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A generalization of the Yosida-Kakutani ergodic theorem

by
LZIO MARCHI and FELIPE ZO (San Luis)

1 n—1
Abstract. We prove a mean ergodic theorem for the sequence — 5’ Ty ... Ty

where {T'z} is a suitable convergent sequence of operators of a Ba.nach space X into
itgelf.

The purpose of this note is to prove an ergodic theorem of the Yosida—
Kakutani type Where the ergodic sum involving a single operator 7 is

replaced by 2 Ty, ... T, where {T;} is a convergent sequence of oper-
W =0
ators. The ergedic theorem remains true under a suitable convergence

of the sequence {T.}.

‘We will prove our result in a Banach space set-up. We denote by || ||
either the norm in the space or the operator norm.

We now extend the mean ergodic theorem:

TuamoreM. Let X be a Banach space and {T;}52, be a sequence of bounded
linear operators of X into ilself, satisfying:

(i) There ewisis a constant ¢ > O such that for each n and i; < i, < ...
vee iy,
T, .o Lo, Tl < 0
(ii) T;~— T in the operator norm amd T;T = TTy for each .
(iii) For each » € X, the sequences

8, =-——ZT,, T,z and 2, ——ZT"'

k-sO
contain subsequences weakby convergent to elements of X, Tw and Ppw,
respectively.
(iv) For each @ € Pp(X),
P ip—g—1ig_q1—1

Q(m):zz Z een 2 2 “S{l...é“kwu<00

Bl di=kdyeliml  dpq=2 ipml
where & =T;—T.
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Then _
18,4 —1'z|| = 0

where m — oo and where the expression of Tu is given by

w oo f1—1 igmg— 11y —1
Px = Ppw + 2 2 Z 2 &gy e 8, P,
I=1 iy =k ig=Jk—1 tp1=2 =1
Moreover, E ‘
TT =TT =T, P =TPy=T
and |T) < e.

Proof. We note that 7 indeed fulfills the requirements of Yosida—
Kakutani Theorem sinece by (i)

ITn - Toosll < 05

but on the other hand 7, — T in the operator norm, which implies thab
for any k&, ||T%|] < ¢. Therefore the projector Py is well defined as & strong
limit of @,. '

From the following inequality
2 T =T e
IT(8,0) ~ Byl < — lal+¢ )

t=1
and recalling that a subsequence of 8, () converges weakly to T, we have
that TT = T. On the other hand, from the fact that T;T = TT,;, we can
eagily derive 77 = T. Tt is also seen from here that
PpT =TPp =T.
Now we will prove that S,(#) converges strongly. For this, we consi-
der the decomposition ‘
@ = Ppax+-(x—Prw).
‘We remind that

R(I—-P;) = R(I-T)
where R stands for the range of the operator. Indeed, it is easy to verify
that
R(I—T% <« R(I-T)
for any &k > 1, and from here,

n—1

R(I—Py) = R( lim 2 (I-—T")) c RI-T).

nesco T ey

In order to prove the theorem, it remains to show that for any
yeR(I—T), |8y|— 0 and

8, Ppw T
for any x € X.
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At first we show that |8, ] — 0. For a given ¢ > 0, and y e R(I—1T);
we write y = #2— Tz +=2, where ||z, < e&. We have
18, Xl = ISy (2 — T2 +2.)ll
= ‘[Sn(z—Tz)+Snz5”

<

|lz—TTn_‘1 LTz Lo n—1 ”Ti,_lﬂ,T“ 12l

+ 1852l -
n

q==1

Thig implies our claim. For the remaining convergente, we use the follow-
ing computations. For T; = T+, wehave T = Ts, for each i. Besides
we also have g — 0. With this nomenclature, we get

Toy oo Ty = (Tt tpmg) oo (TH2)

= Tl IR SIS T T 0T
where ‘
R S

E A

=1

n—-1 f1—1

gi= D

fi=kig=k—1 2

ip1=2

for k < n—1. Therefore, since TP, = Pr, we have

-1

8pPr2 = %[; T"+Z1 ai‘rk~i+§ ok,

k=2
n—1 . n—_-’l
et Z gk _, Tk 1. Z ‘62_11’"‘("‘1)].13153
k=n—2 ‘ k=n—1
1 n—1 n—1
= —q—;[nPTm—f— Z 5 Ppmt 2 SEPrmt ...
k=1 k=2
n—1 n—1 .
ot 2 8 _,Pow+ Z a;;_jpmm].
k=n—-2 ke=n—1
On the other hand, one éan easily compute thab
n—1
> oF n—1 %-1 =1 Gy —1
= 1

LA AP

i=1 dg=i-1

E 185y ons Eiz]

i_y=2 f=1

for 1 <1< n—1. Replacing these expressions in the previous one, it
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turns out
-1
8, Ppws = Prao+ 7:2 B Py —

n—1 n-1 -1 g — 1 gy —1

_%2[2 Z Z Z ileil...etk]PTw

K=l dpek fy=k—l  dp_y=2 gl

r—1 n~1 -1 igmg =l ipmy=1

22 2 Z > eﬁ...aik]PTw_

k=1 ty=Fk dgm=k—1 T =2 dp=l

= Ppo+ [

n—1 - f1-1 =1 By~

n—1 . !
__%2[2 2 Z 2 ileﬁ...a,-k]l’sz.

k=l dymkjdgmk—1  ip_ =2 i1

‘We now will show that the lagt term on the right hand tends to zero for
n — oo. In the last term of the previous equality a change of indices gives

n-1 n—1 %1-1 g1 tg—1—1

R,,(wa)=%[22 }:’ Z‘ 2 ile,l...e,.,c]prm

f=l dymk ig=k—1 g =2 dgwl

g =1 fg—1~1

Z 2 Egpeen sik] Pyg.

g1 =2 dpp=1

1 n—1 ] i i:%
Sus S
n

=1 k=1 ig=k—1
‘We recall a so called Krenecker’s lemma which states that if {a;}3,

R n
is a sequence of real numbers such that 3’ a;,— a finite, and b,,1 co, then
{ml

1 n
b_ 2 ag b‘ - 0.
T Gl
Th‘is lemma can be seen for example in Breiman [1], p. 51. Applying
this result to our second expression of R,(Pypx) with b, = n and

i d-1 g1 ig—1-1

a;=Z’ Z Z 2 llez sz, -+ 25 Ppall,

Jem=1 dymli—1 fpmy=2 ip=l
we obtain that R, (Py%)—0. u
As an example we observe that (iv) is fulfilled if

§= M IT;—T| < oo.

i=1

icm
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Indeed,

@< 5 5 Doy o< Saealel< o
k=1

o1 )k dgmeko— 1 iy A=l

5= lal.

=

‘where

References

[1] L. Breiman, Probability, Addison-Wesley, 1968.

[2] P. Halmos, Lectures on ergodic theory, J. Math. Soc. Japan 3 (1956).

[8] K.Maurin, Methods of Hilber spaces, Warszawa 1967.

[4] K. Yosida, ‘and 8. Kakutani, Operalor theoretical treatment of Markov’s
process and mean ergodic theorem, Ann of Math. 42 (1941).

UNIVERSIDAD NACIONAL DE SAN LUIS
ESOUELA DE MATEMATICAS
5700 SAN LUIS, ARGENTINA

Received July 17, 1978 (1449)


GUEST




