2.3, Let X be o separable symmeiric Banach sequence space
and S the shift operator on X. Then

(i) If |A = 1, the operator AL—8 is invertible.

(i) If 14| < 1, the operator I — 8 is bounded below on X but codim ran
(AL—R8) == 1. ;

(ili) If |A] =L, the operator AL~ 8 is mot bounded below on X.

If X 1 van(Al—8) is dense in X,

I X = U, codimran (AL —8) = 1.

Tor simplicity we adopt some uniform symbolism to be used through-
out. the paper. The symbol X will always denote a separable sym-
notric Banach sequence space, {6,} the usnal unit vector basis for X, =,
the finitely nom-zero sequence (L, ay, @g, ..., Gy, 0,0,...), and p(2)
the Nth degree polynomial L+4-ay2+4- ... + ap ™.

§ 3. Main results. Given the space X and a finitely non-zero sequence &,
we want to chavacterize when {8z}, is a basic sequence in X. We
begin by settling the simplest of such questions, that of the similarity
to tho basis {6, )., for X.

TuroREM 3.1, If @, = (L, @4, .., x5, 0,0, ...), the soquence {8" o},
is a basic sequence in X which is similar 10 {6,} o if and only if p(2) =1+
g4 ... ane™ has mo zero on the circle |z = 1.

Proof. Lot T s L-Fa S -4a8 -4 ... +ayS¥. Then T is a bounded
linear operator on X and Te,, = 8"w, for all n = 0,1, 2,... If p(e) factors
a8 p(2) = (L—Dy2)(L—by2) ... (L—Dby#), then certainly T' has the factor-
ization T’ == (I —b,8)(L—by8) ... (I—by8). )

Suppose p(2) has no zero on the circle | = 1. Then |b,} 5 1for all 7
and so, by Lemma 2.3, each factor I—b,8 of T is bounded below on X.
Tt tollows that T: X — [8%@,]C., is invertible and since Te, = 8"z, for
all n, we see that {87 @,}e., is & basic sequence in X which is similar to {en}re-

Convorsely, if p () has a zero on the cirele |2| =1, then in the above
factorization of 7' at least one b, has modulus 1. By Lemma 2.3, the corres-
ponding factor I —b,8 is not bounded below on X, and since the factors
of T commutte, it follows that T itself is not bounded below on X. There-
fore sinco Te, == 8wy, wo soe that (8@}, cannot be similar to {entimo
and the theorem iy proved.

Theorem 8.1 shows that in studying the sequence {S8"g}y.,, the
only situntion having real interest is that in which the polynominl p(z)
s ot lonst one zoro on the unit eirele |¢| = 1. It is here that a fundamental
difference oceurs bebwoen the space I and all other spaces X. Though
Theorem 3.1 does not rule out the possibility that {8"@jr.s may be
a basic sequence oven though p(e) has a zero on the unit circle, in fact
this cannot occur except in the space I
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THEOREM 3.2, Suppose X 1 and @, = (1, a4, ..., 05, 0,0,...).
Then the following are equivalent:

(i) {8"w,} is a bownded biorthogonal system in X.

(ii) {S™x,} is a basic sequence in X.

(i) {8™m} is a basic sequence in X which is similar to {e,}.

(iv) The polynomial p(2) = L+a 8-+ ... +ayz™ has no zero on the
cirole |#| = 1.

Proof. Clearly (iil) = (i) = (i), and (iv) = (iii) by Theorem 3.1.
Thus we need only to show that (i) = (iv).

Suppose {8"®,} iz a bounded biorthogonal system in X but p(e)
has a zero on the circle |¢| = 1. Then, as in the proof of Theorem 3.1,
the operator ' = I -+a;8 -+ ... -+ ay 8 has the factorization T = (I ~b,8)
(L—Db,8) ... (I—by8), where we may assume |by| = 1. Since T, == §"x,
for all n anfﬂ. by assumption {§"x,} is a bounded biorthogonal gystem,
Lemma 2.2 implies that the sequence {(I--by)e,} is also a bounded bio-
rthogonal system in X.

Now since [by| =1 and we are assuming X 5 7', by Lemma 2.3 we
have that the range of I —byS is dense in X. One easily checks that the
sequence {g,}>_, c X* defined by

I = (W%, 0% %5000, by,1,0,0,...)
is biorthogonal to {.(I —by8) e}, and since [(I—byS)e,] == X, it must
be the only such biorthogonal sequence. Therefore wo have sup g,z
n

< o0, Bince |by] = 1 and the norm on X* iy symmetrie, there is a positive
number K for whick [(eg; 1,0y 8, 0, 0, .. )lxe < K for all |g =1

. n

an(} all m =0,1,2,... [1], p. 71. It follows that for any ¥ ¢ in X,
“2 66
=1

Iy continuous, implying X is a subset of I and consequently that X = 7",
But this contradicts our original agsumption, and the proof is complete.

ieal

1 n
e = Na 2 le,|. That is, the operator U: X — I' defined by Ue;=¢;
i=1

Remark. Theorem 3.2 should be compared with results of Szankowslki
and Zippin [6] which are of a similar nature.

As Theorem 3.2 shows, if X = I, the basic sequences in X of the
form {8™u} are all essentially the same, being similar to {e,}. Fowover
in 1! the situation is much more interesting. For example, i:ﬁ‘:g - (L, = 1’
0,0,...), then it is well known and easy to check that {S“‘mq} is w,lm.t;i‘é
sequence in I' even though the associated polynomial P (?) om 1—z has
@ zero on the circle 2| = 1. Onthe other hand, if @, = (1, ~2, 1 0 0,...)
?hen the polynomial p(#) =1—2z-+2* hag only 1 as & zer’o l’mt, {i‘}’“m },
is not a basic sequence. We will now show that the determining fzwt;r

e ©
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in whether {8"@,} is basic in I* is the multiplicity of the zeros of p(z) on
the cirele |2 = 1. :

Before we begin, it is necessary to analyze in more detail the general
form of sequencos in X* which are biorthogonal to the sequence {S"z.}
in X. I we again set @y == (1, 8y, Gay vy 4y, 0,0,...), D(2) =1+ayz+
R P AL I +aNzN, and p71(2) = L+0,2--6,2%+ ..., then since p(e)-
-p~H(e) = 1 (for suitable 2!), we must have that @, @16+ -oo 0,3+
+¢, = 0 for all » > 1. Oonsequently, the sequence { Fo)2.q in X* defined
DY Fu = (Ops Opeegy oves 0291, 0, 0,000) 08 biorthogonal to {8"%e}r.e. We eall
{f,} the canonioal biorthogonal sequence to {8"x,} (since if [8"x,] = X,
the sequenco {f,} is the only such biorthogonal sequence). It {ga}oon is any
gequenco in the annihilator subspace [8"2,]* = X* then the sequence
{f - 020 8 again biorthogonal to {8" e}y, and, moreover, ¢very sequence
Dbiorthogonal to {§"@,} is of this foxm for some {g,} = [S8*@,]t. Thus
wo note that {8} is a bounded biorthogonal system in X if and only
if there is & sequence {g,}%.o < [8"@y]*+ for which sup |f,+ gnlx. < - oo

n

7

Remark. The construction given here for the general form of biorthog-
onal sequences to {8"m} is clearly also valid in the more general setting
in which @, is un arbitrary member of X. This observation is often very
useful in trveating problems more general than . those considered here
(5c0, 0.8., §4).

To charactorize the basic sequences {8™u.} in ¥, it is helpful to first
prove o gpocial cage.

Levyma 3.8, If @, = (L, —2a,a% 0,0,...)
(8" w2, i3 mot @ bounded biorthogonal system: in L.

Proof. Wirst, wo claim that [8%w,]* = [(1,1]a,1]a%,..)] <=1
Tor cleaxly (1, 1/a,1/a®, ...) is & member of I and is in [87@,]* since 1/a
is a root of the polynomial #"(1—2az+ae?) for all # = 0,1, 2,.. If
[8w,] were of dimension = 2, then. there would exist an element in [S"x,]t
of tho form (0,1, by, by, ...). For this to be so, one casily checks that
b, = (n--1)/a" for all m == 1, 2, ... However, since |o| = 1, it follows that
[b,] = n -1 for all ny & contradiction to the fact that (0,1, by, by, ...)
is in 1, Honcoe it must be that [S™w,]* is one-dimensional and is spanned
by the sequence (1, 1/a,Lfad,...).

Now p(2) = L--2az - a22% 0

with  |a} =1, then

2 3
PHR) = L 2o b,
According to our preceding remarks, the canonical biorthogonal sequence
{f,} associated with {S"@,} is defined by
fo = (D) fa%, 0 /a0, 200, 1, 0,0, ..)
and. any blorthogonal sequence {hn} 0 {8"we} i of the form {f,+gn}
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for some sequence {g,} = [8"%]*. That is, h, = f,+1,(1, L/a, 1/a?, ..)
= ((h+1)/a"+ Ay, ..., L+ A"[a®, 4,/a™F...) for some sequence of scalars
{4,}. Bince |a| =1, it is obvious that for any such {k,} we have [h,|,
= (n+1)/2 for all n and. therefore {8"x,} cannot be a bounded biorthogonal
sequence in I, :

From this we get the following fundamental characterization of
basic sequences {8"#,} in I%

THEOREM 3.4. If @y = (1, Gy, Ggy ..., Gy, 0, 0,...), then {S"z)=, is
a basic sequence in ' if and only if the polynomial p(2) = L4-a,24 ... -ay2¥
has no zero of multiplicity greater than 1 on the unit circle |2| = 1.

Proof. As in the proof of Theorem 3.1, let ' = I a8 ... +-a,8Y
and suppose I' factors as T = (I—b8)(I—0,8)...(I—by8), where
{1/}, is the set of the N roots of p(2) counted according to multipli-
city.

If p(2) has a zero of multiplicity > 2 on the circle [¢| = 1, then in
the factorization of I' we may assume by_; = by and |by_,] = |by| = 1.
By Lemma 3.3, the sequence {(I—by_,8)(I—by8)e,} = {87(1, —2by,
b%,0,0,...)} is not a bounded biorthogonal system in I*. Since {§"z,}
= {Te,} = {[(I—=0:8) ... T—by_y8)I(I—by_,B)(I—byS)e,}, it follows
from Lemmu 2.2 that {8"z,} is not a bounded biorthogonal system in I*
and hence not a basic sequence.

On the other hand, suppose p(z) has no zero of multiplicity greater
than 1 on [#|= 1. Those factors of T of the form I—b,8 with |b,| 5% L are
all bounded below on I' and hence do not affect whether or not {§"x,}
is a basic sequence. For this reason we may assume the N roots of p(2)
are all distinct and all lie on the eircle |2| = 1.

Under this assumption, let {;}, denote the roots of p(z). Clearly
the sequences of the form (1,2;,4},...), ¢ =1,2,..., N, are linearly
independent in I° and each is in [8"z,]t. It follows that [8™wy]* contains
an element of the form hy=(0,0,...,0,1,7,7,...). If for cach

“F=1 Slaces
n=0,1,2,.. we set f, =—;1— 8"+ 1y, then clearly sup |f,|| < - oo and
N n
Iy 8" %) = Oy for all m, n. That is, {8%a,, £,}2., 18 a bounded biorthog-
onal gystem and hence, by Theorem 2.1, a basic sequence in I*.

Thus the multiplicity of the zeros of p(z) which. lie on the circle |#] ==
determine whether or not {8"a,} is basic in I*. Our next result shows that
these zeros also uniquely determine the similarity propevbies of the basic
sequence {8"w}.

THEOREM 8.5. Let g = (1, ay,y ..., dy, 0,0, 0,...), ¥, = (L, by, by,
ey by, 050,000, and suppose {S™wo} and {8"y,} are basic sequences in 1.
Then {S* w0} and {S™yo} are similar if and only if the polynomials

e ©
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PE) = Lobagzt o hayd®  and (@) =142 . by
hawe exactly the same zeros on the eirdle || = 1. '

Proof. As in Theorem 3.4 we may assumeo that p(2) and ¢(2) have only
simple zeros, all of which lie on the circle 2| = 1. Thus we need only to
ghow that if {8"me} and {8"y,} ave similar, then p(2) = ¢(z).

To do this, recall that {8"w.} is similar to {8"y,} if and only if there
aro constants I, and I, for which . :

I 21] & St |, 7 Ky ” 2 a, 5y |, < Z:’ a8,
Res{) N Qs

for wll# and all {d, Yy, -
Now SUpPose 2, is w Toot of ¢(2) which ig not a root of p(z). Then for
r> 90 one ousily checks that

| L)ty |, = ML, art- Loy ooy bar +baafat oo L1
)

T I N B OO 9 s SN
bagldy ™Ml by fely by JRE MR L by e e
ceny Og 25,0, 0, )y
8ineo 2, is 1 root of ¢(2), this is equal to
WLy byl L[y «vey Dagey -t DagegfBort oov 12051, 0,040, 0,
bag [ MA ol L by ey ey b [5 0, 0, ) < 24,
whore A = MAX |L-+by@o-r ... +D,201, since [go] = 1.

Quinasy

On the other hand, & similar analysis shows that for r > 2M we have

I ): LJegs"wy ||y 2 (¢ - 220) - p (o). Thus i 201 (88" @y [y = + 00 a8 7 —> - 00
e Nes

s g . . Y : ATl
while || X 1/af8"m,, is hounded, & contradiction to our carlier inoqualities.

o) L. A . . . . R

Thas it {8"w,} and {8"y,} are similar, every root of ¢(2) is & root of p (=),
andd viee versn (vecll our nssumptions on p (z) and ¢(2)!) and the theorem
is proved. o o
Theoreit 3.5 shows that there are infinitely many n.on-m.nulm. basic
sequonces in. I of the form {§"we} (in contirast o the situation in any
othor gpueo X). Tlowever, the variety of theso basic sequences 13 still rother
limited as thoe following rosult shows. . . i
Teenll that o Dasic sequence {w,} in a Banach space X for which

”
3 2 ooy 4 i : 1 e
0 < i::-]inmun < g [l )| < o0 is said to be of type P [6]if s:lp I ”%OH < - 00,
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and of type P* [5] if there exists an element ¢ € X* for which (f, T, =1
for all n. Tt turns out that if #, is finitely non-zero and {8"x,} is a basgic
sequence in 7, then {8",} is either of type P or of type P*.

THEOREM 3.6. Let @y = (L, @3, ..., a4y, 0,0,...), p(2) =1t az+...
oo Faye¥, and suppose {S"w,} is a basic sequemce in . Then {S™z.} is

(i) of type P if and only if p(1) =0,

(i) of type P* if and only if p(1) 5 0.

Proof. (i): For any r> N

r . N-1 N N N
”anwoul =”(171+“17--'7 2 “naza’nrzam ~--72“m
n=0 nm=0 =0

n=( neaf
r—N-1 texms
N N
Zan,Zan, ey Gy, 0,0, )“1
M=l n=2

N
Therefore we see that {8"@,} is of type P.in * if and only if ' a, =0,
ne=0

ie. if and only if p(1) = 0.

(ii): I p(1) # 0, then the sequence F = (l/p(l), 1/p1),...)el®
a.ndlit is obvious that (P, §"x,) = 1 for all ». That is, {S"2,} is of type P*
in TN

On the other hand, if {8",} is of type P*, then clearly it is not of type
P and so by (i) it must be that p(1) # 0.

By using essentially the same techniques as we have been using
throughout this section, one can also prove a number of results which
similarly characterize the possible types of basic sequences {8"x,} which
may arise. Among these we mention here (without proot) only the following.

Recall that a basic sequence {x,} in a Banach space X for which
0< ix;fuw,,u < sup o, || < oo is said to be boundedly compléte [6] if when-

n

r o
ever sup || Y a,2,]| < -+oo, then 3' a,s, converges in X.
* n=0 n=0

TarorEM 3.7. If {S"®} is a basic sequence in T, then {8™w,} is boun-
dedly complete if and only if it is similar to the unit vector basis {e,} for T

Throughout this paper we have been studying conditions wunder
which {8"2,} is a basic sequence in X (i.e. a basis for [§"#,] in X) as op-
posed to the more restrictive problem of when {§"z,} is actually & basis
for all of X. It is now a simple matter to answer this latter question.

TEEOREM 3.8. If @ = (1, @y, Gy, ..., Gy, 0,0,...), then the following
are equivalent:

(i) {8™m,} is @ basis for X.
(i) {8%wo} is a basis for X which is similar to the basis {e,} for X.
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(iil) The polynomial p(2) =L+a,2+ ... +ayz” has no zero in the
unit dise |2| < 1.

Proof. The spectrum of the shift operator § on X is the unit dise.
Therefore the spectral mapping theorem applied to the operator T = I+
F oy 84 a,8° - ... - ay 8N ghows that if p (2) has no zero in the diselz] < 1,
then 7' is invertible, and sinee 8"x, = Te,, we see that (ii7) = (ii). Obvi-
ously (i) = (i), 80 we need only to prove that (i) = (iii).

To do this, suppose {S"x,} i3 a bagis for X. If p(2) has a zero z, with
(2] < 1, then the sequenee (1, 2y, 2%, ...) is in [S"w,]* < X* (for any X),
a contradiction to the fact that [S"z,] = X. Therefore we see that »(2)
can have no zero in the open dise j2] < 1.

I X s I, by Theorem 3.2 p(#) also has no zero on the circle |z| =1
and we are done. If X = I* and z, is & zero of p (2) with |2,| = 1, then again
the sequence (1,2, 2, ...) is in [8"x,]* < I and we have reached the
same contradiction. In any case, then, the theorem is proved.

Let us conclude this section by describing the subspaces [S"@,]5.o
of X which are spanned by sequences of the form {8"mo};, (Whether or
not this last is a basic sequence).

To do this, several obgervations arve helpful. If @, = (1, @y, @5, ...
ooy Gy, 0,0, ...), then (as we have noted many times before) 8"z, = Te,
for all n, where T = I +a,8+ ... 4 ay 8. Hence [8"n)]* = K, where K
denotes the kernel of T* < X™*. If we factor T as T = (I —by8)(I—b,8) ...
oo (I—=by8), where {1/b}Y,; is the set of zeros of p(z) counted according
to their multiplicity, then K = ker(I—b,8%) ... (I—byS8*) and hence
dim K < N.

Sinee I —b,8* is invertible for [b;] < 1 (for all X), we see that K is
actually the kernel of the operator [] (I—b,8%), where o = {i| |5 > 1}.

180
Algo note that several of the numbers b; may be identical.

In order to treat the case X = I!, we need the following result.

LommA 3.9. If Ja| =1 and (I—a8*?hy = 0 for some ho €l then
(I —a8*)hy = 0.

Prootf. It is easy to see thab ker(I —as*) = [(1, 1/a,1/a?,...)] = V™.
Thorefore if (I —aS8*hy =0, then (I—a8*)h, must be of the form
(4, Ala, Ala2, ...) for some number A. That is, if hy == (Yo; Y1, Yas ...), then
Yoy == Ay Uy — 0y =A@y ey Yp— Wy = Ala”. Successively solving
thoge equations, we see that, in general, g, = yo/a"—nl/a"forn =1, 2, ..
Since ko = {y,} is in I, it must be that A = 0. That is, (I —a8")he = 0
and the lemma is proved.

Tt follows from Yemma 3.9 that when computing K in the cage X = 1,
we may ignore any repeated factors of the form I—b,8"% where [b;| = 1.
In the case where X = I, we may ignore any such factor since each gives
rige to a one-to-one operator I —b,S (Lemma 2.3). Thus if n, is the number
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of zeros of p(z) in the open dise |2| <1 (counting multiplicities) and Ny
is the number of distinet zeros of p(2) on the circle [z| = 1, then it is clear
that i X » ¥, dimK = dim[8"w,]* <y, while if X =V, dimK
= dim[8"@,]* < ny+ny. : -

The next theorem shows that equality dctually holds in both of
these cases. More importantly, the proof gives a construction of & basis
for [8"®,]+. As usual, let f® denote the kth derivative of f on the unit djse.

TemoreM 3.10. If X T, then AUm[8 wi]* = ny, while if X =T,
Aim 8@y ]+ = ny+n,.

Proof. Let g(2) = 142+22+ ... and let {32, be the sequence
of coefficients in the power series expansion. of g~ (o) for I == 1,9, 3, ...
If 2, is a zero of p(2) of multiplicity m and lying in the open dise 2| < 1,
then since [¢"p]®(2) =0 for 0 < m~1 and all 7 = 0,1, 9,
it is clear that the m sequences :

hl = (bl()l)y b(ll)zor b;"zg, .. )
hy = (0, b, bPz, ...)
hy = (0,0, 6Pz, ...)

“eey

B o=(0,0,...,0,08™ b™a, bi™a,...)
m—1 places :
form a linearly independent set in [S"®,]*. This is so for every zero of
() in o] < 1, and since the n, sequences thus generated are linearly
independent in X*, we see that for any X dim [8™wy]* = ny. Therefore
in the case X #I' we must actually have dim [§"m,]* = n, according
to our earlier inequality. : ‘

In the case X =1, if 2, is & zero of p(z) oun the circle |¢| = 1, then
the sequence (1, 2y, 2}, ...) is in [8"z,]* < I*. In this way the n, digtinet
Zeros Qf P (2) on the circle || = 1 generate another set of n, linearly inde-
pendent elements in [§"#,]' and it follows that dimf[S™u,]* }9:51 g
Together with our earlier inequality this says that dim [8P@y]* = ny+ny
and the proof is complete.

- Now using the construction of a basis for [S"#,]+ given in the preceding
Pro;f of Theorem 3.10, we obtain the following characterization of ['/S{”mu]
in X. )

TemorREM 3.11. Leét @y = (1,4a4,...,ay,0, 0,...) and p(2) == 1--
+ a2+ ... +aye". Then

() If X 5= 1, the subspace [$™,] of X is equal to the set of all sequences
(Boy by, bay -..) i X for which the fumetion f(2) = by-+b,z-+bye? - ... has
the property that f% (2) = 0 if p™ (2) = 0 for 2| < 1.

(i) If X = U, the subspace [8"@,] of 1" is the set of all sequences (bgybyy.0)
in U for which the function f(z) = bo+bi2+ ... has the property tha; fl‘;“’ ()
= 014f p(2) = 0 for [2| < L and f(2) = 0 if p(z) = 0 for 2] = 1. ‘
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Remark. The characterization given in Theorem 3.11 is valid
regardless of whether or not {§",} is basic in X. Moreover, this charac-
terization admits an obvious generalization to the case in which », is
arbitrary in X (though the proof is considerably more difficult). As such
it is very useful in obtaining information concerning the basic sequence
properties of {8"x,} in this general setting. Details will be given in a forth-
coming paper.

§4. Generalizations. If onc considers the problems treated here in
the general setting in which &, is allowed to be an arbitrary member of X,
then the difficultics encountered in attempling to answer the same ques-
tions become immediately obvious and in most cases quite formidable
(seo [2], ©.g.). If wo restrict ourselves to the easo X = I', there is available
enough structure to be able to make some progress on these problems
although many inviting questions remain. We mention here several of
the more elementary results in this area. Others will be given in a subse-
quent paper.

The question of when {S"a,} is a basis for I! has a surprisingly simple
angwer. Under the weakest of all possible conditions, namely that {8"®.}
spans ', the sequence {S"x,} is a bagis.

TesoREM 4.1. Let @y = (1, ay, ay,...) be in . Then the following
are equivalent:

i) {8"@y} is a basis for I similar to {e,}.

(i) {8"m,} is o basis for I

(i) [87zy]Pn, = N

Proof. Olearly (i) = (ii) = (iii). We prove that (iil) = (i).

As wo have noted several times previously, if f(2) =14 @a;2-+a,2*+. ..
and #, is a zero of f(») in the disc |z| <1, then the sequence (1,2, %5y« ++)
is & member of [8"x,]+. Hence (iil) implics that f(2) # 0 for all # in the
dise |¢] <L and by the Wiener-Levy theorem [3], p. 97 fHe) =1+
618 092% -1 ... with {e}2, in I\

According to our earlier remarks, the sequence {f,}r..< I* defined
DY f, == (O y Opry ooy 01, 1, 0, 0, ...) i8 biorthogonal to {8"x,} and clearly
{f,} has the property that if {f,,a> =0 for all » =0,1,2,..., then
@ == (), ‘

Now suppose # is in i*. Then the sequence {{f,, ®>}we is also in [
gince it is simply the Cauchy product of the sequences {0utrmo and

{(®, 6,530, both of which are in I'. Therefore the series 3 Ly 008" g
Ty}
is absolutely convergent in I, say to somo y. Since {fy, y> = {fu, for

all m, it follows that ¥ = & and therefore that 3 (f,, 2> 8" @, = @ for all @

Nws
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in I'. That is, {8"x,} i8 a basis for I' which, as our proof shows, is similar
to {¢,}.

Using essentially the same ideas we can prove:

THEEOREM 4.2. If &y = (1, @y, dy, ...) € " and f(2) = 1-F a2+ @22 ..,
with f(z) % 0 for all 2 in the undt dise o] < 1, then {8"w,} is a basis for I*
which is similar to {e,}.

Proof. As in the proof of Theorem 4.2, our assumptbions imply that
(@) = 142+ ... for {2, in I*. Therefore the operator @ = I 0,8 -
+038°+ ... is & bounded linear operator on I and clearly QT = TQ = I,
That is, 7 is invertible on I* and since Te, = 8", the theorem is proved.

COROLIARY 4.3. I oy €1}, the following are equivalent:

(i) {8"wo} is a basis for U similar to {e,}.

(i) {8"w,} is a basis for I.

(iii) The function f(z) = L-+a,2--a,22-- ... has no zero on the diso
l#l < 1. -

Finally we state without proof a more general version of Theorem
3.1 (for the case X = I') which settles the question of similarity of {82}
and {e,} in 1.

THEOREM 4.4. Let @y = (L, @yy g, ...) € and f(2) = L+ a,2--age? ...
Then {8™w} is a basic sequence in I* which is similar to {e,} if and only
if f(2) % O for all z on the unit cirdle 2| = 1.

The proof uses essentially the same ideas outlined above along with
certain estimates on the norms of linear combinations of {S"a,} and will

be given in a subsequent paper devoted to more general problems in this
area,
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A rvefivement of the Helson-Szegd theorem and
ihe determination of the extremal measures

by
RODRIGO AROCENA (Caracas)

Absteact. Lot Byr bo tho set of measures on the unit circle which satisfy the
M. Riesz inequality for the Wilbort transform with constant M. By is determined
by an associatod class Iz of analytic funetions. Wo give a geometric charactorization
of the elanents of Iz and devive a refinement of the Helson—-Szegd theorem. The
oxtremal measures in the cono Ry are determined. OQur basie result is tho construetion
of aosubret of extromal measures by moeans of which every elemoent in By can be nat-
urally ohtained.

I. Introduction. Lot I' denote the unib cirele, f the Fourier transform
of fe Ly (T) and f its conjugate function. Xt M > 1 is a fixed constant
and g =2 0 ameasure on T, the Xilbert transform, we shall write x4 € B, if:

(L.1) [1fPdu =< o [1firdu, VfeI*(unIt.
a r

Set R == |J Ry, Helson and Szegd proved [3] that ue R iff u is
M1
absolntely continuwous with respect to Lebesgue measure, du = w(w)dw,
and
(X.2) w = exp(u--7v),

u, vel™, e < =/2.

Consequently, from now on we ghall write w e By, iff u4 € By, Cotlar and
Sadosky proved [2] thut w e Ky, iff there exists b e H*(T) such that:
(L.8) w4 MWt -2 (M +1)Re(h)w—h|2 = 0, a.e.

Tn this paper we study first those funetions h that, by (L.3), eharac-
terize Ry, Then we statie o version of elsou-3zegd theorem for each Ry,
wnd, in particular, a simple proof of (1.2), deduced from (I.3), Finally we
determine the oxtremal yays of the cone Ry, Our basie result is:

TLORIM L Liet g = gy 419, # 0 be @ function of H*(T') with g (0) = 0
and v(g) = (0yy Uy), where
(1.4) vy = ot {(M 1) g [[(M -+1) g3 +4 Mg T},

M A1
g = axch YT (Ligo>0r— Higg<o)-

7 = §ludia Mathoematica 71,2
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