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Almost sure summability of subsequences
in Banach spaces

by
J. R. PARTINGTON (Cambridge)

Abstract. The property of almost everywhere summability, for subsequences
of a sequence of vector-valued random variables, is considered. As a particular case

N
of this, the convergence of sums (¥—1 ¥ &), for a bounded sequence (%) in a Banach
f=1

space, and a sequence (s,) of signs, is examined; the results proved relate to the
Banach-Saks and similar properties.

In this article, we will consider the notion of almost sure sum-
mability for subsequences of a sequence of Banach space valued random
variables. Our first result extends the theorem of Erdés and Magidor [7]
concerning the summability of subsequences in Banach spaces, and has
relevance to several recent results in probability theory. We then employ
gimilar teehniques to prove results on the convergence of sums of the form

(N - S’ :l:w,c) in a Banaeh space: in particular we establish a conjecture

of Beauzamy [4] relating to the alternating-signs Banach—Saks property.
Let (2,2, P) be a probability space; when X is a Banach space,
I'(X) will denote the Banach space of all equivalence classes of Bochner
integrable X-valued functions on £, as in the book of Diestel and Ukl [6],
for example.
Let (ay)i-1 be an infinite matrix of scalars. The matrix (a;) is said
to define a regular method of summability if, Whenever (s;) is a sequcnce

in a Banach space with s; —s, then the sequence (&) = ( 2 a;s;) also

converges to s. This hwppens (ef. Hardy [11]) if and only 1f

(I) There is a constfmt H such that 2 Jay| < H for all ¢,
(IT) @y -0 as ¢ — oo for each j, and

oo
II) o; = 3 a; —1 as ¢ — co.
=
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Conditions (I) and (II) together are equivalent to the condition
that if 5; - 0, then 4, = 3 ay;s; also converges to 0. We shall use the no-
tation (yj) (@) to indicate that (y;) is a subsequence of ().

Using the theory of Ramsey sets, Erdds and Magidor proved the
following theorem. (See also Figiel and Sucheston [8].)

TeworREM A [7]. Let (%) be & bounded sequence in a Banach space X,
and (ay) a regular method of summability. Then there ewists a subsequence
(¥;) of (@;) such that either

(a) every subsequence of (y;) is swummable with respect to (ay) and each
to the same limit, or

(b) mo subsequence of (y;) is summable with respect to (ay).

Our first result extends this by considering almost sure convergence
in Z'(X). When (a;) satisties (I) and (f;) is a bounded sequence in I'(X),

let g; = > ayf;, the sum converging in the I'(X) norm. In many ex-
J=1

amples this is & finite sum for each ¢. We shall say that (f;) is almost surely
summable if the sequence (g,) converges almost surely. As this mode of
convergence cannot be specified by a metric, the arguments needed are
slightly more complicated. We obtain Theorem A as animmediate corollary,
restricting to constant functions. The theorem ‘also has some bearing
on results in probability theory to do with the convergence of subsequences
of random variables, such as the results of Komlos [12], Aldous [1] and
Garling [10].

TEmorREM 1. Let (f;) be a norm-bounded sequence in L'(X), and (a,-j)
& matriz satisfying conditions (I) and (II) above. Then there exists a sub-
sequence (g;) of (f;) such that either

(a) every subsequence of (g;) is almost surely summable with respect to (ay),
and each to the same limit, or
(b) no subsequence of (g,) i almost surely summable with respect to
(@9)- )

! Proof. We may suppose that [|f;]| <1 for each j. As in [7], we will

consider the set [V] of all infinite subsequences of the natural numbers N,
with the topology inherited from the product topology on {0,1} by
identifying a subsequence m» = (n;) with the point » with r(n;) = 1 for
all 4, r(j) = 0 otherwise. Given a sequence q = (¢;) in [N], let [q] denote
the set of all infinite subsequences of q.

A set B < [N]is called a Ramsey set if there is a q € [N] such that
[¢] = R or [g] = [NI\E.

The Galvin—Prikry partition theorem [9] states. that all Borel sets
in [N] are Ramsey sets. We shall show that

o0
8 ={me[N]: (3> aﬁf,,,j);’;l converges almost surely}
=1
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is- a Borel set. We assert that 8§ = (" ¥ {J ﬂ Tong, Where
ResN NeNQ>
Town =fm e IN): P(t: sup (3 (ay—af) (4] > 1/E) < L/}

Q=i.k2N " j

For, letting hy(m) denote

sup ” 5: u akj)fmj) (t) b

LNy

8 = {m: hy(m
= {m: hy(m) - 0 in measure}

) = 0 almost surely}

because hy(m) is a decreasing sequence of functions.

Suppose now that m e Tyyp; we will show that there is a'J such-that,
it ge[N] and g¢; =my for j< J, then q € Toyg, and thus Toyg is an
open set.

There clearly exist 8, 6, > 0 such that

P(t: S H(g(aij — )y} (8| > L/R~ 51)< 1/R—0,.

Let a = 6,/4, M = (Q N"'l) and f = 8,a/8M . There exists an integer J

such that 2 |as] < B for all i with N <4< @. So [| 2 (@5 — @) fo; ez < 26
for all q e [N] and N <4, k< Q. Thus

_P(t: ]](g(aﬁ—am)qu) > a)< 2Bl = .53/4M.

Tt g € [N] and g; =my for j<J, and N <4,k<@,

21 3t~ 1) Uy —13)) 0] > 20) < Bu12
j=1

So
i s (3300t 0] -
T “(i‘ Gij “k:)qu)(t 1|>.a‘a)< 3,2

Q=i k=N
Bo

','P(t:o;iukglvmx(% a,k,fq]) || > 1B 51+51/2) 1/R — 85+ 84/2
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and ¢ € Tong. Thus Toyp is open, and & is Borel, henee Ramsey. If there
is a q such that [g] = N\ 8, then case (b) holds. To complete the proof,
we need to show that.if there is a ¢ such that [q] = 8, then there is an
r € [q] such that the limit is the same for all subsequences of #, i.e. that
case (a) holds. We remark that, if [q] < 8, then every subsequence of
(hy) = ( qu) is summable with respect to the convergence in measure
metric (d, say). Clearly we may assume that I} (X) is norm-separable
and thus d-separable since the (ky) are essentially separably-valued. We
now adapt the corresponding argument of [7]: for n = 1,2,... we may
cover L'(X) by countably many open balls (0,,4) of radius 1/n, and find
integers (k,) and nested subsequences (Py,5) such that every subsequence
of (%, ;) is d-summable to a limit in Oy, - This is because the paxtition
involved is again Borel. Cleaxrly every subsequence of the diagonal sub-
sequeénce (k, ) is summable almost surely to the same limit.

COROLLARY 1. Let (f)), (ay) be as above. Then there is a subsequence
(95) of (f;) such thai either :

(a) every subsequence of (9;) is almost surely summable to zero with
respect to (ay), or

(b) no subsequence of (g;) is almost surely summable to zero with respect
1o (ay).

Proof. Let

8 = {m e [N}: ( 2, by fmj) - 0 almost surelyl

|
= m U nTéNIn

ReN NeN Q=N
where

Tong ={m [N]: P(s: sup || Saﬂfm,.) 0] > 1/B)< 1/R).

CQeisN
Similar arguments to the above show that Tjyy is an open set and §'

is a Ramsey set. .
One particular case of this is the following, obtained by considering

constant functions and a particular summability matrix satisfying condi-
tions (I) and (ITI).

COROLLARY 2. Let (2;) be a bounded sequence i a Banach space X;
then there is a subsequence (y;) of (@) such that either

N .
(a) |lv ‘1j§(—1)’zj|| —0 for all subsequence (2;) of (y,), or

N
(b) ||N'12 (=LY% || — 0 for no subsequence (=) of (y)).

A Banach space X is said to have the weak Banach—Saks property
(WBR) if for every weakly null sequence (%) in X there is a subsequence

icm®
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N
(9;) such that | F=* 3 4| — 0. See [13], for example. If every bounded
j=1 N .
sequence () possesses a subsequence (y;) for which || N ’IZ; (—1Yy,;|| -0,
=

then X is said to have the alternating-signs Banach—Saks property (ABS).
This property was extensively investigated by Beauzamy [3], using th.e
“spreading-model” techniques of Brunel and Sucheston [5]. In parti-
cular Beauzamy proved that X has (ABS) if and only X has (WBS) and
X does not contain an isomorphic copy of I,; moreover, he obtained the
following result. :

TemorEM B [3]. Let (x;) be a bounded sequence in a Banach space X.
Then there is a subsequence (y;) of (x;) such that either

N
@) 97 3 (=1Pys]| 0, or

(b) there is @ 8 > 0 such thal, for all subsequences (z;) of (y;) and for
all choices of sign (s;) = 41, we have

»Nl
|72 Y o] > 6.
J=1
In [4], Beauzamy improved this result to show that in case (a) one
1 N
can have N7 [ || X';(1)z]|dt — 0 for all subsequences (2) of (¥;), where
0 =1

(rj(t)) are the Rademacher functions on [0,1], and that this implies
that

“N"i\;'rj(t)zj“ -0 almost surely for all (z;) < (¥;)-
J=1

This is also expressed by saying that, for all (2;) = (¥;),

s

”N -t ZN1 s_,,z_,,“ -0 f(;r almost all choices of sign.
j=1

Beauzamy then raised the question whether one could obtain that,
N .
for almost all choices of sign, || ¥~ ¥ &2 — 0 for each of the uncoun-
j=

tably many subsequences of (y;). ) o
In the remainder of this article we shall answer this q_uest.uon in the
affirmative: indeed, we shall provide a simple characterization of the

N
set of sequences of signs (g;) for which the convergence of (N ‘1121 &%)

holds. ] ) - )
We will find it convenient to identify a séquence (z,,) .takmg Yalues +
with the corresponding sequence of plus and minus signs. Given such
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a sequence, let P, and N, denote respectively the number of plus and
minus signs occurring amongst the first m signs. Thus P, X,

.The following ecombinatorial result will be used to extract strictly alter-
nating subsequences from a sequence (g,2,).

THEOREM 2. Let (s,) be a sequence of signs such that P, jm — 12
as m - co. Then given amy positive integer k, it is possible to partition
{e1y ++vs 8} imto disjoint strictly alternating subsequences of length at least T,
together with & residual subsequence of s, terms, where s, [m — 0 as m — co.

Proof. Itissufficient to show that, given ¢ > 0, there is an integer NV
such that if # > N, we can partition {e, ...,5,} into disjoint strictly altexr-
nating subsequences of length %, together with at most ykn regidual
terms.

Let N be chosen so that [p,,/m —1/2] < y/6%2 for m > N, and N >'6/y.

Let m> N and consider the partition of {e, ..., s,} into %k blocks of n
consecutive terms.

Now for 0<r<k—1, P, <rn(l/2+y/6k?) and Ppiyye > (r+1L)n
(L/2 —y[6k2); thus the (r -1—1)“ block contains at least #/2 —(2r -+1) yn[6k?
plus signs. The same is true for minus signs. Hence we may select [#/2 —
—yn[3k] plus signs and the same number of minus signs from each block,
leaving at most %{2(yn/3%+1)) residual terms. The selected terms can be
arranged into 2[n/2 —yn[3k] disjoint strictly alternating subsequences
of length %, for each subsequence choosing one term from each block
in such a way that the signs alternate.

Since the residual terms number at most §ny +- 2k
the result follows.

We will now require a simple technical lemma, related to a remark
of Szlenk [14], which will enable us to obtain results giving uniformity
of convergence among all subsequences of a given sequence.

LEMMA. Suppose that (m,)
' such that HN‘

< ykn(3+1) = ykn,

(—1 "yu|| =0 for all subsequences (y,) of (X,). Then

sup
wp)= ()

!N“lzN'(——l)" ,,N-»o s N - oo.
n=1

Proof. We may assume that |,|<<1 for all ». I the assertion
fails; there exist 4> 0, a sequence N; - co and subsequences (@) of
(®,), % ='1,2,...,such that, for each 4,

Ny
I 3 (—1re,)|= N0

=1

8 @ bounded sequence in a Banach space

icm

A 2 —1' >

Abmost sure summability of subeequ,e'lwcs 33

Given any k, < ... < kyy, it is possible to select integers ¢ and § with
J>ky and N;8/2 > M (14 8/2)+j(1—5/2). Then

Ny
HZAMiZHmn

=j+1

|> N0 —j—M > (¥, —j+10)3/2.

Defining %y, ..., by,—jrar so that

sy ooy Ty,

) @1y}
we have

={wkMH:"' J = N;+M —j,

| ZJ’( —1)"sy,,||= To/2.

m=1

Hence 1t is possible to construct a subsequence (y,) = (#,) with Hmsup

N-»c0

/2, a contradiction. This completes the proof.
We are now ready to prove our main result in this direction, relating

the convergence of N“lu (=1)"y, and N7! Z Enlin -
n=1
TEROREM 3. (i) Let (s,) be a sequence of plus omd minus signs such
that Pp,fm —1/2 a8 m — oco. If(x,) is any bounded sequence in o Banach

space such that || =2 g (=1, || = 0 for all (y,) < (), then
. n=1 v
(yf)g&ﬂ “N_l,; snan” -0 as N — co.
(ii) There is a bounded sequence (z,) in a mewh space X, for which
- 12 1"y, || = 0 for all (v,) < (), but N“IZ enYn fails to  com-

n=1
verge fm all (y,) < (2,) and all sequences (e,) for which P,in +>1/2.

Proof. (i): By the lemma, given y > 0, there is an integer % such
that
N
sup lN“Z(——l}"yn”< y2 it N>k
()= () n=1

Using Theorem 2, we can partition {s, ..., &,} into disjoint alternating
subscquences of length at least %, together with a residual subsequence
of length s,, where s,/m -0 as m ~ co. Hence, for any (y,) < (x,),

H.q u?/n” VWL/2+Sm and so

m
sup -~ 2 el 1] <yR2+suim<y

)< (@n)

|m
for suffic‘iehtly large m. This ébmpletes the proof.

3 — Studia Mathematica 71.1
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(if): Let X = ¢, (¢,) the standard bagis in ¢; let @, = ¢, + ... +e¢,.

Then (#,) is & bounded sequence and, for all (y,) = (2,), ar, - .., oy scalars,
|3 el = | 2 @ wn||, since it is easily seen that the linear map taking
Y1 =) (& =1,..., N) to (@, —%,;) and ¥, to &, is an isometry. Thus

(P gl( =1y, || = 0 for all (y,) € ()

Suppose we are given a sequence (g,) for which N~} Z &, 18 2 Cau-
A=l

. ¢hy sequence. Then given y> 0 there is an integer M for which

M
N-! 2 Efly, — —— ), €,y

=1 n=1

<y forall N> M.

E4
Looking at the (M +1)® coordmate, we see that | N~ ‘_,_/+ &<y

M-
for all ¥ > M, and hence |N - n[< y for all suiﬁclently large N.

n=1
Hence [N~ (g+ ... +ey)] =0 if (N“’Zen ,) is OCauchy for any (y,)
n=1
< (w,), and so Py/N —>1/2 as N — oo, as required.

CororLARY 3. Let (w,,) be a bounded sequence in a Banach
that HN*‘E (—Ly,|| =0 for all (4,) < (%,). Then
|5 Y‘r () Un H —>0 almost surely and in IP (1< p< oo).

space such

sup
(vp)=lzp)
Proof. For almost all ¢, the sequence (s,) = (1, (1)) satisfies P, /m

—1/2 a8 m — co..Now use Theorem 3 (i) and the dominated convergence
theorem.

COROLLARY 4. Let X be a space with the (ABS) property, and (x,)
a bounded seque'rwe in X. Then there is a subsequence (y,,) of (w,) for which

sup | N~ 12 r,(0)2,]] — 0 almost surely and in LP (L<p < oo).
()= vp)
];1 roof. Use 00rollary 3 and Corollary 2.
Olearly it follows also from Gorolla,ries 2 and 3 that in case (a) of

Theorem B one can have su(p |-t 5‘ 7,(1)2, ] >0 almost surely
(2, v, n=
and in I? (1<p< oo). WE
I am grateful to Dr. Bollobs for his help in the preparatlon of this
paper, including a simplification of certain of the arguments used. I would
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