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Nuclear Fréchet spaces without the
bounded approximation property

by
Ed DUBINSKY (Potsdam, N.Y.)

Abstract. We construct such spaces, thereby golving a problem of Grothendieck.
The main point ig to construet a nuclear Fréchet space which admits a continuous
norm but is not countably normed in the sense of Gelfand and Silov. In addition, wo
show that a nuclear ¥réchet space with a basis and a continnous norm can have a quo-
tient space which fails the bounded approximation property.

Since the appearance of Grothendieck’s memoir [9], many authors
have studied variations of approximation properties on linear topological
spaces. The two most important classes of spaces which have been con-
sidered are Banach spaces and nuclear Fréchet spaces. For Banach spaces
the definitions and basic properties of the most interesting variants are
found in [10] (see [17] for an additional variation). An analogous discussion
for nuclear Fréchet spaces can be found in [5], Ch. VL.

The most important result in the Banach space case is the counter-
example of Enflo [7] who constructed a Banach space which fails the appro-
ximation property. Since this is the weakest property that has been con-
gidered, onme thus has a counterexample for all of the approximation
properties.

For nuclear Fréchet spaces the situation is different. It is easy to see
[20], p. 110 that every nuclear Fréchet space has the approximation
property. At the other extreme, the existence of a Schauder basis is the
strongest approximation property which has been studied and here there is,
again, & counterexample due to Mitiagin and Zobin [15].

The approximation property is mot wvery interesting for nuclear
Fréchet spaces, and in this case, Grothendieck emphasizes a stronger
property —the bounded approvimation property (BAP). A nuclear Fréchet
space B is said to have this property provided there is a sequence of finite
rank operators on B which converge pointwise to the identity. The main
purpose of this paper is to construct a nuclear Fréchet space which does
not have BAP.
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It turns out that a property closely connccted to BAP in nuclear
Fréchet spaces is that of countably normed space (CN). This was intro-
duced by Gelfand and Silov [8]. Roughly speaking (sec below for complete
definitions), this means that the space is an intersection of Banach
spaces and its topology is determined by the norms of these spaces. Most
gpaces which occur naturally are of this type. For example, the space
& —1, 1] of real valued functions, all of whose derivatives exist and are
continuous on [—1,1], is (along with its topology) the interescetion
of the spaces #2[—1,1] (p = 0,1, ...) of real valued functions, all of
whose derivatives up to order p exist and are continuous on [ -1, 1].

It is casy to see that a countably normed gpace is o Fréchet space,
but it is on the question of the converse that our entire congtruction
will be based.

Inasmuch as it turns out that an approximation property is usually
not satistied by all spaces in a particular class, the question of permanence
becomes important. That is, if a space has a eertain approximation pro-
perty, what can be said of its subspaces and its quotient spaces? For all
of the properties except BAP, it is known in the case of nuclear Fréchet
spaces that the results are always negative in a very strong sense. The known
facts are summarized in [1]. For BAP, we show.in this paper that there
exist nuclear Fréchet spaces with bases, indeed power series spaces, which
have quotient spaces that do not have BAP. But the only thing we know
about subspaces is that the approach in this paper cannot be helpful.

One interesting aspect of our result for quotient spaces iy that the
proof makes use of the theorem of Vogt and Wagner [21] characterizing
quotient spaces of the nuclear Fréchet space (s).

An interesting question about which not much is known is whether
all of the nuclear Fréchet spaces which occur naturally as function spaces
have BAP. For example, () or s (D) where 2 is a 0*-manifold and D
an analytic manifold.

The proof of the main theorem given here is not the shortest possible.
In fact, we want to make our construction nsing the most general possible
parameters. The reason for this is to make it easier to use our congtruction
in other contexts —for example, quotients of given spaces. A streamlined
version of the proof appears in [5].

‘We would like to express our gratitude to A. Pelezyniski who pointed
out the connection between BAP and CN. The research described
in this paper was partially supported by the National Seienco
Foundation. o )

Definitions and terminology. We denote by N the set of positive
integers and by d;; the Kronecker delta. If an index is not explicitly restrie-
ted, it is assumed to run through N.
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We denote by I, the scparable Hilbert space of square summable
sequences and by ||| the norm and by (-,-) the inner product on 1,. If A
1, -1, is a linear operator, we say that A is Hilbert-Schmidt if for some
(equivalently for all) orthonormal basis (6,) Wwe haveg,: |(Ae,, €2 < co.

A Tréchet space is a complete metrizable locally convex space. Thus,
its topology is defined by an increasing sequence of geminorms (|}-llx)%
in the sense that a sequenece (x,) converges to 0 iff lim|m, [l =0 for each

w

L eN. Wo call (|-]l) & fundamental sequence of seminorms for the spacoe.
If a Fréchet space B has o fundamental sequence of norms (that is, each
1+ 1l is & norm), then we say that B admits & continuous norm. The reason
for this terminology is that, as is easy to see, this is equivalent to the existence
of a continuous norm on I

“Tf B is a Fréchet space, (|-ll) is a fundamental sequence of norms,
and k< j, then since [ol, < llzl; (zeB), the identity map (E, |-l

" (B, [l of normed spaces is continuouns so it has a unigue extension to

the completion, (B, |I-lj)* - (&, | -l)*. We eall these extensions the
canonical maps corresponding to (Il -ll)- )

We say that a Fréchet space I with continuous norm 18 nuclea,ﬁ
if it has a fundamental sequence of norms (||-[;) such that each (&, |- “k)A
is isomorphic to I, and ecach canonical map (B o) = (B, 1111z
is Hilbert—8chmidt (& e N).

In this paper, the most important example of a nuclear Fréchet
space is the space (8) given by

(5) =& = (&) D) laln* < oo, ke N}
n
with fundamental sequence of norms givén by (l|-llz) where

Il = D) 1&aln®.

This gpaco is isomorphie to tho space & —1, 1] mentioned above.
A basis in o Tréehet space B is o sequence (w,) in F such that for each
wel there is a unique sequence of sealavs (f,) such that @ = 3 t,,.

n
For the elementary facts aboub bases and nuclear Fréchet spaces,
we vefer to [13] and [19]. In particular, we will mention power series
gpaces briefly. ) .
A fimite dimensional decomposition in & Fréchet space H is a sequence
B,: B —~HE (neN) of continu6us linear operators such that each B, (H)
is finite dimensional, B,B) = 8, (n, ke N) and » =:“2 B,z (v € B).
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By subspace we shall mean closed, infinite dimensional subspace.
In particular, a quotient space will always be Hausdorff.

Finally, we define the property that, next to BAP, is central to this
paper. Let B be a Fréchet space which admits a continuous norm. We sy
that B is countably normed if it hag a fundamental system of norms (|- Jl,) such
that if (,) is 2 sequence in ¥ which is Cauchy with respect to both |||,
and |- ||j, then llmllwn“k = 0 iff 11m lle,ly = 0. It is obvious that this requi-

rement is eqmvalent to the condltmn that each canonical map (B, || [;)*
~ (B, | I)* (k< j) is injective.

Connections between BAP and CN. In this section we show that,
in the presence of a continuous norm, CN is a necessary condition for BAY.
Thus, our problem ig changed to that of constructing a nuclear Fréchet
space with a contmuous norm that is not CN, and this is precisely what
will be done.

Our first result is due to Pelezyiski and Wojtaszezyk [18]. We
include the proof here for completeness and also to point out that the space
they construct does indeed admit a continuous norm. ‘

PROPOSITION 1. If B is a Fréchet space which admits a continuous
norm and has BAP, then there exisis a Fréchet space F which admits a conti-
nuous norm, has a finite dimensional decomposition and contains & subspace
isomorphic to E.

Proof. Let (4,) be a sequence of finite rank operators on F which
converge pointwise to the identity and let (||-]|,) be a sequence of nmorms
which defines the topology of . Write B, = 4,, B,,;, = 4,,,—4,(neN)
so that each B,(E) is finite dimensional and z = Y B.# (x € H).

n

‘We define a new sequence of norms (|-|;) on B by
n

ol = sup || ) B,
n f=1

Clearly, |||, < 2|, and the unit ball of ||, is a barrel in & s0 it is a neigh-
borhood of 0. Hence, (|-|;) also defines the topology of Z.
Now we define

{(yn) Y, eB,(H), neN andZyn converges in E}
n

(xe B,k eN).

with topology given by the sequence of morms (|-|,) where

)l = supntﬁyi]l,,
" =1

It is easy to check that I is a Fréchet space, each |-|, is a continuous
porm and the coordinate projections onto the subspaces B,(H) form a
finite dimensional decomposition. Finally, the mapping which sends a
to (B,®), i8 clearly an isomorphism of F into F. m
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Actually, more is true. Pelezyfski and Wojtaszezyk show that in
fact B is complemented in I which we do not need. Also, Pelezynski
has shown ([16] and also [12]) that such an F can be chosen to have

a bagis. Using this result would make the proof of our next proposition
a little simpler but then the proof of Proposition 1 would be considerably
more complicated.

We come now to the main vesult in this section. It was originally
suggested by A. Petezynski.

ProOPOSITION 2. If a Iréchet space B admils a continuous norm and
has BAP, then it 4 ON, : i

Proof. Let I be the gpace of Proposition 1. It is immediate from
the firgt definition of ON that this property is preserved by subspaces.
Thug it suffices to show that I is ON.

Let (4,) be a finite dimensional decomposition for F and (|Ill) &
sequence of norms which defines the topology of . As in Proposition 1,
the topology of ¥ is also defined by the sequence of norms (|-|,) where

sl 51401,

Tt then follows that (4,) gives a finite dimensional decomposition for
each of the Banach spaces Fy, = (¥, |*)*, (k € N). Indeed, using standard
ideas from tho theory of Banach spaces, it suffices to ghow that (A,
is a uniformly bounded sequence of operators on the normed space (B, 1 1)-
In fact, since A.4; = 0,4, we have,

a0l = sup| Z Ay, = V4,91 < Wl

Whe = Yel,keN).

Now, sinee A,(F) is finite dimensional, 4, (Fy) = A,(F) < F. Thug if
Jyt Fypa — T is the canonical map and @ -Z'A z in F),,, then

J = 2 Ao in F;, because J;, is the identity on 17' It then follows from

the umquencs& of the expansion that if Jyw = 0, then 4,2 =0 for all
neNgo & = 0. Thus, Jy is 1-1 and ¥ is ON. m

This result will be the basis for our eonstruction. We remark in passing
that our method eannot help to find a subspace ¥ of a space F such that Vi
bas s bagls and a continuous norm and B does not have BAP. The reason
is that our method would be to show that H is not ON. However, as above,
is ON and so its subspace ¥ is also. It remains an open question whether
any nuclear Fréchet gpace with a bagis and a continuous norm has a sub-
space which does not have BAP. .

Weakly injective sequences of functions, As we saw in the last section,
our problem has been reduced to finding @ nuclear Fréchet space with
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continnous norm that is not ON. Because of the form of the definition
of N, it would be very ditficult to do this direetly. That is, the definition
of ON only requires that it be possible to select one fundamental sequence
of norms for which the canonical maps are injective. It is easy to see,
however, that the canonical maps may be injective for one choice and
fail to be injective for another choice of the norms. Thus, to show directly
that a space is not CN, it would be necessary to prove that the canonical
maps fail to be injective for every choice of norms. We know of no way
to do this directly.

An. alternative ig to find some property which is independent of the
choice of the norms and which is & consequence of CN. Then we can try
" to find & space which fails this property. We will do exactly this with the
notion of weakly injective.

Let A 8y — S{k e N) be a sequence of functions. We say that
(Apien 18 weakly injective if the following condition holds:

Vo e O Ay A (8@ )ren @ @y = and &, = 4304, (K EN).

The following diagram may motivate this definition:

Ay y
Skrt A Sk cee Sa Sy

Vet Yk Py = PN

~

B

The hypothesis in the definition is that for each %k wo can begin in 8,
with 9, =2 and “go back” to 8, and find ¥, € Sp+1 such that y,
= 4, ... 4., The conclusion is that we can actually do this step-by-step,
that is, ¥, = AYe, . Of course, this is immediate if each 4, is injective,
which explainsg the name we have chosen.

Here is another way to think about weak injectivity. The projective
limit of the sequence of maps (A4;) is the set 8 = {(@)rent @ == Apiprs
% € N}. On the other hand, it is often useful to be able to represent the
projective limit more coneretely as the set T == () 4 ... 4,(8;). For

P

example, the space [ —1, 1] mentioned in the Introduction iy the inter-
section of the spaces &7[—1,1]. Here, the maps 4, ave the inclugions.
In general, it is obvious that § < T and weak injectivity says exactly
that T < 8. !

The main result in this section is that, essentially, in a ON space,
the canonical maps are weakly injective.
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ProOPOSITION 3. Let I be ON and (||-|,) ony fundamental sequence
of morms with canonical maps Az (B, |- lp)” = (B, [1)* (ke N).
Then there exists Ty sueh that (Ay)i.y, 18 weakly injective.

Proof. Let (|-];) be a fandamental sequence of norms for B such
that each canonical map B (B, [ ) = (B, |+ )" is injective. For
convenience, we will write B, = (I, -1 and By = (H, 1 )t

gince ([|-],) and (| -1) both define the topology of ), we have increasing
gequences of indices (f), () and positive constants (a), () such that

loly, 7 wgllolly, << Biloly,, (@ ed, keN). .
We will show that (4;).y, is weakly injective.
Write O = Ay oo Ay 1y Dy By By e (B e N) go that cach
Dy, is 1-1. Now, the above m(\qmllme\ rol m» normg on X so the corres-

ponding-identity maps have continwous extensions. Thus, we have the
following commutative diagram : !

Vg —— Y= X

Vi Vi

Firgt, wo show that (Cy) is weakly injective. Thus, we assume that

@ =0y ... Ops (keN). We define oy, == O ¥p1 80 & = Oy, = @. More-
over,
DyPrin OpgrYusz = P10y oo OoaYiopn = P
= POy oo O = Dy oo D Prgalians

and, gince oach Dy I8 11, PupaOpia¥rrs = Prir Y, 80 Wo have
Optrpsn = Oy Ora Ypps == QuPirsii1Virs = QuPrr1Yisa = OYiarn = e
Henee, (0)) is weakly injective. :
I*nmlly, it ve ﬂ Ay, con Ag(Byy), then we ﬂ Oy oo OplBy )y 80
and ¥ = Ofpre Deflne () by setting ay,

ma;,c (loeN) ‘md .'r, = Ay Ay 1Y 101‘],,<l<ij- This shows
that (A, 18 weakly injective. m
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We do not know if the converse of Proposition 3 i true. That is,
it B is a Fréchet space with a fundamental sequence of norms for which
the eanonical maps form a weakly injective sequence, does it follow that
E is ON? [Added in proof: The author was recently shown that this con-
verse does mnot hold.]

The comstruction. Our space ¥ will be a projective limit of a sequence
of operators 4,, on 1,. First, we develop conditions on 4, which guarantee
that B has all the desired properties, then we construct the infinite matrices
which determine the 4, and finally we show that these .4, satisfy the
conditions. .

Given a sequence 4,: I, »1, (k € N) of continuous linear operators,
the  projective limit F with a fundamental sequence of semi-morms
(II- ) is>given by

B = {m): & = d4mpn (keN)},  Nay)ly = llawl-
It is elementary to check that H is a Fréchet space.
PrOPOSITION 4. In the above context, assume that

() (kerAk)r\jOk Ay - A5(1) = {0} (keN);

(ii) Pach A, has dense range;
(iii) Hach A, is Hilbert—Schmidt;
(iv) For each & € N there emists #*+' e 1, such that

("t ker ANy o A;(L) =B (G>F)

but
(@ +Rer )N () Ay - 4(l) =B
i>k

Then B is a nuclear Fréchet space with a continuous norm that is not CN
so H does not have BAP.

Proof. Before giving the details, it may be useful to explain the
separate roles which each of these conditions play. From (i) it follows
immediately that B admits a continuous norm. We obtain from (ii) that
the canonical maps for ¥ are, essentially, the 4, (k € N) and thus it follows
from (iii) that & is nuclear. Finally, the first part of (iv) says that, for each %
one can begin with A,#*** and “go back” any finite number of steps,
while the second part says that one cannot go “all of the way back?”.
This will imply that for any k, (4,);5, is not weakly injective.

So we begin by showing that each |-||, is & norm. Let o = (x,) € B
and suppose |z, = 0. Then @] =0, s0 @, = 0. But @y, = Ay, -
ceed@iy (> k) and Aumpy, = @, =0, 80 by (i), @,,, = 0. Similarly,
2; = 0 for all j >k and clearly a; = 0 for all j < %. Hence, # = 0.

Now we define m;: (B, |-ll,) —1; by m,(®) &= x. Tt is clear that s,
is 1-1 and norm preserving. We want to show that (ii) implies that m,
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has dense range. This argument was originally due to W. Wojtyrski
(unpublighed). Let ¢ > 0 and y €1,. We define the quantities in the following
layout:

Apy1 Ag
51,5,

Apty
—> Zﬁj—j—) 1,
ot — m}
By 0 >
voe o Qe > 02— @
That is, wo dofine @l el, (j =1, ..., n+1 and n e N) in such a way that
@, = Ayyg)™ and, bocause of (i), |of —o 1 <27 e, and o —yl < e
Tt follows that uF+7~! = lima! exists and |u*—yl < 2e.
n

Hence, if we define o' = Apt* (1< k), it follows that u = (u') e B
and. [ —yli < 26

Thus, , has dense range so it has a unique extension to an isometry
me: (B, [ll)* = 15, It thon follows that the canonical map (), |-l )t
> (B, || le)* is equal to =g *4,m, ., . In particular, it then follows from (1ii)
that F is nuclear.

Moreover, the weak injectivity of (] Ay, )gms Would imply the
weak injectivity of (4,)sy 80 it suffices to show that for each %, (4)s
is not weakly injective.

Given % we have o*+! from (iv) so for j > & we have y; and #;,, such
that

Akco"”"l = A'kyj

Hence, A,z*™ e () Ay ... A;() 80 if (4;); were weakly injective we
i=h

and ¥y = Agr oo Ay

would have (v;)5, Wwith v, = 4,@* and v; = Ay, (j > k). But then

= Jo-+-1
Ay =V, = 4@

80 Uy €@t pker 4, and, for §> k,
Vi == Apr +++ Aty

A0 Dy € (1) App « - Ay (L) which contradicts tho second statement in (iv).

Our result then follows from Propositions 2, 3. m i

Now, wo construct the infinite matrices which deterrpu.l_e ‘the oper-
abors Ay: Iy =1, (b € N). We bogin by decomposing 1, into 1ntm1tely many
pairwise orthogonal infinite dimensional subspaces H (ar)(v_eN). We eall
H(») the »® blogk. Bach H(y) is similazly decomposed into sub-blocks
Hp(») (m eN). For each m,» we fix an orthonormal ba,s.m (omn("'))neN
for H,,(#). Thus, {6um: M, n,» € N} is an orthonormal basis for 1.

Fixgt, we givo a “geometrical” deseription of the matrix of 4, with
regpect to tho basis. Bach block H(v) is invariant under A,. For each
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v %=k, 4, is a diagonal operator on H(v). Now we consider the aetion
of A, on H(k). Bach sub-block H,, (k) (# =1, ..., k—1) is invariant
under 4; and 4, is a diagonal operator on it. The subspace generated
by the sub-blocks H,, (k) (m > k) is invariant and on it the matrix of A4,
has the following form:

N
N
N

Hiwalk)
(All positions where nothing is indicated have 0). All of the sub-blocks
H, (k) (m>k) have the same form. Of course, it must be remembered
that this picture is misleading in that each sub-bloek is, in fact, infinite.
‘With thiy pattern in mind, we now give the precise valueof A6y, (»).
Let {A%, (v): m,n,%,»e N} be a set of positive real numbers such that

D ()P < oo

myn,»

By (k)

Hy (k)

(% € N).

We define part of each A, (keN) as follows:

If
v £k
ory =k>m y seb A, 6 (¥) = zm(,,)gm(v)
or v =k =m and n>1
and. it

v=k<mand n>1, set

Extending 4, by linearity and continuity, we have cach 4, defined on
the subspace generated by the blocks H(v) (v 5 k), the sub-blocks H,, (k)
(m < k), and a subspace of codimension 1 of each sub-block H,, (k) (m 2 F).
Moreover, on each sub-block H () (v # k) the matrix of Ay is diagonal
with a non-vanishing diagonal sequence (A%, (»)), and lmu’t,’ﬁm( ) == 0.

For convenience of notation, we will write Ay -

A when m = %
and consider this to be the identity when m = k.
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Fix m > k. If we consider the operators Ay ;... Ay and Ay, oo Ay
vestricted to the subspace H of I, generated bY 6,,(k) (% > 1), then
these two operators (as far as they have been defined) have the property
that H and its orthogonal complement are invariant under both of thgm,
and on H they are diagonal. Moreover, if (a,), (8,) are '1;hc respective
diagonal sequences, then a,>0,f,>0 (n>1) and 11:30 (Brlay) = 0.

Hence, there exists wf, e H such ihai. wk is in the range of A ... 4,
but not in the range of A;.; ... 4, - We write

° Z smn man ]G)

N

Tt follows that .4, has been defined so we may write,

- A+ Aol +ldsom| and  wk?

K L ape
‘?ml Afru (]G) = Smleml (k) 'I Wy

and set

1 .
Ay (e (B) =—— (62 () — A0y -

ml
Notice that if this is done for all & e N, none of the properties of 4, e
Ay Apyy oo Ay used above are affected.
7'1"‘;118 Eomple{:?as the definition of the operator 4, (k e N), and we
summarize by writing, for any family of scalavs {v,(»): m,n,» e N}
such that 3 (9,,(»)* < oo, the forroula

Ty
M A D va)emn)) = S ) )00+
e ow‘jizgm
() o5 owath) ety D) h)(w,m(k S0, a0+
= S n>2
I 3 8,1;‘ n+1 |
LIPS U (1) 1)
m>h neel

PROPOSITION 8. In the above context, we lave
(@) 1My )| < Hen(#) for all mym, v &N
(i) Al == ey, (R) for all m > T; ,
(iii) For each m = b, uE™ e Adypq o Ap(ly) but Wl ¢ Appr oo Ay (B)-
Proof. From the construction we trivially have (i) for all cases
except v = k<< m and n = 1. For this case we have

1+ 4ol
I-Akeml(k ” By T ko

8m 1

= Ay ().
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To verify (i), we compute,
Al =gk A 6, (B)+ AWk = e (K).

ml

Fmally, we observe that from the construction it follows that e, (k)
and w¥ are both in 4, . (%,) and so % is also. On the other hand,
b () s in : PR A.,,H.l(l ) but wk is not, so wE is not. Thus we have
(iii). =

PROPOSITION 6. In the above context, we have

Kerd, ={v = S e 36 W < oo and e - o).
M=k m=k Mmanle
Proof. Suppose » is in the given set. Now the sequence (k).
» is orthogonal and 4, is continuous by Proposition 5 (i) and the fact that
3 (A, (»)* < co. Hence, by Proposition B (ii) we have

m,n,y
A = 2 £, A (WY =(2 Em\) O () =
m=k M=l

On the other hand, if v ekerd;, we first expand v as follows:

2= 3 3 tpa(0) ema()+ 2 D Nt () + 2 (6t + 3 Euntnn(0)-
v#£lk man m=1 n nsd

That is, on the blocks H(¥) (v # k) and the sub-blocks H,,(k) (m < k)

we have used the orthonormal basis, 6,,(») while on each sub-block

Hm(k) (m > %), since the component of %' corresponding to e,, (k) is

shy 7 0, we can replace e, (k) in the orthonormal basis (6, (%), by

kit and we still have a basis.

Thus if we apply 4, to », we obtain from Proposition 5 (if)

0 =A4w —22777751; mn ) b ”)+2 annlk (%) ey, () -+

vk m,n m=l m
800+ ) G B (1) tn () + 3] et (8) + ) Bl ()0 s (B)
n=>2 m>k N2

But this is now an expansion in the orthonormal basis (6, v)),,,,w g0 the
coefficient of each e,,(») is 0. Hence, all %, { terms vanish and 2, &y = 0.

It therefore follows that v = 3 &% and by the 01th0gonalxty,

mzl

2l mh [ < oo

All of the ingredients are now present and we are ready to prove
the main result of this paper.
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TaEoREM. The space T constructed above is a nuclear Fréchet space
with a continuous norm but B is not CN. Hence, F does not have BAP.

Proof. We obtain our result by using Propositions 5, 6 to show that the
operators constructed satisty the four conditions of Proposition 4.

Condition (iii) of Proposition 4 follows from Proposition 5 (i) and the
fact um, ¥ (z,,m )< oo

To Sh()W that A, has dense range it suffices to show that every e, (v)
(m, n,v eN)isin the range of A,. For » sk or » = k> m, this is im-
111(‘(11‘1,1,(\ from (1), Now in (1) 8ot 9,,(») == 0if » % k or ¥ = &k > m or both
y = k< mand n = L. Ingpection of the resulting relation shows immedia-
Loly that 6, (k) is in the rvange of A, if k< m or both k = m and n = 2.
Tinally, 6, (k) = A,u;“" by Proposition b (ii).
We turn now L(» condition (i) of Proposition 4. Let v eker 4, so by
Lo
Proposition 6, v == V‘ E bR T £, = 0 for all m >k, then sinee I &,
Py me=l
= 0, it would follow that v = 0. Let m > k with &, 5 0. Thenifo e 4,4, ...
A s (1), 16 would follow from the diagonality of this operator on each
H, (k) and the fact that the orthogonal complement of H (%) is invariant
under this operator that ! ix in the range of Ay, ... 4,1, (L). By Prop-
position 5 (iii) this is not ﬂm case.
Condition (iv) of Proposition 4 ig obtained similarly. We set 2"+ = uft!

(ke e N). Let v e kerd, 50 again 0 == 2,] Eult and if &, == 0 for all m > &,

M=
it would follow that v = 0 and by Proposition b (iii), #*** is notin the range

of Ay,. Heuee, if a™'+ve () dypr-e- 44(), we have m>Fk with
i>k

&, # 0. Exuetly as in the previous paragraph it follows that if ot

were in the range of Ay, ... Ay, then so would be wft which it is not.
Thus, the second part of Proposition 4 (iv) holds. To Venfy the first part

we use Proposition B (ili) to conclude that o+ - uft —g"+' is in A, ., ...
o by () (m > k) and Dy Proposition b (ii), uﬁfﬁ‘—m"“ ekerd,. m

Tt should be noted that this construction corrects am error in [3],
Theorem 1, where it is asserted, essentially, that such a space cannot
exist. The error in the proof occurs on page 151, dine 10 from the bottom
where it iy aroncously claimed (and subsequently used) that each f
is an igomorphism.

A furthoy obgervation is that the nuclearity does not play a primary
role in the theorcm. Tt wus eagy to construct B to be nuclear and this,
perhaps, is the most important case. Bub it was unnecessary and our
result is really about Fréchet spaces.

Quotient spaces without BAP. After the first construction of & nuclear
TFréchet space without basis by Mitiagin and Zobin [15] and especially

7 — Studia Mathematica 71.1


GUEST


98 Ed Dubinsky

. with the simplified version of Djakov and Mitiagin [2] it was not difficult
to show that this pathology is ubiquitous —indeed, every nuclear Fréchet
(except ) has both a subspace and a quotient space which has no basis
[4], [6].

Analogous results for BAP seem to be more difficult. Of course, by
the embedding theorem of Komura and Komura [11], the space (s)¥
has a subspace without BAP. But we do not know a single example of
a nuclear Fréchet space with a basis and a continuous norm that hag
a subspace without BAP.

For quotients we know a few such spaces which have a quotient
without BAP but we do not have a general result. In this section we show
that (3) bas a quotient without BAP and then we indicate how this could
be done for a few other infinite type power series spaces.

Our problem is to show that one of the gpaces we constructed is igo-
morphic to a quotient of (s) and for this we use a result of Vogt and Wa-
gner [21] who showed that a Fréchet space F is isomorphic to a quotient
of (s) iff H satisfied the following condition, called (£):

There is a fundamental sequence of morms (Il*lp)pen aVpdg > pa
Vr>¢30,D> 05

()P < Cllulif (Iellp)®  (w € B').

Here ||-|* refers to the dual of ||-|| given by [lul* = sup{|lu(®)|: || < 1}.
LemmA 1. If we set

1

/’Lﬁm(v) ha }'mn("') =

2 (maw)?
5 = [l ()™ (n22,m>k),
then all of the req uirements of the above comstruction hold and, moreover,
we have
(1) Apn(¥) < Ay (v) (m, m,v eN);
(ii) Z’mn('p) < 42'm,fn—H (») ('m'y n, v EN);

(iif) Z 8 an ()
Proof It is obvious that 3 (1%,

:’n s
to show that w}, is in A,,; ... 4,,(1,) but not in A4, ..

where w? = 2 8 wln(T)- l\Tow }: A1) €0 (B) €1, and

A D hn ) b)) = 3 (b (B0 () =

n=>2 n22

On the other hand, it suffices to show that it 3 4,6,,,(k) €1,, then applying
n22

(m,n,veN),

<12 (k< m).

(#))? < oo and it is only necessary
Apia(l) (m>E)

Ajyr -

icm
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Apyy - Apya to this vector cannot yield wk . Indeed, this application
yields ' 1, (Ao (B))™ 0y, (k) which gives wf,iff 4, = 1(n > 2) and this
n=2

is impossible since |, (k)| = 1.
Now we turn to the three conditions. Conditions (i), (ii) are immediate
from our definition and for condition (iii) we have, for & < msince 4, (k)<1,

< il B > 1wl 1
D bl (1) = ) (bl '°+2<2( () ZZ—%—E<§
nﬂz n=2 T =2

For the remainder of the paper we adopt the values agsigned in the
above Lemma. In particular, we write 1,,,(») instead of A%, (»). Of course,
this does not mean that 4, is independent of k.

Our next stop is to write the formula for 4}, the adjoint of 4. If

{wyn(): m,myv e N} i o square summable sequence, then we have
@ A D om0 am®) = D ) em) +
MyNY v£le
or y==f>m

Or p==fomqi, n>1

870” .
D b (1) )
Sk

2

-+ Z( T Wi (k) ~ 2

m>k

+ 2 Zam(me,n_l(k)em(k)-

m>k n>2

1
+ (ot -

123

matt g (1) (1)) e ()

The best way to verify thig formula is to use it along with formula (1)
for 4, to check that (4., w) = (v, Ajw) for each v, w el,. The details
are lengthy but completely straightforward so we omit them.

Luvma 2. In the above contewt we have

D) e (I < oo.
MMV
Proof. For simplicity of computation we omit the term LA yer (T
Tor the others, we have immediately from (2) that
it » sk or v ==k >m, then

AZ%L(V) 5 D (V) e (),

it »s=k =m and n>2, then

%
Aoy (¥) = ——Zigfzm<k>em<h>+m(k) Oun ()


GUEST


100 Ed Dubinsky
if » ="k<m and n>71"then
SE o .
Zemn(y) = - n;,kn = j‘m.,n+1 (k)eml(k)'l'z'm,n+1(k)em,n+l (ID)'
ml
Hence,
%
8, ,
Al 0 < ML B+ D) tun )+ D) 22 T (4)
oy mmy mk ml
n,

and since 1/s5, < 2 (k) <1 and S, < Ay, (k), this quantity is finite. m
In our context and with the values assigned it is now possible to
relax condition (Q) a little.

Levma 3. If v ely, let | = sup|(v, 6,,(v))|. Assume that the oper-
m,n,»

ators (4,,) satisfy the condition (y:
Vp <30, D> 03 AP < Ol4) ... Ap]
Then the space in our construction satisfies condition (£2).

Proof. Our first step is to interpret the inequality in (Q) in terms
of the operators Aj. Returning to the proot of Proposition 4 we have
igometries my: (H, |- [)* -1 and, writing B, = (&, I*1x)* we have, for
k<j the commuting diagram ‘

(lv] < 1).

e dy_y

Ay
IS >1y
A

A
| |7
s
B, . B,
where I; is the canonical map. Dualizing the diagram we obtain,

» »
A7y edy,
li———— 1y
|3
U
?‘Ej

.
T

By,

I.

ky
where =}, @ are still isometries and Ij; is the injection which is usually
interpreted by identification to be the inclusion. Without this interpret-
ation, the inequality in (Q) really means:

(ITpqulig)”* < O uly (i)™
Now if k< j, we have for v el,,
WDl = Nl Ay . ARl = (145 ... Ajol
and since each «j is an isometry onto, the inequality in () ix equivalent to:

(143 - 43012 < AL, ... Afol(Jol) (0 <)

(uwe ).

icm°
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Now suppose thatb (f)) holds. Given p take q = p+2 so if > ¢, then

y—1 > p and we have C, D such if v e I, we may compute, using Lemma 2,
(Mg - AJol)PH == (47, A0l

< 2 11437 un )| | 451

MMy ¥

* -
< O, | 4piP*! = 0,

(e )

. ® D41
'AT"W I,DID+I

v

o O
G Uy

*
A

Ajolfol?

*

Al ol”. m

* .
p: [o}PHE

s gl AL
S AV L

We are ready now for the final computations. They are not completely
straightforward and so we give them in detail.

PROPOSITION 7. The space (8) has o quotient space which does not
have BAP.

Proof. In view of Lemma 3 and the regult of Vogt and Wagner,
it suffices to show that the operntors Ay (constructed with the values
given in Lemma 1) satisfy (ﬂ). Given p < r, wetake 0 =47 D =r—p.
Now condition (fz) hag the form,

(3) SUD [(ANW, 0y (ML 477 sup | (A7 +o0 A0, 60 (7)) |-

My My¥ My,
We will establish this by showing that for each m,n,» the quantiby
(A3, 6y (»)[~?+" is dominated by the sup on the right-hand side. All
of this need be done only for |wy,,(») <1.

We will considler three cages corresponding to the value of ».

Oase I. v< p or »> . In this case all operators 43, ..., 47 are diagonal
and we have

[ (2) W0y (#) g0 [(l‘mn (,‘,>)r-:n--l«1 wnm(")l ’

hecause [w,,, (»)] < 1.

Oase IX. » == p. The formula for Ay is obtained from (2) by replacing k,
v with p. The operator Ay ... 4% is 4y followed by o diagonal operator.
Thus, its formula iy obtained from (2) by replacing k, » with p and multi-
plying each 6, (8) by (A (p))"". Wo consider beparately four cases

corresponding to where the max occurs in computing ldyw| = sup |(Ayew,
m,n,Y

)+
Max ocours at (m << p) or (m =p end n > 1). This leads to exactly
the situation on Case L
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Max occurs at m =p and n = 1. We will show
r—p+1

1 o
Twpl (p) - Z ) l}m(p)’wpn
Sp1 = Sp1

< O (p))?

1 sb,
Tg—f;_l- pl(p)_Z :) 2‘ (p) ]Jn( ).

nse Pl
After cancelling this reduces to showing

313 (1+ 2 Spn }"l(-p)

n>%
By definition of s}, and Lemma 1 (iii) the left-hand side is dominated by
22,1 (p) 80 the inequality holds.
Max ocours at m>p and n = 1. We will show

1 o2 r—p+1
_Srw_’pl (p) _2 7:£+1 Am,n+1 (p)wmn (f’)
n

ml ml
1 Y St
N1
Wy (P) — } —
— S

’I)‘ﬂ

< O(Am)™?

,nﬂl(p) 1)11( ) .

The argument is identical to the previous case.
Max: ocours at m > p and n > 2. Again, we have the “diagonal” situ-
ation and the argument is identical to Case I.
Case IIT. p<<w<Cr. The operator Ay is diagonal. The operator
A} ... Ay is the operator A} preceded by the diagonal operator Ay, ...
.. Ay and followed by the diagonal operator A ... AY,,. Thus, the formula
for A} ... 4, is obtained from (2) by first replacing & by », second multi-
plying each w,,(») DY () ? and finally multiplying each 6,,(»)
bY (A (#))""". We obbain the formula for the action of A} ... A} on the
block H(») as follows:

2 (Zwm ("’))"—IH-I‘wmn (V)emn('p) +

y>m
orv=m,n>1

+ (}‘vl ('V))r~w (;:1 (}“vl('”))'y—pwul(”) - Z svm ('1 (¥ ))v_ﬂﬂwﬂn ("')) 64y (V> “+

= S
« S

mz>y

- 2 _%_1‘ (}“mn("'))y—p }'m,n—H (V)wmn ("’)) Cm1 (») +
+ 2 > C=s )7 (i 01~ 12 0) )

m>y nz2

A ... Al (w) =

(A ()P0, (v) —

icm
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Again, we consider separately four cases corresponding to the index
at which the max occurs in computing |dzw]. But this time we cannot
always compare with the corresponding term in |4} ... Ajw|. Sometimes
a different index will have to be chosen. This is okay because the right-hand
gide of (3) is & sup. We will indicate in each case the choice of index for
AL ... Agw|.

Max occurs at (m<») or (m =y and n > 1). We choose the same
index for |4y ... A;wl. This is the diagonal case and the argument is iden-
tical to Case L.

Max ocours of m == v and % = 1. We choose the same index for |4y ...

.. Adw| and we will show .
V[ A ()VF
wa)= 7 (220 oy
noe

/'L’ L]
) < 0 2T

1
Because the max occurs at m ==p, n =1,
< Ay (#)|w,1 (#)] (n > 1) 80 by Lemma 1 (i),
1!’71:(‘1))

()
. Svn "’) Wy, ("’)

we have A, (n)]w,, ()]
(iii) and the fact that »—p =1,

AP, }
2(];(_1))) Sy vl( Y, (v)]

n=2

< Z A (¥

n2>2

vl ("’)
YEalw, (0)] < dlw,, (9]
Hence, it suffices to show that

(AW ()2 < (27 (i“;,“)“_

or, that
A (v)sy < 02,
Now by our construction and Lemma 1, we have

In0)sy = 1+ [ 4)| = 1+H PR I

e 1 “Zamzm ) 6,0, () H = 1+(Z S (7)) )112

- 1+(2 () < 14V < 2.

ko]
Max ocours at m > v and n == 1. This time we choose for |A: ven A;wl
the index corrogponding to 6,,(») and we will show
(A2 ()] @y )2 < O Ay (9)) 7 (g () ™ 00 ()]
We have, uging the fact that [w,, (») <1 and Lemma 1 (ii)
(Z’ml Iwml 1’)” SRR (2'm1 (”))’—‘p( nzl(”))r~‘+1|w1ul ()
KA Ay ()] 7 (A2 () H 9001 ()]

<O (A ()7 (g ()" 100 ()1
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Max osours @t m >v and n > 2. Thig time we choose for |4} ...
... 4;w| the index corresponding o 6,,,.,(») and we will show

(ﬂmn(y)[wm(v)!)r—p+1 < O(Zmn(”))v—p(;tm,n+1<'”>)r—ﬂ+llwmn("’)l .
The argument is identical to the previous case with 1 replaced by »n. m

It seems likely that the above result can be proved for spaces other
than (s). For example, in [22], Vogt and Wagner extend their charac-
terizations to infinite type power series spaces which are stable —that is,
isomorphic to their Cartesian square. Using this result, one could try to
repeat the above proof with (8) replaced by a power series space. Of course,
more would have to be shown. Specifically, it would be necessary to further
restriet 4,,,(v) so that the space F is sufficiently strongly nuclear (so that
it can be a quotient of a power series space). Thig would lead to an in-
equality that would have to be balanced against condition (ii) of Lemma 1.
Probably it would work for some cases and not for others, but the com-
putations required seem formidable. In any case, it is unlikely that this
approach can lead to a determination of whether every nuclear Fréchet
space (other than w) has a quotient space without BAP and so this remaing
an open question.
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