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Abstract. A classical theorem of Iversen states that an entire function f(z) tends to =«
as z— oo along a suitable path. It is reasonable to ask whether a corresponding resuit
still holds if f(z) has a given sequence of poles, provided that the characteristic T(r, f)
grows sufficiently rapidly depending on the sequence. In this connection I proved recently
[4] that if ¥ |z,/~"2 < oo, where z, are the poles and if when r - o

lim inf r=*2 T(r, f) > 0,

then Iversen’s theorem still holds. In this paper it is shown on the other hand that il r,
is any sequence of positive numbers tending to infinity with n and such that ) r;'? = oo,
then f(z) exists having no zeros and no poles at points other than the r,, having essentially
arbitrarily rapid growth, but not tending to infinity as z tends to infinity along any path.
This example also shows that an earlier theorem of Edrei and Fuchs [2] cannot be extended
to functions of infinite order.

1. Introduction and statement of results. According to a classical theorem
of Iversen [5] a non-constant entire function f(z) always has oo as an
asymptotic value, ie. there exists a path I' going from a finite point to oo
and such that ’

(1.1) f(z) > a0 as z— oo along T.

It is natural to ask whether Iversen’s theorem remains true if f(z) has
sufficiently few poles compared with its growth. We use the classical notation
of Nevanlinna (see e.g. [3], Chapter 1) and quote two results in this direction.
The first is the following theorem of Edrei and Fuchs [2], Theorem 2:

THEOREM A. Suppose that f(z) is meromorphic of finite lower order .
There exists a positive quantity J(g) depending only on ¢ such that if

— N(r,0)+N(,0)
(1.2) 'lll'g . f)

then f(z) has oo as an asymptotic value.

< d(0),
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We note that in Theorem A we require f(z) to have few poles and few
zeros. Recently [4], Theorem 2, I proved a Theorem with a stronger hypothesis
on the poles but no hypothesis on the zeros. This is

THEOREM B. Suppose that f is meromorphic in the plane and that

® N(t, co)dt
t3/2

(1.3) T(r, f)—4r? -0, asr— .

Then oo is an asymptotic value of f(z). In particular the conclusion holds if

< N{(t,o0)dt
(1.4) j i
ro
and
(1.5) lim r 2 T(r, f) > 0.

If z, = r,e®n are the poles of f(z) at points other than the origin, then
condition (1.4) can be written in the form

(1.6) Y2 < oo,

Thus if the poles of f satisfy condition (1.6) then, if f grows so ranidly
that (1.5) holds, oo is an asymptotic value of f(z).

In this paper we show that Theorem A fails for functions of infinite
order and no condition weaker than (1.6) can ensure that if f grows
sufficiently rapidly, then oo is an asymptotic value of f, even if we assume
an addition that f has no zeros. Our result is

TueoreM C. Suppose that r, is a non-decreasing sequence of positive
numbers tending to oo with n and not satisfying (1.6). Then there exists f(z)
meromorphic of infinite lower order in the plane and possessing no poles at
points other than z = r, and no zeros, such that oo is not an asymptotic

value of f(2).

The condition is to be understood in the sense that if the sequence r,
assumes a value r p-times, then f(z) has at most a pole of multiplicity p
at z = r (and may be regular there). A refinement of the construction shows
that, for a given sequence r,, T(r, f) may tend to o0 more quickly than any
preassigned function ¥ (r), but we shall not insist on that here.

We shall see that we may without loss of generality assume that r, > n?
in Theorem C, so that

(L.7) N(r,0) = 0('?), N(r,0)=0,
while for every positive p

T(r, f)

r?

— O
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with r. Thus even a much weaker condition than (1.2) cannot ensure (1.1)
for functions of infinite order, nor can sufficiently rapid growth compared
with N (r, o) ensure (1.1) if (1.4) fails.

2. An approximation lemma. We shall base our construction on the
following approximation Theorem which was proved in a previous paper
by Barth, Brannan and the author [1], Theorem 4.

LEMMA 1. Suppose that we are given a harmonic polynomial u(z) of degree
N in x, y (z = x+1iy), positive numbers &, R and also a continuous function
Y (r) satisfying y(r) > 1, r >0 and

]‘3 W (r)dr

i r3/2

(2.1)

Then there exists a Jordan domain D containing |z| < R and a function v(2)
harmonic in D, continuous in the closure D of D and satisfying

(2.2) lu(z)—v(z)l < e, |z] <R,
and
(2.3) v(z) < ¥ {lzl)

for z on the boimdary of D.

For our application we need to know a little more detail about the
function v(z) and the domain D in the above lemma. It turns out that D
contains a sequence of sectorial regions ’

(2.4) S.: R, < |zl <R}, Jargzl< m—n.p;, v=1to N
and the arcs
(2.5) larg z| = n—n,+1, R, <2l < R

of S, lie outside D.

The quantities R,, R;, n, are defined inductively [1], p. 17. First R, is
chosen sufficiently large. If R, has been chosen, then R; has to be chosen
so large that R, > 1000R, and [1], p. 22,

RvI9 y (f)dt
l/’t(T/)z‘>Cv’ v=1to N,

9R,
where C, depends only on the construction so far and in particular on R,
to R,, R} to R,_,, and #, to n,. Then 5, ,, must be chosen sufficiently small
and R,,; may be chosen arbitrarily subject to R,,,; > R+ 1. Further
v(z) £ 0 on the whole boundary I' of D except on the segments (2.5).

In particular it is not necessary to have given in advance a function ¥ (r)
satisfying (2.1). It is sufficient to specify . (r) for R, < r < R|, possibly
in dependence on the previous construction, in such a way that
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R,/9
(2.6) iy pndr (2,‘1' > C,,
for some R, > 1000R,. We may then define
y(@) =y, (), R. <r<R, v=1toN,
Yo (r) =1,

otherwise and condition (2.3) is still satisfied.

3. Construction of the poles. We suppose given a sequence of numbers r,,
such that

(3.1) O<r,<r,, 1<v<oo,
(3.2) r,— o0, as v— 0.
and

(3.3) i ro 1% = 0.

v=1

We shall construct a subsequence of the r, which will satisfy certain
conditions and so we suppose without loss of generality that in addition

(3.4) re > vl

For otherwise we can select a subsequence r; of the r, which satisfies (3.4)
as wel as (3.1) to (3.3). In fact if ry to r, have already been chosen with
r, = re,, We define v, to be the smallest integer such that v,,; > v, and

> (p+ 1)~

r.
Yp+1
Such a choice is possible in view of (3.2). We then define
r'P'*'l = r"p+l'
Evidently r, is a subsequence of the sequence r, which satisfies (3.1), (3.2)
and (3.4). If for all p > p, we have v,,, = v,+1, then we have
r;’—__rp+ka P =2 po,
where k is a constant and then
Yr) = ‘

in view of (3.3). If on the other hand we have v,,, > v,+1 for some
arbitrarily large p, we deduce that for such p

Fepe1 < (p+1)%

so that

= Ry S hper < (P41 < 4p2
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Thus in this case r, < 4p* for infinitely many p and, since r, increases
with p, it follows that
Yt = o0.

Thus our subsequence r, satisfies the analogues of (3.2) to (3.4).

We assume accordingly that we are given a sequence r, satisfying (3.1)
to (3.4) and shall construct a subsequence g, of the r,. With this subsequence
we define the function

(3.5) F2) = ﬁ (1=z/a).

In view of (3.4) the product converges and represents an entire function of
order } mean type at most. We proceed to obtain some lower bounds
for F(z). Our results are contained in

LEMMA 2. We have
(3.6) [F(z)l 21 for in < |arg z] < T.
Next if F(z) has no zeros for ir < |z| < 2r*, where r > 1, then
(3.7 |F(z) > e”® |z| =r.
Finally if v > 2r we have
(3.8) f ok Iiﬁ; LM sye

r

where the sum is extended over all the zeros o, which satisfy
(3.9 r <o, <3r.

Inequality (3.6) is obvious. If z = x+iy, where x < 0, then for each g,
I1—2z/o,l = 1, and so |F(z) > 1.

Next suppose that F(z) has no zeros in ir < |z| < 2r*. Then if |z| = r,
we write

12 1-2
0 0

log |F(2) = ¥, log

+3, log

=Y +2, say,

where the first sum is extended over all the zeros ¢, in |z| < jr and the
second sum over all the zeros in |z| = 2r*. Clearly if g, < 3r, |z| = r, we have

v v

z
‘ 1—_—
o

22-1=1,

so that

Y, =0.
Also in ), we have by hypothesis |z|/o. < %, so that
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2
log [1-=2-] < log(l— z) < 2A
v v Ov
Thus
|Zz = 2'22 ot
In ) we have ¢, > r*. From this and (3.4) we deduce
Y,ot < Z S <Y v < 3,
= T
Hence

|22| <6, ie log|F(z) = —

and this proves (3.7).
It remains to prove (3.8). We note that for r <t < 7, we have

t t
> Y 'log (1 +—),
o ) 2 0

where Z’ denotes summation over all those zeros g,, which satisfy (3.9).
Thus

© log|F(=0ldt o, " t\ dt
j. 7 ?Z jlog 1+Q— t37

r

log |[F(—1) = ) log (l+

20y d d
>y j log(l+ )zm ZQC“’jlog(Hx)

. log2 _ ,
DN 2 er 't > 3) et

This proves (3.8) and completes the proof of Lemma 2.

4. Proof of Theorem C. We now construct a sequence of harmonic
polynomials v, (z) which will converge to a non-constant harmonic function
v(z). The function »(z) will satisfy

4.1) v(z) < log |F(2)]+7

on a sequence of Jordan curves I',, which surround the origin and tend to oo
with k. Here F(z) is given by (3.5). Thus if g(z) = v(z)+iw(z) is an entire
function whose real part is v(z), then

ea(:)
F(2)

is the function whose existence is asserted in Theorem C. Evidently f(z) has

@) =
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no zeros and the poles of f(z) are the ¢,, a subsequence of the r,, which
satisfy (1.7) in view of (3.4). If I' is a path going to oo, then I' meets I,
for all sufficiently large k at a point z, say and, in view of (4.1)

|f(zJl < €.

Thus f(z) cannot tend to oo as z — oo along I' and so oo is not an asymptotic
value of f(z). Also g cannot be a polynomial since otherwise f would have
positive integral lower order, which would contradict (1.7) and Theorem A.
Thus f has infinite lower order.

The construction of the v,(z) is similar to that in Section 3 of [1],
starting with Lemma 1. We choose ¢ = 27% set t, = 1, and v,(z) = x.
Suppose that t,, v,(z) have been defined. We then construct a Jordan
domain D, containing the disk |z| < t,, and a harmonic polynomial v, (z),
such that

4.2) e+ 1(2) =0 (2)| < &, 2] < 14,
and
(4.3) ve+1(2) < log |F(z) +6,

on the boundary I', of D,. We next choose t,,, so large that t,,; > 2t,,
and that D, lies in |z| < t,,, and continue with the inductive process.
We now check that it is possible to choose v,,;(z) and the function F(z)
so that (4.2) and (4.3) are satisfied. For this we need Lemmas 1 and 2.

We apply Lemma 1 with u(z) = v,(z), ¢ = 3¢ and R = t,. The domain
D, will have the properties of D asserted after Lemma 1 with N = N,
where N, is the degree of v, (z). In order to succeed with our construction
we shall have to make some further restrictions on the sectors S, given
by (24) and the zeros g, of F(z). We asume that the g, lying in |z] <'t,
have already been defined and all lie in |z|] < 4t,. Next we choose the
zeros @, in t, < {z| < t,4+,. Let §, be the sectors given by (24) for v =1
to N,, and suppose that

(4.4) R, > 200R*, v =1 to N,.

We then define the ¢, in t, < ¢, < t;,, to be all those numbers r, which
satisfy

4.5) 9R} < r, < §R!,
for some v < N,. We set

(4.6) Y. (r) = zlog [F(—7)|
and note that we can satisfy (4.4) and (2.6).
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In the first instance it follows from Lemma 2, (3.8) that
R},/9

Y. (r)dr _
| —pr > wln "

where the sum is extended over all those r, which satisfy
IR} < r, < LR

We deduce from (3.3) that (2.6) will be satisfied provided that R; is chosen
sufficiently large. We must also make sure that (4.4) is satisfied. Thus if R,
is sufficiently large, R, > R,_,+1, and R, is sufficiently large compared
with R, all the conditions for the construction of Lemma 1 will be satisfied
and we deduce the existence of the harmonic function v, , ,(z) satisfying (4.2).
Since vy, is harmonic in D, and continuous in D, we may suppose without
loss of generality that v,,, is a polynomial, since by a classical theorem
(see e.g. [6], p. 299), v, can be uniformly approximated in D, by harmonic
polynomials.

Next we check that (4.3) holds on I',. Suppose first that z = ¢’ is a point
on I', which lies in an annulus

4.7) R, <t <R,

for some v < N,. Then since D, contains the sector S, given by (2.4) we
deduce that

(4.8) =14y <ol < 7.
In view of our construction and (4.6) we have
v+1(2) < tlog|F(—1), R, <t <R

for z = te®. For t = R,, R, the inequality continues to hold since then the
right-hand side is positive while the left-hand side is not. We have not so
far made any requirement of the quantity n,,,, but we now chose n,,; so
small that _ |
log |F (te*)| > }log [F(—1),

in the range (4.7), (4.8) and deduce (4.3) in this case.

Next we suppose that z = te* lies on I, but not in any of the ranges (4.7).
Suppose first that

R( S t s R\'+1

for some v, such that 1 < v < N,—1. Then by our construction F(z) has no
zeros ¢, such that ir < ¢, < 2r* and so :

log |[F(z)) > —6
in view of (3.7). Also by construction

ne+1(2) SO '
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in this case. Thus we have
v+1(2) < log |F(z) +6
in this case so that (4.3) still holds. If
t <lzZl SRy or Ry, S|zl € fyy,

the conclusion is similar. Thus (4.3) holds on the whole of I',, and our
inductive step is justified.

We can now complete the proof of Theorem C. It follows from (4.2) that
v, (z) converges locally uniformly in the plane to a harmonic function v(z).
Also for |z| < t, we have

[+ o}

@®
|U(Z)—Uk(2)| < Z Ivv+1_v\-| < Z & = 21_k < 1.
v=k v=k

In particular

v(z)—x] <1, lz/ <1,

‘.

so that v(z) is not constant. Also since D, lies in |z| < t,,,, we have on I',
v(z) € v4q(2)+1 < log |F(2)|+7
in view of (4.3). This proves (4.1) and completes the proof of Theorem C.
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