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Weighted norm inequalities for
generalized Hankel conjugate transformations

by
K.F.ANDERSEN (*) (Edmonton, Alta) and R. A. KERMAN (3) (St. Catharines, Ont.)

Abstract. Weighted norm inequalities are considered for the operators Hj,
A> ~1, which for 2> 0 are the Hankel conjugate transformations introduced by
Muckenhoupt and Stein. It is shown that for Hj, 4 ¢ —1/2, to be of strong {equival-
ently, weak) type (p, p), 1 < p < oo, with respect to a given weight w, it is both necesgary
and sufficient that w belong to the class Ay 3; that is, for 0<a< b < oo,

b b
([ rw@ar) ([ 22w @—YE-DaP~" < O@EHHY — gt Dye,
a a

where p° = p/(p—1) and O is a constant independent of a and &.

An interesting feature of the H; is that, unlike the situation for such operators
as the Hilbert transformation, the necessary and sufficient condition on a weight for
the weak type (1, 1) inequality is not that obtained by taking the limit in the one for
membership in 4y 1.

1. Introduction. Our first concern is to characterize those nonne-
gative, Lebesgue-measurable functions w on (0, oo) for which the gener-
alized Hankel conjugate transformation H,, A> —1, i§ bounded from
I?(w) into itself for a fixed p, 1 << p < co; that is,

(11) [ (@D WPy <0 [ 1f ()P (e)de,
[ 0

the constant ¢ depending only on 2 and p. Given a Lebesgue-measurable
function f on (0, o),
(1.2) (H)y) =lim [ Q,(w,y, 2)f(2)2"de,
z-0+ ¢ :
whenever there is a set F of Lebesgue meagure zero so that the limit exists

for all y ¢ F; the kernel is defined in terms of the usual Bessel functions
by

(1.3) i@, y,2) = _(yz)—1+1lzj‘ €T sy 1ge (YB) T gy () 0
0
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The first result of this paper is

THEOREM 1. Let w be a nonnegative Lebesgue-measurable funmciion
on (0, o0). Suppose 2> —1, A —1/2, and 1< p< co. The following
statements are equivalent.

(i) w is in the dlass A, ,;; that is, for all a,b,0 < a<b< oo,
b b
s (S t”w(t)dt)( J w0 T < 0 gy,
. a a
where P = pl(p 1), O is a constant independent of & and b, and 0- oo is
taken as 0. '

@) [ IS )P0 @) dy < 0 [ 1) Pw(e) dz, the constant O daponding
0 ) ¢ :
only on A and p. ‘ i

(ii-i)Ef w(y)dy < O™ of If(2)[Pw(2)de, where t >0, B, = {y: |(H.f)(y)l
> 1}, omdt the constant C depends only on. A and p.

The case 1 =0 is that of the even Hilbert transformation; our
A, ; is then equivalent to the 4, condition of [1]. Again, for weights
of the form w(f) =", Theorem 1 above yields —p < a< (24-+1)p,
a result first proved for 2> —1/2 in [10] and later, in [4], extended to
all 2> —1 Dby the use of .other methods.

It is seen from Theorem 1 that, like other previously studied con-
jugate function operators, such as the Hilbert transformation, the conditions
for the H; to be of weak and strong type are identical when p > 1. Unlike
those operators, however, the condition for H, to be of weak type (1,1)
is not the one obtained by letting p — 1 in (1.4); thus w(t) =172 does
not satisfy the latter condition, though it is a weak type (1,1) weight
for H,. The correct result is given in }

THEOREM 2. Suppose 2> —1, A 5= —1/2. Then w is'a weak type (1,1)
weight for H;, if and only if w is in the class A, ;; that is, for some (equiv-
alently, all) positive e, '

b
a }\AH1+e $-1 pRO+Y 23+
1.5 f — 4 — R (1) dt <K,
‘( ) (a (t +b) w (t) )(esa?;)lp w(t)) @by

where K, is_a positive constant independent of 4,b,0 < a<b< 0.
It is a simple matter to show that, for fixed p in [1, oo), the clags
4,, increases with 4 on (—1, —1/2)U(—1/2, co). Again, by Holder’s
inequality, 4,, increases with p» on [L, co) for fixed A> -1,
A= —1/2. )
Basic to our analysis are estimates of @Qi(, y, 2) which are improve-
" ments of ones given in [9], p. 87 for 4> 0; their proofs are given in [4],
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Lemma 2.1 and [5], Theorem 2.1. They ensure that given A> —1, 1 £ —1/2,
there exist & =&, > 1 and 0< K, =K;(2, k), 0< K, = K,y(4, k) such
that €,(0, 9, #) is of constant sign for z above and below (y/k, ky) with
(1.6)

-Kl?/_u—l < IQI.(O; Y5 2)l; [Q}.(my Y,2)| < Kzf’/_ﬂ—li

if o0<z<ylk

Ky 2 g 1@200, 9, 2)l;  |Qu(a, Y, 2) < szz—ﬂ_2: if

while

2=ky

_ iY== o ye
@iz, ¥, 2) = Cy(y2) 1m +0 ((yz) = (1+10g+ (y-z)“))’

it yRk<z< 2ky.

Moreover, for any %> 1 there exists 0 < K, — K,(A, k) such that all
the estimates in (1.6) hold, except for the lower bounds on 1€1(0, 9, 2)].
As pointed out in the remark following Lemma 2.1 of [4], sharper esti-
mates are available for @_,,(w, ¥, #) than might be expected from (1.6).
Our methods show that H_y, behaves in the same way as Hy,.

Section 2 shows that a weight’s belonging to the class 4, ;18 sufficient
for the strong type inequality (ii) of Theorem 1 to hold ; the necessity
of membership in 4, given the weak type inequality (iii) is proved in
Section 3. Theorem 2 is treated in Section 4. In the concluding section
we briefly discuss the transformations C,, the analogue of the H, for
ultraspherical series.

2. Sufficiency. Fix an integer n and let I, = (2%, 97+1), J, = (2",
2%, For y eI, express the integral defining H, in (1.2) as the sum of
integrals over (0,2%7Y), J,, and (2"*2, oo). It is then seen, in view of the
egtimates (1.6), with ¥ = 2, that w in 4,2 will imply (ii) of Theorem 1,
if the same can be shown for the operators Hj, j =1,2, 8, 4, where,
for nonnegative f e L (w) and f, = fx,, ‘

v
CEN@) =y [ fe) e,

@Hw =v [ 1%,
v

1w = 3 a0 [ e (1iogt ) g iaras,
0

ey (y—22
AR o [ =220
(HiN(y) = lim . gﬂ 21,y f Sy

2 — Studia Mathematica 71.1
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‘We consider Hjf first. Standard results concerning the Hilbert trans-
formation will show that it exists and equals the principal value integral

%
o [ AR
2. LI LA Ay
(2.1) y f e

o>
for almost all y eI, once it is verified that [ f,(z)2*de is finite. But,
0

by Hélder’s inequality, this is dominated by a multiple of
(2.2) (f f(z)”w(z)dz)””( j zm"w(z)‘ll(p“l)dz)]’”',
0 Iy
both factors of which are finite; the second since wed,; and w #0
implies w > 0 a.c., and hence the integrability of 2w (2) and 2% w ()~ Y&~
on every finite subinterval of (0, oo).
Now, an elementary estimate gives

(ely)  2(A41)2My -

y—= = g2 30+ +0((y2)™")

for y/4 <2< 4y. This means that the proof of the boundedness of H}
depends on showing that of H3 as well as

(2.3)

oft+1 0 0
y z“?/fn (z) v
(2.4) 2! af P dz| w(y)dy < Cp, Jfﬁ(z)w(z)dz

for C,; a positive constant independent of f and #. The changes of va~
riable 2201 = 2/, 4™ = g yield (2.4) equivalent to
22(A+1)(n-+1) o0
(2.5) 17 ()W () dy < Oy [ 9a(2)"W (2)de,
22(A+)n 0

where, letting p = 1/2(A4-1), W(t) = t*&=2* Dy (%), g,(2) = 27 "f, ("), and g,
denotes the Hilbert transform of g,. The same change of variable in (1.4)
reveals that W, considered as an even function on (—oo, co), satisfies
the 4, condition of R. Hunt, B. Muckenhoupt, and R. Wheeden [3],
which means that (2.5) holds.

For H3, note first that zed,, y e I, implies |y —=2] < 3:2", s0 that

(2.6) (H3f) (@) < (gmrfa) (),
Where, in the notation of [11], §2.2, p. 62,

(2.7) p(2) = V2(L+log*827) g0 4(I21)-
Hence,
(2.8) HN )< Ofity)  (yel),
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ir beh-lg the Hardy-Littlewood maximal function of fn and ¢ = [ ¢(2)de.
Now, if (a, b) = J,, (1.4) shows that w satisfies ’

(2.9) ( fb w(t)dt)( f w(tr”@*”dz)z’“‘gK(b~a)ﬁ,

with the constant K independent of n. A vesult of B. Muckenhoupt [7]
then gives

(2.10) [1fr@Pw@)dy < 6, [ If,(2)Pw(e)de,
I, o

and, hence, the result for H3.
Since w e 4, ,, we have

(2.11) ( ftpw(t) dt) ( fr t2‘-19’w(t)—l/(17—1)dt)p"l < ngmx)p,
r 0

for 8> r. If this is multiplied by s~2(+Y7=2 and the result integrated over
(r, 00), we obtain

[ () _w® S
(f (T)Wd*)( [ ey luu) <X,
’ 0

by an application of Fubini’s theorem. It is shown in [2], §4, Lemma 2
that (2.12) is equivalent to

(2.12)

w(t)

T v
(2.13) 331:( f 7mmdlz)( f Py (1)~ ’)dt) < oo,
r [

which is the required condition in order that H} be defined and bounded;
gee [6]. ’

It remains to consider H}. An argument similar to that which led
to (2.12) shows w e 4,,; implies

(2.14) ( f t%(t)dt)”‘“’( fw (_:_)M dz)< E.
' 0 r

154

By Theorems 2 and 3 of [2] this gives

)

& oo '
J ([ v ag)” s wiey e Daz < 0, [ By =wy) -y,
[ 0 Lo . ) 0 .

(2.15)
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for h > 0. Thus, if f e I?(w), ¢ € L”(w)
followed by Holder’s inequality, yields

0 [ yg(y)w(y)dyf 0% - ofmf(z)%f-o [ wwinwwmay
<( [ rervea]”([] [wwew

(ff (@Pw(e)da) (f gywinay)”

The converse of Holder’s inequality now gives the existence and bounded-
ness of Hi.
This completes the proof that (i) implies (ii).

with f, g > 0, Fubini’s theorem,

(2.16)

" 0’ o (z)'”(p‘ l)dz)llp

3. Necessity. To prove (iii) implies (1.4), it suffices to fix on R, > 1
and to establish the result in case I = (a, b) with

(i) a=0,0>0
or

(ii) b < Rya, :
for the remaining case with b > R,a reduces readily to case (i).

Now, there exist congtants r, > 1 and d, > 0 so that
(ya)~*
ly—2’
when r;%y < ¢ < 7. It will be seen that R, = (r;--1)/2 is what Ls needed
in the proof given below.

Suppose, firstly, that I = (0,b) and let J = (k;b, o). For con-
'venience, write 4 = f z“p w(z) Nz, B = f ~22y (2)" VPN, We first

eliminate the pathologmal cases in thh at; least one of 4; B fails to be

a finite, positive number. If 4 = 0, (1.4) holds by the convention that

0- 00 =0. Tf 4 = oo, there exists a nonpegative f e LP(w), supported

on I, such that [ 2*f(2)de = co. For this f, {(H,f)(y)| = oo when g eJ;
4

(3:1) en(y —2)@:(0, 9, ) > 4,

ag is seen from (1.6). Hence, the weak type inequality for H, shows

f‘w(?/ zt"’ff P10 () di

for all ¢ > 0, which forces w(y) = 0 a.e. onJ. But then, y, eL”(w) dnd,
in the notation of (1.6),
(3.3) s ()| = K,
for yel. Thus, for fixed y eI

b

[wi<a

v

(3.2)

(3 [ksb)

(3.4) iy ) f 22w (2)dz = 0;
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that is,’w = 0 a.e. on I. In particular, [ t%w(#)dt = 0, so that (1.4) holds
i

by convention in this ease also. Thus, we may assume 0 < A < oo which

means f(z) = [z7%w(2)]7 PNy (2) bo]ongs to LP(w). It follows from (1.6)
that
(3.5) WHL) () > Ky~ 4,  yed.

Therefore, (3.2) shows that for y > kb
v
(3.6) © [ w(t)@t < Oy min 7Y PAP < oo,
b [L:BA]
and 8o w<< oo a.e. on J, thereby foreing B > 0. If it be supposed that
B = co, an argument similar to that which led to (8.4) shows w = 0
a.e. on I, contradicting 4 < co. Thus, 0< B< o0, and so g(z)
= [220(2)]"P~Vy, (2) belongs to L?(w).
Taking 0 << 4, B<< co, we have from (1.6),

(3.7) (HN ) > Ky~ "4, yed
and
(3.8) (Hgyy = KyB, yel.

The weak type estimate for H, and (3.8) yield

fwmm

v

If this is multiplied by y*~'*%, &> 0, integrated over I, and Fubipi’s
theorem applied on the left side, there results

(3.10) b*B?,

(3.9) Opay™?B, 0<y<b.

ft’”" HaA< 0y

Similarly, (3.7) leads to
w (1)

t(2l+l)ﬂ+s i< Cp.i.-b—tAl—p:

(3.11)

if 2441 > 0 and

(3.12) Jwta< o, prwa1-2,
J

if 2441 < 0. The proof of Lemma 2 of [2] may be adapted to show that
(3.10) and (3.11) are equivalent, respectively, to

(3.13) [#w(t)@ < 0,,B*
I
and
w(t : N
(3.14) w—i&; di < Cp AP,


GUEST


22 K. F. Andersen and R. A, Kerman

Multiplying (3.13) and (3.14) and using Hélder’s inequality on the inte-
grals over J, -yields

8.15) f zpw(t)d't) ( f 12202y ()40 g

Op,l( f 4243 dt)'—z’ =0,
Teab
the required result for 24+41> 0. A similar argument involving (3.12)
and (3.13) disposes of the case 2A-+1< 0.
Finally, consider I = (a,b) with b < R,a; put J =
A = [w(e) Y- B = f'w
I

case (i) above show it ma,y ‘be agsumed that 0 < 4, B< oo, and so, in
particular, that f(2) = w(2)"V® Yy, (2) and g(z) = w(z)“”‘”‘”x (%) belong
to LP(w). The choice of B, = (r;+1)/2 ensures 77y <2<y when 2 el,
yed and y <2<y when z eJ, y e I. The estimate (3.1) and the weak
type inequality for H, leads to

41
S .

(b, 2b —a). Let
~H®-1 gz, Arguments of the type used in

(3.16) f w(t Opa(b —ayPA?

and

(317 [w(@)dt < Oy 1(b—a)PBP.
I

Multiplying (3.16) and (3,17) and using Hélder’s inequality on the inte-
grals over J, we obtain

(318)

£

( fbw () fb w(t) "D < 0,0 (b - a)y.

Since b < R4, (3.18) is readily seen to be equivalent to A,, on (a,b).
This completes the proof.

4. The case p = 1. We prove the sufficiency of (1.5) first. Observe
that it implies the local 4, condition; that is

(f w(t) dt) (esis;)lp—(T)\c(b a),

whenever 0 < ¢ <b< ka, k a fixed positive constant. Lemma 1 of [2]
then yields H“ of weak type (1,1). For, letting g(2) = ¢f,(¢), we have
(HiN () = y~*g(y) when y & (2", 2%*1), so that the integral of w(y) over
the seb

(4.2)

(41)

{y e(@", 2" |(EDF(Y) > 8}

is bounded above by a constant multiple of $~* [ 1fa(2)|w(2) dz; the result
[
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follows on summing over n. In view of (2.8), Theorem 1 of [7] shows Hj
to be also of weak type (1,1) because of (4.1).

It remains to consider Hj and Hj. As for H}, Theorems 1 and 2 of
[2] give the desired result if (and only if)

43 . f(r T 0N (sup L
. 18} — 5 00, *
( ) 7>€ ; t t2/1+1 (0 £ w t) !

for, say, 6 = [22+1|. Now, (L.5), with b > 2a, leads to
A1+ d -1 (it 1), snp W (E)
(4.4) i1ty ji () < I, (b Vessint 3
bi2 (@ "‘)
K (bay@+D f () dt 5
that is, - ‘
b 20
(4.5) 267" [ Pw ()t < G [ i)
bj2 a .
whenever b > 2a. Thus, if s<'r,
”
wo Fo) - 3T (o 2
odi+1,
<22—7c6 (2—L ~1 J' 20 t)dt)
<22—’~'Joes-1 f r“w(t)dt
<C ( f t"”w(t dt)
From (4.1), the latter is bounded by a constant times essinfs > (t).

(s,28)
Since s < r is arbitrary,

o s
(4.7) . f (’—) D) 2t < 0, essint 12w (1),

1] A (0.07)

which implies (4.3).
Finally, H} will be of weak type (1,1) if. (and only if) .

* t 3 )
6o ([ () o)) <

for some 6 > 0; see [2], Theorem 5. But, (4.8) may be obtained in a way "
gimilar to that which gave (4.3): firstly, (1.5) gives
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(4.9) a*essinfw(t) < O b essinfw (1),
(a,2a) (b,28)
whenever b > a; this leads to
r t F}
(4.10) f (9—) 0 (4) @ < 0, yessinttho(2),
(7/2,00)

o

just as (4.5) led to (4.7). This completes the proof of sufficiency.

To establish the necessity, we distinguish, as we did for P> 1, the
cases I = (a,b) with

(i)a=0,b6>0
and

(il) b < Rya.
In case (ii), (1.5) iy equivalent to the local A, condition and the proof
for p > 1 goes over with the usual changes. Consider, then, case (i). The
proof for p > 1, suitably modified, leads to

f t1+z

(4.11) t)dt < ), bessinft2e(t)
(%30 ,00)

for all ¢ > 0 and to

(4.12) f dU) <0, b“’essmft"“w(t

t2l+1+a
K
for arbitrary e>0 if 24+1> 0 and for s = —(22+1) otherwise. Im
fact, (4.12) always holds when &> 0. For, if 21+1 < 0 and s > 0,
o0 zk+1k,1b
®) —aamin
f’zﬂ_ﬂ‘ﬁ S’[m 1 f w(t)dt

Tz Ic=0 2Fizb
0

< Gy b ¥170p0 Y o~ Moss ity 1)

£ (0,2%0)
o
<O (2 2-“) essinft~*4p(t).
et )

Now, if (4.11) and (4.12) are multiplied together and Holder’s in-
equality applied twice in obvious ways, there results

(4.13)

(4.14) ( f e (1) dt) (es(sos;)lp ol ) Oy, 1D+
and
T w(e 1
(4.15) ( ?m%dt) (es(i su;p W) <0, b O+
& ,00)
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for all b, e > 0. Replacing b by a in (4.15), reducing the ranges of in-
toglatlon to (a, b) in both (4.14) and (4.15), and using elementary in- .
equalities, rebults

b\ at1ts -1
(4.16) ( f (—Z-) t“‘w(t)dt) (es(sasgp ::( )) 0, (b @)+
and ’

b\ atlts 1-1
(4.17) (f (%) t"‘w(t)dt) (esz‘s;)lp i t))\ mea(B/a) Y.

Adding (4.16) and (4.17) completes the proof of necessity.

5. Untraspherical conjugate transformations.- The generalized ultra-
spherical conjugate tramsformation C,, 1> —1,4 = —1/2, is defined,
in the same manner as H,, by

(8.1) lim fQA o< 6< =,

r—l— g

» 9)f () sin*pdp,

where f is Lebesgue-measurable on (0, «). Here, the conjugate Poisson.
kernel has the form

O 24 ,
(5.2) Q.(r, 0, 9) = Zmr”yﬂsmﬂ P"”(cosB)P‘ (cos),
n=1
the ultraspherical polynomials of type P} being given by the generating
relation

(5.3) D) SPL(t) = (L—2is+8%)7%;
n(n+A) T(A) T'(22)
Iin+23)I(12)T(A+1/2)

The methods of [8], whereby asymptotic expressions for the more
general Jacobi polynomials are used to estimate transplantation kernels,
may be applied to (5.2) to give a substitute for the estimates (1.6) for
@7, 0, ¢) when 2> —1/2. This allows one to show that 0,, 1> —1/2,
satisfies the strong type inequality with respect to the weight w provided.

the normalizing factors y, by

(5.4) ( fb sin”&w(O)dﬁ)( fb sin”’"()w(0)“’("“1)116)17—1

b b— »
< G[sin“““(ﬁ::a)sin( 3 a)] ,

whenever 0< a<< b << =z
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Almost sure summability of subsequences
in Banach spaces

by
J. R. PARTINGTON (Cambridge)

Abstract. The property of almost everywhere summability, for subsequences
of a sequence of vector-valued random variables, is considered. As a particular case

N
of this, the convergence of sums (¥—1 ¥ &), for a bounded sequence (%) in a Banach
f=1

space, and a sequence (s,) of signs, is examined; the results proved relate to the
Banach-Saks and similar properties.

In this article, we will consider the notion of almost sure sum-
mability for subsequences of a sequence of Banach space valued random
variables. Our first result extends the theorem of Erdés and Magidor [7]
concerning the summability of subsequences in Banach spaces, and has
relevance to several recent results in probability theory. We then employ
gimilar teehniques to prove results on the convergence of sums of the form

(N - S’ :l:w,c) in a Banaeh space: in particular we establish a conjecture

of Beauzamy [4] relating to the alternating-signs Banach—Saks property.
Let (2,2, P) be a probability space; when X is a Banach space,
I'(X) will denote the Banach space of all equivalence classes of Bochner
integrable X-valued functions on £, as in the book of Diestel and Ukl [6],
for example.
Let (ay)i-1 be an infinite matrix of scalars. The matrix (a;) is said
to define a regular method of summability if, Whenever (s;) is a sequcnce

in a Banach space with s; —s, then the sequence (&) = ( 2 a;s;) also

converges to s. This hwppens (ef. Hardy [11]) if and only 1f

(I) There is a constfmt H such that 2 Jay| < H for all ¢,
(IT) @y -0 as ¢ — oo for each j, and

oo
II) o; = 3 a; —1 as ¢ — co.
=
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