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STUDIA MATHEMATICA, T. LXXI. (1981)

A generalization of the Shimogaki theorem
by
LECH MALIGRANDA (Poznad)

Abstract. There ave given a necessary condition and a sufficient condition for
a rearrangement invaviant space on (0,1), 0 <7< oo to have an interpolation prop-
erty for the class of Lipschitz operators which are of weak type (X, X) and type
(L™, L) where X is any fixed rearrangement invariant space on (0, ) from the clags % .

§ 1. Introduction. An operator T that maps a quagi-Banach space X
to a quagi-Banach space Y is called a Lipschite operator it T0 = 0 and
it |Tf—Tyly <Elf—9glx,f, 95X for some K > 0. The smallest K in
this inequality is called the bound of T'. By Lip(X, ¥; K) we denote the
clags of all Lipschitz operators 7 from X to Y with the bound not ex-
ceeding K. If X == ¥, we write briefly Lip(X; K)

Now, let X be a rearrangement invariant space, 4(X) and M*(X)
rearrangement invariant Lorentz spaces (see §2), and let o-Lip (X; Ky)
= Lip (A(X), M*(X); Kx) be a class of Lipsehitz operators of weak type
(X, X) with bound not cxeceeding Ky. We say that a Banach space Y
such that ¥ < A(X)+ L™ has the dnterpolation property for the class
o-Lip(X; Kx) nLip(L*; K) if, for each T' € o-Lip (X ; Kx)nLip (L*; K),
T can be considered as a Lipschitz operator from Y into itself.

W. Orlicz [18] has proved that any Orliez space L on (0, 1) has the
interpolation property for the class Lip(L'; K;) n Lip(L™; K,,) in the
case when I<C co.

G. G. Lorentz and T. Shimogaki [8] have generalized this theorem
to the case of any rearrangement invariant space on (0,7). They have
also obtained this theorem in the case when I = oo, under an additional
assumption of continuity of the norm. In [10] an analogous theorem was
obtained for the elass Lip (I'; Ky)nLip(ey; K,) and for rearrangement
invarjant sequence spaces. Next, o sufficient condition was given in [11]
for a Banach function space ¥ on (0, 1) to have the interpolation property
for the elass Lip(L?; K,) nLip(L%; K,) and similarly for a Banach
sequence space and for the class Lip(1®; K,)nLip(c; K,). All theorems
mentioned above deal with Lipschitz operators of strong type. Interp-
olation of Lipschitz operators of weak type hag been congidered by T. Shimo-
gaki [156] who has given the following
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TEEOBEM A (Shimogaki). 4 rearrangement invariant space ¥ on (0, 1)
has the interpolation property for the class o-Lip(L'; Ky)nLip(L®; K,
if and only if «(X) < 1, where a(X) denotes the upper Boyd of the space Y.
If 1 = oo, one additionally assumes in the sufficient condition that the norm
on Y is contimuous.

In this paper, in Section 4, Theorem A is generalized by giving @ ne-
cegsary condition and a sufficient condition for a rearrangement invariant
space Y to have the interpolation property for the class o-Lip(X'; Ky)n
alip(L®; K,), where X is any fixed rearrangement invaviant space
from the class & (Def. 2.20). In the case when X is an Orliez space I,
the symbol L® % means that & satisties the condition A, (s (see [6], p. 2.3)
The necessary condition and the sufficient condition of this theorem
are expressed as in the Shimogaki theorem, but by means of indices of
Boyd and Zippin type (Th. 4.6).

In Section 3 of this paper there is deseribed the X-Hardy property
(Def. 3.1) which i3 a fundamental one for interpolation. There is also
given a generalization of Hardy’s inequality. Namely, it o(¥) < py(X)
(where p,(X) denotes the lower Zippin index of X), then ¥ has X-Hardy
property and

@y |exm ffs)d‘)”x 9|, < f his, Y)aM (s, X)|fllp-

These considerations have been inspired by the paper by P. L. Butzer
and F. Fehér [5] concerning, among other things, I*-Hardy property
(0 < 6<1) and Hardy’s inequality; in this paper the following theorem
is proved:

THEOREM B (Boyd, see also Butzer-Fehér). 4 rm;mngemmt invariant
space Y has the LM-Hardy property if amd only if a(XY)<< 0. Moreover,

(1.2) “t“"f&"“lf(s)ds“rg fso’lh(s, Y)dslif 1y -

Using Boyd’s [2] considerations it is also proved that if ¥ hag the
X-Hardy property, then a(¥) < p,(X). It can be scen that in case where
@x(t) =1 then from the above facts we obtain Theorem B and in-
equality (1.2) as.the particular case of (1.1).

In Section 5, & majorant for the class ¢ = w-Lip (X ; Kx)n Lip (L*; K,)
i found in the case where px (1) =1°, 0 < 6 < 1. The general case remaing
open.

§ 2. Rearrangement invariant spaces. Let .# De the space 'of real-
valued Lebesgue measurable functions on the interval I = (0,1), 0 <1

e ©
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< oo. A Banach subspace X of & satisfying (m denoting the Lebesgue
measure)

@1 lgI<|flae, and feX implies geX and Jgllx < flx;
(22) 0<fut, D Ifule <M
implies f = supfn €eX and Ifllx = f::gl) Ifalixs
(2.3) mA < oo implies [ f(s) dsgo,infnx,
“ with 04 > 0 independent of f e X;
(24) mAd << oo implies yyllx < oo,

where x, is the characterigtic function of tho set A4

is usually referved to as a Banach function space (see [7], [9]). A Banach
function space X is called o rearrangement invariant (rd.) space or sym-
metric in the terminology of Semenov if dy(y) = m{s e I: |f(s)] >y} < o0
for each fe X, y > 0, and if :
(2.5) for any ¢ € # equimeasurable to fe X, ie.,
geX and fgllx = Ifllx-

The nonincreasing rearrangement f* of a function f e X is an almost every-
where unique positive noninereasing function on I which is equimeasurable
to [fl. So, for an r.i. space we have

Iflz = If"lx-
Hxamples of r.i. spaces include the Lebesgue IL”-spaces, the Orlicz L®-
spaces and the Lorentz spaces 4, M and I?% Also if X, Y are r.d. spaces,
go is XnY, X+ ¥, and a* satisfy (2.1) and (2.5), where 4 is symmetric
linear subset of X(Ais symmetric if fed and g“(t) < f*(t) imply ¢ e 4).
We shall write {f, g> for the inner product f fg@)dt
i

d, = d;, one has

The associated space X' of an r.i. space X is defined by
X' ={ges: gl = sup <Ifl, lg]> < oo}.
I7llxt

It follows that X’ is also an r.i. space under the norm f[-|ly. A 1'0811}1;
due to Lorventz and Luxemburg [9] is that X is isometrically isomorphic
to X", and, in particular, the norm has the representation

(2.6) Iflx = sup{<F*, 0% lolle <1}

from which the important Holder inequality
(2.7) IKFy oy | < UFL gy < 9™ <

follows.

1 gl
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The smallest and the largest of the r.i. spaces are L'nL® and L'+ L™,
respectively, in the sense that the continuous embeddings
(2.8) . 'L e X e L' I”
hold for any r.i. space X.
The fundamental function gy of an rd. space X is given by
(2.9) ox(t) = lzeolx, tel.

The fundamental function is a positive nondecrcasing function on T
which ig absolutely continuous on [g, T) for each &> 0 and satisties

(2.10) (g () =t for all tel,
Pxitfx
(2.11) ﬂ‘%ﬂgf’-‘;—t)— a.e. on I.

A straightforward computation shows that (i) for the Orlicz space with
Orlicz norm L® one has rpL¢( ) = t¥~1(1/t), where ¥ is complementary
to the Orlicz function &, (i) for the Orlicz space with Luxemburg norm
L™ one has ¢ 14(f) = 1/ (1ft), (iii) ¢, 18 coneave function, (iv) ¢ 1o
does not have to be concave function; it is sufficient to take P(u) = u?
for 0 < 4 <1 and «® for > 1.

In [16] and [18] it was shown that X can be equivalently renormed
50 that the resulting fundamental function is concave. We agsume through-
out this paper that X is renormed in- this manner, i.e., ¢y is concave.

The rearrangement invariant Lorentz spaces associated with r.i.
space X, defined by

A(X) = {fe s Iflaz, = f ()dpx(s) < oo},

and
3
M(X) = WE J—_— ‘Px(t) " (g -
(X) fed: |flhex "’t'l}’ - F(8)ds) < cof,
€.
0
are extremal in the sense that

(2.12) A(X) e X ¢ M(X)

with normal continuous embeddings. We consider also a rearrangement
invariant quasi-Banach function space (Marcinkiewicz space)

M) = {fed: |fllaox = ‘i‘:}P(‘Px(t)f*(t)) < oo}.

For example, if X and

M*(X)

= LP4 then @y (t) ==

", go - that A(X) == L
= L, the “weak” L’-spaces. .
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The fundamental Zippin indices of an r.i. space X (see [18]) are
given by

Po(X) = po(X, I) = sup 6(s) = lim 6(s),
<8<l 80+

Poo(X) = Poo (X, I) = inf b(s) = lim 6(s),
,8>1 §—»00

where 6(s) = log M (s, .X)/logs,. and for s> 0,

M(s, X) = sup (¢ x (18) fpx (8 )
el tsel
I m(s; X) = inf («pX(ts)/wx( )), then for each ¢ > 0 there exists 6> 0
such that tenteet )
(2.13) §P0X) < M (s, X) < P70 05 < 4,
(2.14) sPoolXTs (s, X)L sPe® 0 <8< b

Tt X is the space X with an equivalent norm then po(X X) =
Do () = P (X).

The upper and lower Boyd indices of an r.i. space X (see [3]) are
given by

po(X) and

a(X) = a(X,I) = int 0,(s) = llm 0,(3),

0<s<l ) 80T
BIX) = B(X, I) = sup 0,(s) = lim 0, (s),
§>1 §->00 @

where 0,(s) = —logh(s, X)/logs and h(s, X) is the operator norm on X
of the dilation operator _

fis)y it tsel
@Hw = ’

2.15
( ) elsewhere.

From the definition of o we have that for each 6> 0 there is. & § > 0 such
that; '

(2.16) s L (s, X)L 87T 0 8 < 4
These indices are known to satisfy:

(2.17) < B(X) <o (X) < poo(X) < 0(X) <

(2.18) Po(X') = L —pe(X), Poo(X') = 1"190(X)7

(2.19) BX) = L—a(X), a(X)=1—p(X).

For familiar ».i. spaces such as the Lebesgue spaces L?, 1< p < oo, the
Orlicz space L®, the Lorentz spaces A(y) and M(y), both po(-) = B(-)
and p.,(+) = a(-) hold: T. Shimogaki [16] has given an cxample of r.i.
spaces X, such that py(X,) = pe(X,) = ¢ and B(X,) =0 or a(X,) =1
for every 0< a< 1. '
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The following class of spaces will be useful in this puper ([14]):

(220) XeZ =2I), if for some 0< b<< 1 there is a pair of

positive constants ¢ and & such that for w,vel
px(0) fpx(w) < O(vfu) i
Lt ug notice that X . if and only if p,(X) > 0; in the case of an Orlicz
space, the condition L® e % (I) is equivalent to the condition: @ satisfies
Ay (I) condition.
We shall use the following simple inequality repeatedly.
LeMMA (2.1). If £,(8), fa(8) are mondecreasing absolutely continuous

unctions such that f,(0) = f,(0) = O and if f,(s) < fa(s) for all s eI, then
for any monnegative, nonincreasing function g

[a@afis) < [g()afa(s)-
I I

vju< 9.

(2.21)

§ 3. X-Hardy property. Whereas in [3] and [5] the IM-Hardy prop-
erty (0<< 6<<1) is considered, we now want to replace IM® by any x.i.
space X. The aim of this section is therefore to introduce the “X-Hardy
property” and give necessary and sufficient conditions for this property
t0 hold. For this purpose, let X, ¥ denote any r.i. spaces on I with X € &,
and [Y] the space of bounded linear operators from ¥ into itgelf.

‘We define an operator Py associated with an r.i. space X for f e #
by

i
(31) (Pxf)(®): =gx(0™" [ f(9)dpx(®), tel.
0

whenever the integral exists a.e.

DEFINITION (3.1). We shall say that ¥ has the X-Hardy property
(we write ¥ e HPy), if the operator Px e [Y]. :

It Pye[Y¥] and |4 <r(Pg)”!, where r(Px) denotes the spectral
radius of the operator Py, and I is the identity operator, thom (I Y
exists and (I —APy) ' e[X], and

(3.2) (I—APg)™ = Y I"P},

N=0

where the series converges in operator norm, and P% denotes the nth
iterate of Py. Sinece

1
BxN)0 = oxlt™ [ gy (22D

3.3
(83 Px(t8)

ne=)
) f(stydpx (18),

icm
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one: has

(3.4)  (Pxpl)(®): = Px(I—APx)7'f(1)

1 2
= s [ o0 L) e,
0

x(is)

Levma (3.2). If Py € [X], and A > 0, then for every & > O there exists
8 > 0 such that for every u e(0, 6)

®
(3.B) hiw, Y) of M (s, X)~* @glol®rte 1P xcay e -

Proof (see [1]). Sinco Pyy e [Y] and sPo®+ < g (18)jpx(f) for
0 < 8<C 6, we have for every nonnegative and nonincreasing f, g

By 9y [ Mls, Xy ds?=Dre < [ M(s, Xy (B, S, gy dsPelrte
0 .0
< [ (px(t9) lpx (1)<, S, g) dsPoolD+e
’ .
= [ (px(-8)lpx () F(-8)xr(-s) AP, O
0

<< lox (xS0t ) alp 9lox( ) )
S {Pxyy i 9 <|Pxp fllelglly < 1Pxlimlf lzlglz-

Taking the supremum over all g € ¥’, [lgly < 1, and then over all f e ¥,
Iflly < 1, we obtain (3.5). ’

LeMMA (3.3). Let po(X) > 0. The following assertions wr.e equivalent:

(3.8)  a(Y) << po(X);
(8.7)  There ewist positive numbers K and y (0 <y < 1) such that h(s, Y)
< Kslwmo(x)-—v, 0<8< 1;
(3.8) s Fp(s, ¥) -0 as § - 0%
1
(39) Ay i= [ PO (s, F)ds < oo
0

1
(810)  Co(X, X):= [ h(s, T)dM(s,X) < oo.
0

Proof. For (3.6) < (3.7) <> (3.8) < (3.9) see [1] and [5].
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(3.6) = (3.10): Let us take &> 0 such that a(Y)--2e < pyo(X), then
by Leémma (2.1)

3 1
Oo(X, X) < [a7P=*aM (s, X)+ [ @js)an(s, x)
[} L]

é
< [ s easP = 4 comst < oo.
[ .
(3.10) = (3.6): Evidently since by Lemma (2.1)
4 4
0< [ 570 ggro@< [ 57 MaM (s, X) < Oy(X, X).
0 0

THEOREM (3.4). (a) If C(X, X)< oo, then Py e[Y] and [Pyl g
< 0o(X, X).

! ’ 1
(b) If Px e[X], then A, g := [ s?=h(s, Y)ds < co.
(1]
Proof. (a): Using the Fubini theorem, Lemma (2.1) and the Holder
inequality, we have

13

1
(Pxf)*s 6% < Pxf" 6% = [ ox®) [ 1*(ts)dpx (1s)) g* (1) s
0 0
f(ij Mgt dt)dM(s X)

1 ' 1
< [ 1L Ielg Iy dM (s, X) < [ h(s, T)aM (s, X)If gl -

Taking the Yupremnum over all g e ¥', |lgly <1, we obtain by (2.6) the
generalized inequality of the Hardy type:

1
(3.11) H% ff(s A (s) Hyg [ hs, T)aM (s, X)|fly-

(b): Let 0< A<l and A<r(Pg)™". Then Py, e[¥] and, by
Lemma (3.2),

un
h(u, ¥) [ (s, X)~*ds?=D4 Pyl
¢
i.e.

h(u, Y) < const u~Pel@re=tml0+s)  gor 4 e(0,6).

A generaligation of the Skimogalki theorem 77

Taking &< Apo(X) /(14 2), we obtain
8
Atz < CONSE [ §Po0D 4= (P (D= ApgXyteted) g 1
[]

1
+- c(mstfs’f'w‘x”zds< oo,

"According to Lemma (3.3), Theorem (3. 4), and fact that A, () <00
implies a(¥) < p_(X), wo obtain

COROLLARY (8.5). If a(Y) < po(X), then Y e HPy; if ¥ eHPy, then
a{X) << p,(X).

Ience the following follows directly:

COROLLARY (8.6). Lot py(X) == p,(X) > 0. Y eHPy if and only if
a(Y) < po(X). ’

In particular, if ge(t) =%, 0 < 0 < <1, then ¥ e Py if and only if
a(¥)<< 0 (Theorem B).

]LXAMI’LE (8.7). We consider Orlicz space Llog*L on (0, 1) generated
by thoe Orlicz functmn P (u) = ulog’u with Orlicz norm. Then

Priop+z (8) = t(1—logt), po(Llog*L)~1

(Ppiog +2.F) () == [£(1 —log#)]™ f F($)logl/sds,
0
and
1
Oo(Llog*L, Y) = [ h(s, X)logl/sds.
' [}

By Coxollary (3.6), ¥ e HP g+ it and only if «(¥)< 1.
Oonymorurn (3.8). There exist r.i. -spaces X, ¥, such  that
0< po(X) < () < Poo(Xy) (4 = 1, 2), and T, $HPy , und Y, b,

§ 4. Yoterpolation of Lipschitz operators of weak type (X, X) and type
(L%, L®). Liet (X4, Xg) bo & quasi-Banach couple, i.c., there is o Hausdortt
topologieal vector space X and continuous embeddings X, = ¥, X,=X.
The K-tunctional of Peetre is defined for 0 << i< co on X, X, (the bull
of X, and X, in X) by (of. [4])

(4.1)  K(t, f) == K (b, f; Xy, Xy)
=k {llfillx, +Ullhalx,s i € Xy, fo € Xy f o= fi-kfa}

Wo sasume throughout this section as well as the rest of the paper
that X &% huas o strictly inoreasing concuve fundamental function gy ;
this is no restrietion it 7 = oco.
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Since X €%, we have linri ¢x(t) = 0, and therefore
150
min(e 3" ®.7)

E(t,f; AX),I°) = [

¢

(4.2) f*(8)dpx(s) (see [14]).

For a > 0, f will denote the a-truncation of f, that is,
(@) = min (|f(«)], o) sgnf(@).

LeMmA (4.1). We have

%E::g:?x(s)f.(s) <

(4.3)
E{t,f; M*(X), I7) < 25uppx(6)f*(0),
868y
where
8 = {sel: s <min(px'(), 1} .

Proof. If 1< oo, then [|[flymx < ¢x(l)”f|fr,°° for f € L™, 50 1\f llage(xy
<K@ f) < Ifllgexy for 2 @x(l). Let ?’x ‘)<l and a =f*(pz' @),
and let f; = f—1, fa - = f*. Bince (f —fN* =*—(f®, we have

K (3, F) < fillagecxy + 2 fallzeo
=

SLP?’;:(S) [F* (&) = () 1+1* (ox' (1)
= sup  ox(s) [ ()~ (ox' )]+ (93 ()
o<s<rt)
<2 sup. @x(8)f*(s)
0<s<eZ ()

On the other hand, let & €(0,1) be an arbitrary fixed number, and let
f =fi+f: be an arbitrary decomposition of fe M*(X)+L™. Then

filaen +ilfelle > sup  @x(a)ff(e)+t  sup  f7(8)

1<s<-ooZh) - 0<a<ery )

= sup gx((1—&)v)ff(L—e)v)+ sup @x(v)f;(ev)
o0<veZ ) o<ose )

=(L—e) sup @x(o)fi(1—e)v)

o<ospz )

+  sup  px(0)fy(e0) > (L—s8) sup  @x(v)f*(v).

o<vseZle) 0<v<oZ )

Sinece the decomposition and ¢ > 0 are arbitrary, we obtain the left-hand
inequality.

LEMMA (4.2). If po (Y
in A(X)+ L.

) < po(X), then Y is continuously embedded

icm

4 generalization of the Shimogaki theorem 79
Proof. Since

FO<s [ OB <prE) Wflae, for all sel,

we have

min(p'(1),1)

AX), L% = |

0

”f”A(.X)-}-LW = K(1, f; f*(s)d‘l’x(s)

min(g @,
< [ ex®dpx®)f lacry-
0
(2.13), and (2.14) we obtain

min(e 1,7)

By relations (2.11),

min(rp}la),l)

[ er@dex()< [ gr(8)px(s)ds)s
0 0 ’
3 min (o7 (),7)
< const ( [ oo emleatrages [ zpy(s)“1¢x(s)ds/s)< .
Q 0

By (2.12), we have ¥ « A(X)+L>.

We denote " Ko (, f; M*(X), I®) —-S‘llp(px( 8)*(s)-

868

A resrrangement invariant gpace Y, ZlY < A(X)+L*, is called K,
monotone with regard to couples (A(X) ), (M*(X),L®), it feX,
g€ M'(X)+ I, K, ft, g; M*(X), %) < K [t, ; A(X), L) for 1 > 0, imply
geY and |glly < Olflly with some € = C(Y) > 0.

Lovwa (4.3). Y ds Ky-monotone with regard to couples (A(X), L),
(M*(X), L) if and only if ¥ cHPy.

Proof. The necessity follows from the fact that

Eo(t, Px f; M*(X), L) < 81;P¢x(8)(Pxf*)(8)
aeSy;

min (p51@),0)

-

0

fr(8)dpx(s) = K (t,f; A(X), L™).

Concerning the sufficiency, for ¢ > 0 such that ¢3

R )< sp  px(8)g*(s)
o<sPR )

== Ko(tvgi

(t) < 1 we have

MH(X), I°) < K(t, f; A(X), L=).
Henee

9" () < px ()™ [ £*(s)dpx (s
0

= (Pxf*)(w).
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LevMA (4.4). If T € o-Lip (X; 1) Lip(L*®; 1), then I, (t, Tf; M*(X),
I°) < K(t, f; A(X), L¥) for 1> 0 and feA(X
Proof. For cach t> 0 we put a =f*(min((p}1(t),
Ko(t, Tf; M*(X), L°°)
S“P‘PK Y{(ZH*( [(Tf)*]
< le (Tf) (a)”M*(X +1t'a, Where
Since 7T e Lip(Z*;1), we get [T (F@)lge < IfPlizeo <

(4.4) |Tf — (Tf)®) < |Tf —T(f9)
Therefore we obtain

Eo(t, Tf; M*(X), L) <

Z)) We have

19(s H—‘mpwx Uz 1s

= q;x(min(rp;?l(t)y D).

< 0, which implies

ITf — T (f @) llage oy + '
“min (651 0).1)

<=y +ta = f

0

(£*(s) — a)dox(s) +ta

min (p3(6).)

-

0

() dpx(s) = E(t, f; A(X), L”).

This lemma can be proved also as in [15] by means of the fact that
(4. 5) Wl = SHP’WX Has(y))-

In [17], p- 215, one can find the proof of (4.5) inthe case X = L”; the proof
for any X € is similar.
THEOREM (4.5). Lef 1<< co. Y has the interpolation property fov the
class o-Lip (X ; Kx)NLip(L®; K ) if and only if ¥ e HPy. .
Prootf. Sufficiency. Suppose that ¥ e HPy and let T € o-Lip(X; Ky)
NLip (L*; K). We fix b e A(X)NnL®, and define the operator § by

. T(f+h)—Th
.= max (Ky, K)’

Then 8 e o-Lip(X; 1)nLip (L*; 1).
M (X), L*) < E(t, f; A(X)
Iflly- This means that

IZf — Thlly = max (Kx, K )|8(f~0)|y < max(Ey, K)IPxlipnllf =5l
for fe A(X)UI™ he A

X)nL®. For arbitrary f,ge¥ we consider
the truncations £, ¢™. Then T(f™) and T(¢™) converge in the M*(X)-
quasi-norm to Tf and T, respectively, since T e o-Lip(X; Ky) and
Y < A(X). Therefore, for a properly chosen sequence (n;), T(f")) and

0

(4.6)

feAXuI®)

‘ Hence, by Liemma - (4.4), Iy, Sf);
, I®), and by Lemma (4.3), [(Sfllr < IPxliy

icm
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T'(g"9), converge almost everywhere to Tf and Ty. Since f™ e I® and
If® =™ < If—gl, Wwe obtain

NT (F*9) ~ T (g") |y < max (K, Koo) | Pxllppyllf gl -
Hence, by virtue of property (2.2),
ITf — Tglly < ) 1P xlleey If ~glly,
Necessity. This follows from the fact that

max (K, K, fge?.

(4.7) Py € o-Lip(X; 1) A Lip(L°; 1).

Remark. Since (4.7) is also true for I == oo, the necessary condition
of the Theorem 4.5 includes the case I = co.

Theorem (4.5) and Corollary (3.5) imply

THREOREM (4.6). (a) Let 1< co. If a(Y) << po(X), then Y has the
interpolation property for the dlass w-Lip(X; Ky)nLip(L®; K.,) and

(4.8) ”T“[Y'J < max (Ky, Kca)”P.X”[Y] .

(b) If X has the interpolation property for the class w-Lip(X; Kx)n

NLip(L*; IC,), then a(Y) < po(X).

© COROLLARY (4.7). Let 1< oo and lot p,(X) = po(X)> 0. Y has the
interpolation. property for the class w-Lip(X; Kx)NLip(L®; K,,) if and
only if a(XY) < po(X).

If the norm of Y is continuous, that is 0 < f, 0 implies [f,|}0,
we can extend Theorems (4. .)) and (4.6) to spaces on (0, o). In fact, we
have

THROREM (4.8). Let T = oo and let thenorm on X be continuous. Then the
statements of sufficiency of Theorems (4.5) and (4.6) remain valid if T is
replaced by the unique extension of T onto Y.

The proof iz derived from the facts that T is also a Lipschitz operator
from Z = ¥ NnA(X)N L™ (with the norm of ¥) into ¥, and Z is dense in ¥.

In particular, in case X = I' by Corollary (4.7) and Theorem (4.8)
we have Theorem A.

e

§ 5. Majorant for interpolation theorem. By Theorem (4.6) wo soe
that cach operator T' of the clags

¢ = o-Lip(X; Kx)nLip(L®; K,,)

i3 a Lipschitz operator on ¥ with the bound not exceeding max (K,
K )Pxll p) if @(X) < po(X). In [1B] it is shown that if T € o-Lip(L*; K;)n
NLip(L°; K,) and «(¥) < 1, then | Ty p < Kool (@, ¥)|Prlly, where
o = K K. For the class w-Lip(X; Ky)NnLip(L=; K,) we have

§ — Studia Mathematica 71.1
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TEEOREM (5.1). (a) If «(¥)< po(X), then
(8.1) W piprey < < K h(a, X Pxliyy; where a = n (K K5, X)

and

1
ox (1)
nis, X) = int T,
telgisel, PX (%)

o= (0, 0)-

Proof. Since gy (n(s, X)u u) < spg(u), tor any I € ¢ the operator
T = K B,-1T belongs to wo-Lip(X;1)nLip(L*;1) it 0<a< 1, and
the operator T" = KZ'TH,~ belongs to «o-Lip(X;1)nLip(L®;1) if
a > 1. Now, 5.1 is proved in the same manner as in [8].

Tor example, if gy () =1, 0< 0<1 and a(¥)< 6, then

(8.2) N lpspr < Eooh(a, Y)|Pxlliyy; where a =(Koo'K;cl)w
and
(6.3) sup {1 Tlipry: T €C} = K h(a, )Pyl -
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Added in proof. After this paper was submitted for publication, the author
answered Conjecture (3.8) in the affirmative, see Indices and interpolation, preprint.
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