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Abstract. Useful sufficient conditions are provided on a sequence space V such

" that every matrix summing V must be conull. This results in generalizations of Cop-

ping's conullity theorem and part of the classical consistency theory of matrices o

2 semiconservative setting. For certain sequence spaces K, and ¥V it is shown that

| Kfis o (Kf, WgnV) sequentially complete for all FK spaces B containing K, whenever

the multiplier algebra of ¥ contains sufficiently many slowly oscillating sequences.

Known completeness and consistency theorems for almost convergence follow as
corollaries.

§ 1. Introduction. A theorem of J. Copping states that every matrix
which sums the bounded convergence domain of a conull matrix musb
be conull. This property of conullity is known to be equivalent to the

. Mazur-Orlicz Bounded Consistency Theorem. Furthermore, G. Bennett
and N. Kalton have observed that portions of the elassical consistency
theory of matrices can be reduced to problems involving the sequential
completeness of I', the space of absolutely summable sequences, under
appropriate weak topologies. The above work is placed in the context
of FK spaces confaining ¢,, the space of null sequences.

We shall develop a consistency theory for semiconservative spaces

" which extends the above results. An essential feature of this extension

. is the provision of useful sufficient conditions on a sequence space 14

" such that every matrix summing ¥ must be conull. Copping’s conullity

" theorem is thereby generalized to an appropriate semiconservative setting.

| For certain sequence spaces K, and V we show that Kfis o(KE, WgnV)
scquentially complete for all FK spaces E containing K, whenever the
multiplier algebra of V econtains sufficiently many slowly oscillating
| gequences.

As an application we observe that the maultiplier algebra of ac, containg
appropriate oscillating sequences, where ac, is the space of sequences
" which are almost convergent to zero. Known completeness and consistency
theorems for almost convergence/f.qg%.f\rom this one essential property
of ac,.
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The following notation will be used:
¢, ¢ are the sequences given by ¢, = 1 forall k and e}, = 0 for k = x,
ey =1;

¢ is the linear span of {¢": » =1,2,...};

o i3 the gpace of all complex sequences;

¢ = {# e w: lima = 0};

¢ = {x ew: ima existis};

m = {ren: |, = SUp Ja| < oo}

P = {zeaw: o), = (Do) < oo} for 1< p < oo;
k

= (o ew: oy, =lm |+ 3 o, ~ o) < oof;
k .

n
bs = { ew: [lz]l,, = sup |102 o] < oo};
n =]
e = {wew: Yz is convergent] with [el,, = |l -
k
Note for  ebs and y e ¢ that |3 aw,| < lolyelyllpy-
k

A sequence space i3 a linear subspace of w. A sequence space F is an
FK space if F is a locally convex Fréchet space on which the coordinate
functionals # -+ @, are continuous for each n. An FK space whose topology
is normable is a BK space. The spaces ¢,, ¢, and m are BK spaces under
the norm of m. The spaces I, bv, bs, and es are BK spaces under the indi-
cated norms.

‘We shall consider only sequence spaces containing .

n
For s ew let Py = X a6t If B is an FK space, then
=1

Wy = {weE: Py -2 weakly in H}.

The space F is an AK space it P,z — 2 for all z € B.

Let (B, F) be paired linear spaces under a bilinear form <-,->.
A sequence {¢"} in B is o(®, F) Cauchy if the map y — {{a", y>} takes B
into c. An FK space F is called semiconservative if {P ¢} is o(B, B') Cauchy,
where B is the space of continunous linear functionals on E. F is called
conull if ¢ € Wg, Le. if {Pye} is o(H, H') convergent in B. Hence, conull
spaces are Remiconservative. .

It V and W are sequence spaces, let M(V, W) denote the sequence
space of multipliers of V into W. Thus, » e M(V, W) if and only .if uv
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= {uw} € W for all veV. For any vew lct uV = {wv: veV} If B
and F are BK spaces, then M (B, ) may be identified as a space of bounded
maps from F into F, and M(F, F) is a BK space under the operator
norm. Let M(V) denote M (V, V).
If V is a sequence space, let V¥ = 3 (V, ¢s). It V and W are sequence
spaces such that ¥V < W?, then the bilinear form <(v,w) = 3 vuw, is
k

defined on ¥V x W. We shall be concerned with the weak topology o(V, W)
on V relative to the pairing (V, W). :
Finally, we shall consider matrix maps on sequence spaces. Let
A =(a,), n,k=1,2,...,be an infinite matrix of scalars. If .z e w
and Y a2, converges for all n, let Az be the sequence given by
I

(-Am)ﬂ = Za"nkmk'
[

If V is a sequence space, let V, = {z e w: 4w € V}. The space ¢, is the
convergence domain of A. It is known that ¢, is an FK space. The matrix A
is called semiconservative if ¢, is semiconservative. The functional im e ¢,

4

is defined by lim z = lim(A4x). Whenever ¢ec, and {lim ¢*} ecs, we
4 4

let

A) =1lim ¥ a,— Y lima,, = lime— ) limé*.
#(4) n%‘,.kzk,‘",m A %‘A

Let A be a semiconservative matrix with eec,. 4 is called conull if
%(4) = 0. It is known that ¢, is conull if and only if A is conull. When
dealing with the FK space c, we shall abbreviate W, , by W. A matrix 4
is row finite if the rows of A are in ¢.

The required properfies of FK spaces and convergence domains
may be found in [7] or [8]. See [5] for a discussion of semiconservative
gpaces.

§ 2. Pseudoconull spaces. A sequence space V will be called pseudo-
conull if every convergence domain containing V is conull. Then every
conull FK space is pseudoconull. The standard example of a pseudoconull
space which is not eonull is m. In this section we provide a useful sufficient
condition for a sequence space to be pseudoconull.

Let m and n be pogitive integers, m < n. Then [m, n] will denote
the interval of positive integers {k: m <k < n}.

A sequence space ¥ will be said to have the (strong) oscillating sequence
property if there exists a constant M with the property that for each
disjoint increasing sequence of intervals of positive integers there exists
a subsequence {I.}, I, = [my, n,}, and a sequence {v*} ¢ w such that for
cach E,
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(1) vf =0 for all i¢ [y, +1, Moy —1];

(ii) vf =1 for all ¢-e Iy;

(i) 0¥, < 3 and

(iv) the pointwise sum Y o*e V(v eV for every subsequence
k &

{v%} of {v*}).
Of course, if ¥ hasg the (strong) oscillating sequence property, then
80 does Vom.

Lemma 1. Let the matriz A be vow finite with ¢ € ¢4, and {lim ¢} e cs.
A

If ¢4 has the oscillating sequence property, then y(A) = 0.
Proof. Let M be a constant given by the oscillating sequence
property. Assume that x(A) 54 0. Let ¢ be the sequence {lim ¢*} . Since ¢s

ig an AK space, there exists an mereasmg sequence {I,} of pomtlve integers
such that

‘ 1
ij o= Pysally < 537 2(A)]-

Choose sequences {p;}, {my}, {n,} of positive integers as follows:
Let p; = 1, my =1,. Choose ny > m, 8o that a, ; = 0 for ¢ > n,. Assume
Dy Mgy Nz, ha,ve been chosen. Choose my.; > max{wk, l,m} Choose Py,

> p;, 8o that
ME+1

2 lwi~apk+1,sl<1/k.
s
Choose 74y > My 80 that ay, =0 for i>ny,.
By hypothesis there emsts a subsequence {[7, 8]} of the mtelvmls
{[my, n,]} and a sequence % ec, so that

=0 for i<y

ug =0 for 1y, <I< 8y ;5

By =1 for ry <1< oy;
Tk+1—l

By deléting rows of A we may assume that A hag the following form:

3
Z l@; —agl =0 as

=1

k — oo;

a; =0 for i>¢.
Finally, we may assume that a,; = a; for 1 <7 < 1y, since u e m. We are

adjusting A by adding a matrix B with Bu e ¢ and x(B) = 0.

Pty
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 Note next that
2k—1 y+1—1 &2k
(Au)yy, = 2‘121“ ‘ -*Z ( “i’“) + 2 oksi»

¥ i=rj i=top

But
2k~1 *j+1~1 11
V 1 2 a:u; I<Z IIa—P,] 10lls 2 “@‘61”1";
=1’
< Flx(4).
Also ‘
’ 8% o1
Z%M*Z“vu Z a; > x(4).
=T i=1 i=1
Therefore,
limsup |(Au)y, —1(4)] < Hx(4)]-
k
Similarly, Ta41-1 2k Tj+1-t
(A%)gp11 Z%HM’“ = 2 Uy "2( 2 ai’“f)-
% J=1 =r;

As above,

(Au)grg| < Flx(4
The contradiction Aw ¢ ¢ follows easily. ®m

Lemma 2. Let K, be a semiconservative FK space, and let V be a se-
quence space satisfying K, < V < M(KE). Then Ef = VP.

Proof. The inclusion V¥ < K% is obvious.

Let uw e KX. If v € V, then uo e K, since V = M (EK}). Also, Kf < os,
since K% may be identified as a subspace of the dual of the semiconser-
vative space K,. It follows that uv ecs, 50 we V. m

Recall that if K, is a BK space, then K is a natural BK space under
the norm of M (K,, cs).

THEEOREM 1. Let K, be a semiconservative BEK. space such that ¢ is
dense in Kf and K, = M (K?5). Let V be a sequence space such that eV
and Ky V<« M(KE). If V has the oscillating sequence property, then V.
18 pseudoconull.

Proof. Assume that ¥ < ¢ . Let a” be the a'® row of the matrix 4.
Since ¢ is dense in K%, there exists 5" 9 for each n such that " —b" — 0
in K%. Let B be the matrix whose o™ row is b".

Note next that ¥ < oy, for suppose v & V. By Lemma 2, K& = M (Kf)’.
Furthermore, a® —b" — 0 in Kf = M (K5 = M (M (K}, cs) and v e M (K%).
It follows that (¢ —b")v — 0 in cs, S0

1) Z ajv, ——2 b, 0.
7 T i

Thus, ¥ < ¢ sinece V c oy.
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But B is row finite. Also, e € V < ¢5. Finally, K, is semiconservative
and K, V < ¢g, 80 ¢z must be semiconservative. Hence {lim ¢*} e cs.
B

By Theorem 1, x(B) = 0, so B is conull

Now 4 —B maps ¢ and e into ¢, according to (1), so x(4 —B) = 0.
Since B and A —B are conull, it follows that A is conull. m

We next provide a large class of sequence spaces with the oscillating
sequence property.

LemMmA 3. Let B be a semiconservative FK space, and Zet {p,} be an

increasing sequence of positive integers. For x e I let o == 2 we®. If the
k=pp+1

series D a™ converges weakly in B and {2™} is bounded in bv, then x € Wy.
n

Proof. I fel, then {f(e")} ecs, since X is semiconservative.
Also,
Pp+1
| 3 femet], o,
Ia=pn+1

gince ¢s is an AKX space.
For any integer m suppose p, < m < 9,.,. Now

oo

I 2 ) >0 as  n— oo,
k=n+1
and
Pnt1
| 3 2 o) <[ 2 R wke" 2“ 2 S, 1
= -
=0 as n-—> oco.
Thus, since
m Pp41 ©
@ = Jaf@)+ Y afe)+i 3 o),
=1 k=m+1 k=n41

it follows that

f@) = > @f(e).
k=1
Therefore, . ¢ W;. m

LemwA 4. If B is a conull FK space, then Wy has the strong oscillating
sequence property.

Proof. By hypothesis, ¢e~P,¢ -0 weakly in H, so appropriate
convex combinations of the sequence {¢—P,¢} will converge to 0 in H.
Hence, there exists {#*} « B such that for each %

(a) o% =1 for i large;

{(b) 0 < 2% 1 for all 4;
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(¢) af is nondecreasing;

(@) okl 27k
where ! - !is a paranorm providing the topology of E. Now 2* — 0 pointwise.
Thus, we may assume without loss of generality that f = 0for 1 <i<%.

Let p, = 1. Choose an interval I; = [m,, n,] from the given sequence
of intervals such that «f* = 1 for all ¢ > m, . Assume that p, and I,, = [my,
#;] have been chosen. Choose p;., > max{p,, n;}. Then choose I,
= [Myi1, Pqa] from the given sequence of intervals with sy, > %y
50 that afs+1 =1 for all i>m,,.

By this process one obtains a sequence {¥*} = B and a subsequence
of intervals I, == [m,;, n;] such that for each %

(8)" wf =1 for i>=my, and uf =0 for ¢ < my_y;

(b) 0<uf <1 for all 4;

(¢) ¥ is nondecreasing;

(@) Wwkl< 2k

Let v = u®* —u®*! for each k. The conditions (i) through (iii) of the
strong oscillating sequence property are satisfied for the constant M = 2.

Let {g,} be an increasing sequence of positive integers. The series
2 v% converges absolutely in B, hence weakly. By Lemma 3, 2 v e Wg,

so condition (iv) is satisfied. m
Let V be a sequence space. Assume that for each increasing sequence
{pn} of positive integers and for each sequence {#"} = w satisfying 2} = 0
for 4 ¢ [P, Pnya] and {&"} bounded in bv, there exists a subsequence {x%}
such that the pointwise sum > o™ e V. Then V will be said to have
n

the gliding humps property.
LeMMA 5. Let V and W be sequence spaces. If V has the strong oscil-

lating sequence property and W has the gliding humps property, then VoW
has the oscillating sequence property.

Proof. Given a disjoint increasing sequence of intervals of positive
integers, choose a subsequence {I,} and a sequence {¢*} < ¢ satistying
conditions (i) through (iv) of the definition for the strong oscillating
sequence property of V. Since W has the gliding humps property, there
is a subsequence {v%} so that > v% e W. But > v% eV as well. m

P &

THEOREM 2. Let K, be a semiconservative BK, AX spuace such that ¢
is dense in K5 and K, =« M(K,). Let V be a sequence space such that e € V
and Ky = V<« M(EE). If B is a conull FK space, K, = B, and if V has
the gliding humps property, then Wy nV 4s pseudoconull.

Proof. Note that K, = Wy since K, iy an AK space. By Lemma 4
and Lemma 5, Wz V has the oscillating sequence property. Therefore,
Theorem 1 applies. m
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Theorem 2 generalizes Copping’s Theorem [3], Theorem 3, to a semi-
conservative setting. If K, = ¢,, then M (K}) = m. Clearly, V = m has
the gliding humps property.

Other proofs of Copping’s Theorem have been given by Wilansky
in [6] and by Bennett and Kalton in [1].

Using matrices in the setting of spaces containing ¢,, one can provide
spaces with the oscillating sequence property without resorting to conullity.

THEOREM 3. Let V be a sequence space satisfying ¢, = V < m, and
let A be a matriz with null columns such that ¢ = V. If M(V) has the
gliding humps property, then V. has the oscillating sequence property.
Hence V. nm is pseudoconull.

Proof. Since 4(¢) = V < m, it is known that Al = sup Z [l < o0,

‘Without loss of generality we may assume that the 10Wh Lnnd columns
of A are in ¢.

Choose increasing sequences {m,}, {k,} of positive integers as follows:
Choose m, so that ay; = 0 for all 4> m,. Choose &, 50 that a,; = 0 for
p=k and 1< i< m;. Assume m, and k, have been chosen. Choose
My py > My, 50 that a, =0 for i>=m,,, and 1< p<¥k,. Then choose
Bpy1 >k, 80 that a,; =0 for p >k, and 1< << my,,,.

If M (V) has the gliding humps property, the following construction.
is possible: Given a disjoint increasing sequence of intervals of positive
integers, there exists a subsequence {I,} and a scalar sequence {I;} satis-
fying

(1) 0 <1 for all 4;

(ii) %341 —% —0 as ¢ — oo}

(iii) Let » be given by u; =1, for my,_, <j< m,. Then for each
N, u; =0 on I, ;,u =1 on I,,; 4 is nondecreasing between I,,_,, I,
and u; is nonincreasing between I,,, I,,,;.

(iv) Let » be given by v; = #; for ky_, <j< ky. Then »e M(V).

Observe next that v(4de) —Au e ¢,, for suppose n is a given positive
integer. Choose 4 50 that ky_, << kyyy. If Ky < 1< Koy, then

C (Ae)n - (.A.’Lb)" = Uy, 2 Qg — 2 [
[ J

i —1 Mgl

4 S a3 s 3 )

J=ggy Je=mgp_y Gy

I=moy
Similaxly, if ky < n<Fy,y, then
Mygg
U, (Ae)n = ti-i—l 21 Qg = (A’Ll:)”.
J=my;
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Now Aeec V so v(de) eV, since v € M (V). Therefore, AucV. We
have shown that ¥V, has the oscillating sequence pwperty According
to Theorem 1, V,4nm must be pseudoconull. m

§ 3. A semiconservative consistency theory. In this section we develop
for appropriate semiconservative spaces a consistency theory based on the
pseudoconull property.

Let u € o with w; 5= 0 for all 7, let B be an FK space, and let A = (a,,;)

) 1 1 1
be a matrix. Let - denote the sequence {7} Then EWE =W =
w

n

' 1
80 % € Wy if and only if — ¥ ig conull. Also, note that for any sequence
%

space V,%VA = V_, where Au is the matrix (a,u;). In what follows

it will be clear from the context whether the symbol Adu represents a
matrix or a sequence.

LemvA 6. Let K, be an FK AK space such that K, M(K,). Let V
be a sequence space such that Ky & V « M(EK,). Assume that WxaM (V) s
pseudoconull for all conull FK spaces B > K,. Then for all FXK spaces B = K,
WgnV « W, whenever WrnV < oy.

Proof. Assume that WynV < ¢, and v e WynV. We may assume
without loss of generality that w; = 0 for all ¢, because there exists w € K,
such that w;,+w; % 0 for all 5. Then w e W, since K, is an AK space.

Now —]lWEmiV cicA, and —E is conull. Also, K, = ——E since
u
VecM(K,) and K,c B Fnally, M(V)c< —,,;V gince # e V. There-

1 -
fore, WLE NnM (V) = ¢,. By hypothesis, ¢, ZT(,OA is  conull, so
U

ueW, m
Note that if a matrix 4 is semiconservative and ¢ e l!, then %‘ ; (-
= 3 > t.a;. See the proof of Theorem 6 of [5].
i k

LeMMA 7. Let K, be a semiconservative FK space such that K, = M (K,).
Let V be a sequence space with Ky = V < M(K,). Then V = W, whenever
V < ey if and only if K& is o(KS, V) sequentially complete.

Proof. Assume that V< W, whenever V co,. Now M(K,)
cM(K%) so by Lemma 2, K = V*# and the duality exists. LLt {a"} be
ac(K%, V) Cauchy sequence in Kﬁ Let 4 be the matrix whose 2™ row is a
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Then Veoy 80 Ve W, Let a={lime}. If veV, then P —»uv
4

weakly in ¢4, so im P, v —limw, i.e.
4 4

Zam = lim Zamv,..
7 L

Thus, a” —a in o(KE, V).

Conversely, suppose V < c,. Let a” be the n™ row of 4. Then {a"}
is (K}, V) Cauchy, so a® +a in ¢(KS, V). Let fec,. Now if # e K,
and v e V, then vz e K,. Hence, K, = ¢,,, 0 the matrix 4o is semicon-
‘servative. Thus, :

Z 2 L0y, = E Z by V-
E 3 T %

The usual representation for ¢/, yields
f(@) = alimaz+ Ztk(Av)k—}— Zbim, veV
A k 1
where a is 4 constant, { el and b e ¢ . But then

f{v) = ‘12 “z"”H‘Z"’i(Ztk“ki) + Zbﬂ’i = Z"vif(ei)7 veV
b 1 3 T H3

so Ve W,. m

Lmyva 8. If K, is o semiconservative FK space and V is a sequence
space with Ky« V <« M(K,), then K, = M(V) < M(KF).

Proof. Let x e K,, ve V. Then v € M(K,), so vz € K, = V. There-
fore, K, = M(V).

To obtain the second ineclusion, observe that M (V)< M(V*). By
Lemma 2, V? = K], so M(V)c M(Kf). m

THEOREM 4. Let K, be a semiconservative BK, AK space such that ¢
is dense in K and K, ¢ M(K,). Consider the following conditions on a
sequence space V satisfying Ky« V < M(K,).

(i) M(V) has the gliding humps property;

(ii) For all comull spaces B o> Ky, Wunl(V) is pseudoconull;

(iii) For all FXK spaces B = Ky, WynV < W, whenever WenV < ey;

(iv) For all FK spaces B > K,, Kf is (K, WynV) sequentially
complete.

Then (i) ¢mplies (i), (i) implies (iii), and (iii) is equivalent fo (iv).
Also, (ii) 4s equivalent to (iil) of V = M(V).

- Proof. Let M (V) have the gliding humps property. Assume that B

is conull, K, < B. According to Lemma 8, K, M(V)< M(K). By
Theorem 2, WynM (V) is pseudoconull, so (i) implies (ii).

icm
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Lemma 6 asserts that (ii) implies (ili) and Lemma 7 yields the equiv-
alence of (iii) and (iv).

Finally, assume V = M(V). If F is conull, K, = B, and WznM (V)
< ¢y, then ¢ e W, by (ili). Therefore, 4 is conull, so (iii) implies (ii). =

The relatively strong conditions imposed on the base space K, in
Theorem 4 can be satisfied for K, 5 ¢,. An elementary computation
shows that

K ={vec: {my—a}el?}, l<p<o

provides such an example. It should be noted however that if K, is semi-
conservative, K, « M(K,), and {¢"} is an unconditional bagis for K,,
then K, = ¢,.Alsonote that if bvne, = K, (for instance, K,semiconserva-
tive) and K, < M(K,), then K, is an AX space if and only if ¢ is dense
in XK,. ’

It should be noted algo that the technigues of [1] may be applied
in Theorem 4 (iii) to replace the agsumption that WynV < ¢ by WynV
< F where F is a separable FK space.

The following result is a semiconservative amnalog to Theorem 11
of [2]. The proof is emitted, being a more or less routine semiconservative
extension of the proof of Bennett and Kalton.

TEBOREM 5. Let K, be a semiconservative AXK space satisfying K,
< M(K,), let V be a sequence space with Ky <= V < M(K,), and let A be
a matriz with K, = ¢,. Suppose that Kf is o(EKj§, W,.nV) sequentially
complete. If ¢,V < cp, then there is a constant « such that

lime — Y a,dime® = a(limm - 2 mklime")
B < "= 4 T 4

Jor all xec V.

THEOREM 6. Let V be a sequence space satisfying ¢o = V < m, and
let A be a matriz mapping cq into cy. If M (V) has the gliding humps prop-
erty, then ' is o(I', V4 nm) sequentiolly complete.

Proof. Assume that V,om < cz. Now ¢ = Vynm, 80 ¢ <= Wg
since ¢, is an AKX space. Let u € V,om. As before, we may assume thab
u; % 0 for all 4. Then

1

L ¢
¥V, A=me—
w w 2’

80
V.zlunm < Cpu-

v

According to Theorem 3, V 4,,nm is pscudoconull, 80 ¢g, is conull. There-

fore, u € Wp. '
We have shown that V,nm < Wy whenever V, nm < cg. Since

¢f =1', Lemma 7 implies that I! is o(¥*, V,nm) sequentially complete. m
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§ 4. The consistency theory for almost convergence. Let ac be the BK
space of almost convergent sequences, and let ac, be the codimension one
subspace of sequences which are almost convergent to zero. A nice discus-
sion of almost convergence may be found in [2] along with proofs of the
following known characterizations of the space ac,.

LevMa 9. (i) ae, is the closure in m of bs;

(i) 2 € ac, if and only if

n-+p—1
lim — Z @, = 0.
» Je=m,
uniformly in n.

Lemma 9 (ii) is the original characterization of Lorents in [4].

In this section we show that M (ac,) has the gliding humps pr operty.
This observation identifies the essential property of ac, on which the con-
gistency and completeness theorems for almost convergence of G. Bennett
and N. Kalton depend. See [2], Theorems 6 and 8.

If 8 is & set, let [S] denote the cardinality of §. For positive mtegels n
and p let J,, be the interval [n, n-+p —1] of positive integers. ‘

Levma 10. Buery increasing sequemce of intervals of positive integers
has a subsequence {I,} such that

1
;sup Hm: T,nd,, # ¢} =0
as p - oo,
Proof. Choose a subsequence {I,}, I, = [4,,Jm], of the given
sequence of intervals such that

7:*m»l—l —jm =m
for all m.

For a given interval J,, suppose Iy, Inryrs ooy Zagines are the llleln‘bei‘s'
of {I,} which meet J,,. Then

IMMA+Fk—~1
p> ) i>3E-1)k.

j=M+1

Hence, (k—1)" < (A—1)k < 2p, 50 k<14 (2p)2. Tt follows that

1 1
; sup l{m Im('\J”p = @} g-};(l—(—(Zp)M) -0
ag p —oco. B
THEOREM 7. M(ac,) has the gliding humps property.

Proof. Let {p,} be an increasing sequence of positive integers.
Using Lemma 10 let {I,} be a disjoint subsequence of {[Dny Puyal} satis-
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fymg - sup H{m: I,0d,, % ¢} -0 as p - co. Let {#"} be a sequence in

bo such tha.t 6™ [l < M for all m and u? =0 for all ¢ ¢ I,. Let u be the
pointwise sum 3 u”.

n
Let z ebs be arbitrary. Now

1"& 13 1
”‘l Z Wilty <—Z} 2 ufw; | < 110l |15
i=n i ielgndpy plkanp#qﬂ
1
-1;1{70 Loy 5 3| M |lys -
ntp—1
Thus, — Z wu; — 0 uniformly in n as p — oo, 50 uw € ac,. We have

i=n
shown that w e M(bs, ac,).

Finally, let @ €ae, be arbitrary. By Lemma 9 (i), choose 2" €bs so
that #" — x inm. Then ua™ € ac,and uz™ — ux in m. Therefore, u € M (ac,). =
Taking K, = ¢, and V = a¢, in Theorems 4 and 6, we obtain.

CoROLLARY  (Bennett—Kalton [2]). If B is an FK space containing
¢, and A is a matriz mapping ¢, into ¢y, then I is sequentially complete
under the topologies o(I*, Wgnacy) and ofl', (ae,) om).
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