On a meromorphic function having few poles but not tending to infinity along a path

by W. K. HAYMAN (London)

Stefan Bergman in memoriam

Abstract. A classical theorem of Iversen states that an entire function f(z) tends to ∞ as $z \to \infty$ along a suitable path. It is reasonable to ask whether a corresponding result still holds if f(z) has a given sequence of poles, provided that the characteristic T(r, f) grows sufficiently rapidly depending on the sequence. In this connection I proved recently [4] that if $\sum |z_n|^{-1/2} < \infty$, where z_n are the poles and if when $r \to \infty$

$$\lim \inf r^{-1/2} T(r, f) > 0,$$

then Iversen's theorem still holds. In this paper it is shown on the other hand that if r_n is any sequence of positive numbers tending to infinity with n and such that $\sum r_n^{-1/2} = \infty$, then f(z) exists having no zeros and no poles at points other than the r_n , having essentially arbitrarily rapid growth, but not tending to infinity as z tends to infinity along any path. This example also shows that an earlier theorem of Edrei and Fuchs [2] cannot be extended to functions of infinite order.

1. Introduction and statement of results. According to a classical theorem of Iversen [5] a non-constant entire function f(z) always has ∞ as an asymptotic value, i.e. there exists a path Γ going from a finite point to ∞ and such that

(1.1)
$$f(z) \to \infty$$
 as $z \to \infty$ along Γ .

It is natural to ask whether Iversen's theorem remains true if f(z) has sufficiently few poles compared with its growth. We use the classical notation of Nevanlinna (see e.g. [3], Chapter 1) and quote two results in this direction. The first is the following theorem of Edrei and Fuchs [2], Theorem 2:

THEOREM A. Suppose that f(z) is meromorphic of finite lower order ϱ . There exists a positive quantity $\delta(\varrho)$ depending only on ϱ such that if

(1.2)
$$\overline{\lim}_{r\to\infty} \frac{N(r,\infty)+N(r,0)}{T(r,f)} < \delta(\varrho),$$

then f(z) has ∞ as an asymptotic value.

We note that in Theorem A we require f(z) to have few poles and few zeros. Recently [4], Theorem 2, I proved a Theorem with a stronger hypothesis on the poles but no hypothesis on the zeros. This is

THEOREM B. Suppose that f is meromorphic in the plane and that

(1.3)
$$T(r,f) - \frac{1}{2}r^{1/2} \int_{-\tau}^{\infty} \frac{N(t,\infty) dt}{t^{3/2}} \to \infty, \quad \text{as } r \to \infty.$$

Then ∞ is an asymptotic value of f(z). In particular the conclusion holds if

$$\int_{t_0}^{\infty} \frac{N(t,\infty)dt}{t^{3/2}} < \infty$$

and

(1.5)
$$\lim_{r \to \infty} r^{-1/2} T(r, f) > 0.$$

If $z_n = r_n e^{i\theta_n}$ are the poles of f(z) at points other than the origin, then condition (1.4) can be written in the form

$$(1.6) \sum r_n^{-1/2} < \infty.$$

Thus if the poles of f satisfy condition (1.6) then, if f grows so rapidly that (1.5) holds, ∞ is an asymptotic value of f(z).

In this paper we show that Theorem A fails for functions of infinite order and no condition weaker than (1.6) can ensure that if f grows sufficiently rapidly, then ∞ is an asymptotic value of f, even if we assume an addition that f has no zeros. Our result is

THEOREM C. Suppose that r_n is a non-decreasing sequence of positive numbers tending to ∞ with n and not satisfying (1.6). Then there exists f(z) meromorphic of infinite lower order in the plane and possessing no poles at points other than $z=r_n$ and no zeros, such that ∞ is not an asymptotic value of f(z).

The condition is to be understood in the sense that if the sequence r_n assumes a value r p-times, then f(z) has at most a pole of multiplicity p at z = r (and may be regular there). A refinement of the construction shows that, for a given sequence r_n , T(r, f) may tend to ∞ more quickly than any preassigned function $\psi(r)$, but we shall not insist on that here.

We shall see that we may without loss of generality assume that $r_n > n^2$ in Theorem C, so that

$$(1.7) N(r, \infty) = O(r^{1/2}), N(r, 0) = 0,$$

while for every positive p

$$\frac{T(r,f)}{r^p}\to\infty$$

with r. Thus even a much weaker condition than (1.2) cannot ensure (1.1) for functions of infinite order, nor can sufficiently rapid growth compared with $N(r, \infty)$ ensure (1.1) if (1.4) fails.

2. An approximation lemma. We shall base our construction on the following approximation Theorem which was proved in a previous paper by Barth, Brannan and the author [1], Theorem 4.

LEMMA 1. Suppose that we are given a harmonic polynomial u(z) of degree N in x, y (z = x + iy), positive numbers ε , R and also a continuous function $\psi(r)$ satisfying $\psi(r) > 1$, r > 0 and

(2.1)
$$\int_{1}^{\infty} \frac{\psi(r) dr}{r^{3/2}} = \infty.$$

Then there exists a Jordan domain D containing |z| < R and a function v(z) harmonic in D, continuous in the closure \overline{D} of D and satisfying

$$(2.2) |u(z)-v(z)| < \varepsilon, |z| < R,$$

and

$$(2.3) v(z) \leq \psi(|z|)$$

for z on the boundary of D.

For our application we need to know a little more detail about the function v(z) and the domain D in the above lemma. It turns out that D contains a sequence of sectorial regions

(2.4)
$$S_v: R_v < |z| < R'_v, \quad |\arg z| < \pi - \eta_{v+1}, \quad v = 1 \text{ to } N$$

and the arcs

(2.5)
$$|\arg z| = \pi - \eta_{v+1}, \quad R_v \leq |z| \leq R'_v$$

of S_{ν} lie outside D.

The quantities R_v , R'_v , η_v are defined inductively [1], p. 17. First R_1 is chosen sufficiently large. If R_v has been chosen, then R'_v has to be chosen so large that $R'_v > 1000R_v$ and [1], p. 22,

$$\int_{9R_v}^{R_v'/9} \frac{\psi(t) dt}{t^{3/2}} > C_v, \quad v = 1 \text{ to } N,$$

where C_v depends only on the construction so far and in particular on R_1 to R_v , R_1' to R_{v-1}' , and η_1 to η_v . Then η_{v+1} must be chosen sufficiently small and R_{v+1} may be chosen arbitrarily subject to $R_{v+1} > R_v' + 1$. Further $v(z) \le 0$ on the whole boundary Γ of D except on the segments (2.5).

In particular it is not necessary to have given in advance a function $\psi(r)$ satisfying (2.1). It is sufficient to specify $\psi_v(r)$ for $R_v \le r \le R'_v$, possibly in dependence on the previous construction, in such a way that

(2.6)
$$\int_{9R_v}^{R_v^{\prime/9}} \frac{\psi_v(r) dr}{r^{3/2}} > C_v,$$

for some $R'_v > 1000R_v$. We may then define

$$\psi(r) = \psi_{\nu}(r), \quad R_{\nu} < r < R'_{\nu}, \quad \nu = 1 \text{ to } N,$$
 $\psi_{\nu}(r) = 1,$

otherwise and condition (2.3) is still satisfied.

3. Construction of the poles. We suppose given a sequence of numbers r_v , such that

$$(3.1) 0 < r_{\nu} \leqslant r_{\nu+1}, \quad 1 \leqslant \nu < \infty,$$

$$(3.2) r_{\nu} \to \infty, as \ \nu \to \infty.$$

and

$$\sum_{v=1}^{\infty} r_v^{-1/2} = \infty.$$

We shall construct a subsequence of the r_v which will satisfy certain conditions and so we suppose without loss of generality that in addition

$$(3.4) r_{v} > v^{2}.$$

For otherwise we can select a subsequence r'_{ν} of the r_{ν} which satisfies (3.4) as well as (3.1) to (3.3). In fact if r'_{1} to r'_{p} have already been chosen with $r'_{p} = r_{\nu_{p}}$, we define ν_{p+1} to be the smallest integer such that $\nu_{p+1} > \nu_{p}$ and

$$r_{v_{p+1}} > (p+1)^2$$
.

Such a choice is possible in view of (3.2). We then define

$$r'_{p+1} = r_{v_{p+1}}.$$

Evidently r_p' is a subsequence of the sequence r_v which satisfies (3.1), (3.2) and (3.4). If for all $p \ge p_0$ we have $v_{p+1} = v_p + 1$, then we have

$$r_p'=r_{p+k}, \quad p\geqslant p_0,$$

where k is a constant and then

$$\sum (r'_p)^{-1/2} = \infty$$

in view of (3.3). If on the other hand we have $v_{p+1} > v_p + 1$ for some arbitrarily large p, we deduce that for such p

$$r_{v_{p}+1} \leqslant (p+1)^2,$$

so that

$$r'_p = r_{v_p} \leqslant r_{v_p+1} \leqslant (p+1)^2 \leqslant 4p^2.$$

Thus in this case $r'_p \le 4p^2$ for infinitely many p and, since r'_p increases with p, it follows that

$$\sum r_p^{\prime - \frac{1}{2}} = \infty.$$

Thus our subsequence r_p satisfies the analogues of (3.2) to (3.4).

We assume accordingly that we are given a sequence r_v satisfying (3.1) to (3.4) and shall construct a subsequence ϱ_v of the r_v . With this subsequence we define the function

(3.5)
$$F(z) = \prod_{v=1}^{\infty} (1 - z/\varrho_v).$$

In view of (3.4) the product converges and represents an entire function of order $\frac{1}{2}$ mean type at most. We proceed to obtain some lower bounds for F(z). Our results are contained in

LEMMA 2. We have

$$(3.6) |F(z)| \ge 1 for \frac{1}{2}\pi \le |\arg z| \le \pi.$$

Next if F(z) has no zeros for $\frac{1}{2}r < |z| < 2r^4$, where r > 1, then

$$|F(z)| > e^{-6}, \quad |z| = r.$$

Finally if r' > 2r we have

(3.8)
$$\int_{1}^{\infty} \frac{\log |F(-t)| dt}{t^{3/2}} > \frac{1}{5} \sum \varrho_{v}^{-\frac{1}{2}},$$

where the sum is extended over all the zeros o, which satisfy

$$(3.9) r \leqslant \rho_{v} \leqslant \frac{1}{2}r'.$$

Inequality (3.6) is obvious. If z = x + iy, where $x \le 0$, then for each $\varrho_v |1 - z/\varrho_v| \ge 1$, and so $|F(z)| \ge 1$.

Next suppose that F(z) has no zeros in $\frac{1}{2}r < |z| < 2r^4$. Then if |z| = r, we write

$$\log |F(z)| = \sum_{1} \log \left| 1 - \frac{z}{a_{1}} \right| + \sum_{2} \log \left| 1 - \frac{z}{a_{2}} \right| = \sum_{1} + \sum_{2}, \text{ say}$$

where the first sum is extended over all the zeros ϱ_v in $|z| \leq \frac{1}{2}r$ and the second sum over all the zeros in $|z| \geq 2r^4$. Clearly if $\varrho_v \leq \frac{1}{2}r$, |z| = r, we have

$$\left|1-\frac{z}{\varrho_{v}}\right|\geqslant 2-1=1,$$

so that

$$\sum_{1} \geq 0$$
.

Also in \sum_{2} we have by hypothesis $|z|/\varrho_{v} < \frac{1}{2}$, so that

$$\left|\log\left|1-\frac{z}{\varrho_{\nu}}\right| \leq \left|\log\left(1-\frac{z}{\varrho_{\nu}}\right)\right| < \frac{2|z|}{\varrho_{\nu}}.$$

Thus

$$\left|\sum_{2}\right| < 2\sum_{2} \frac{r}{\varrho_{v}} = 2r\sum_{2} \varrho_{v}^{-1}.$$

In \sum_{ν} we have $\varrho_{\nu} > r^4$. From this and (3.4) we deduce

$$\sum_{\nu=1}^{\infty} \varrho_{\nu}^{-1} < r^{-1} \sum_{\nu=1}^{\infty} \varrho_{\nu}^{-3/4} < r^{-1} \sum_{\nu=1}^{\infty} \nu^{-3/2} < 3/r.$$

Hence

$$\left|\sum_{2}\right| \leq 6$$
, i.e. $\log |F(z)| \geq -6$,

and this proves (3.7).

It remains to prove (3.8). We note that for $r \le t \le r'$, we have

$$\log |F(-t)| = \sum \log \left(1 + \frac{t}{\varrho_{v}}\right) \geqslant \sum' \log \left(1 + \frac{t}{\varrho_{v}}\right),$$

where \sum' denotes summation over all those zeros ϱ_v , which satisfy (3.9). Thus

$$\int_{r}^{r'} \frac{\log |F(-t)| dt}{t^{3/2}} \ge \sum_{v} \int_{r}^{r'} \log \left(1 + \frac{t}{\varrho_{v}}\right) \frac{dt}{t^{3/2}}$$

$$\ge \sum_{v} \int_{\varrho_{v}}^{2\varrho_{v}} \log \left(1 + \frac{t}{\varrho_{v}}\right) \frac{dt}{t^{3/2}} = \sum_{v} \left(\varrho_{v}^{-1/2}\right) \int_{1}^{2} \log \left(1 + x\right) \frac{dx}{x^{3/2}}$$

$$\ge \sum_{v} \frac{\log 2}{2^{3/2}} \varrho_{v}^{-1/2} > \frac{1}{5} \sum_{v} \left(\varrho_{v}^{-1/2}\right).$$

This proves (3.8) and completes the proof of Lemma 2.

4. Proof of Theorem C. We now construct a sequence of harmonic polynomials $v_k(z)$ which will converge to a non-constant harmonic function v(z). The function v(z) will satisfy

$$(4.1) v(z) < \log |F(z)| + 7$$

on a sequence of Jordan curves Γ_k , which surround the origin and tend to ∞ with k. Here F(z) is given by (3.5). Thus if g(z) = v(z) + iw(z) is an entire function whose real part is v(z), then

$$f(z) = \frac{e^{g(z)}}{F(z)}$$

is the function whose existence is asserted in Theorem C. Evidently f(z) has

no zeros and the poles of f(z) are the ϱ_{ν} , a subsequence of the r_{ν} , which satisfy (1.7) in view of (3.4). If Γ is a path going to ∞ , then Γ meets Γ_k for all sufficiently large k at a point z_k say and, in view of (4.1)

$$|f(z_k)| < e^7.$$

Thus f(z) cannot tend to ∞ as $z \to \infty$ along Γ and so ∞ is not an asymptotic value of f(z). Also g cannot be a polynomial since otherwise f would have positive integral lower order, which would contradict (1.7) and Theorem A. Thus f has infinite lower order.

The construction of the $v_k(z)$ is similar to that in Section 3 of [1], starting with Lemma 1. We choose $\varepsilon_k = 2^{-k}$, set $t_1 = 1$, and $v_1(z) = x$. Suppose that t_k , $v_k(z)$ have been defined. We then construct a Jordan domain D_k containing the disk $|z| < t_k$, and a harmonic polynomial $v_{k+1}(z)$, such that

$$(4.2) |v_{k+1}(z) - v_k(z)| < \varepsilon_k, |z| \le t_k,$$

and

$$(4.3) v_{k+1}(z) < \log |F(z)| + 6,$$

on the boundary Γ_k of D_k . We next choose t_{k+1} so large that $t_{k+1} > 2t_k$, and that \bar{D}_k lies in $|z| < t_{k+1}$ and continue with the inductive process. We now check that it is possible to choose $v_{k+1}(z)$ and the function F(z) so that (4.2) and (4.3) are satisfied. For this we need Lemmas 1 and 2.

We apply Lemma 1 with $u(z) = v_k(z)$, $\varepsilon = \frac{1}{2}\varepsilon_k$ and $R = t_k$. The domain D_k will have the properties of D asserted after Lemma 1 with $N = N_k$, where N_k is the degree of $v_k(z)$. In order to succeed with our construction we shall have to make some further restrictions on the sectors S_v given by (2.4) and the zeros ϱ_p of F(z). We assume that the ϱ_p lying in $|z| < t_k$ have already been defined and all lie in $|z| < \frac{1}{2}t_k$. Next we choose the zeros ϱ_p in $t_k < |z| < t_{k+1}$. Let S_v be the sectors given by (2.4) for v = 1 to N_k , and suppose that

(4.4)
$$R'_{\nu} > 200R'_{\nu}, \quad \nu = 1 \text{ to } N_{k}.$$

We then define the ϱ_p in $t_k < \varrho_p < t_{k+1}$ to be all those numbers r_n which satisfy

$$(4.5) 9R_v^4 < r_n < \frac{1}{9}R_v',$$

for some $v \leq N_k$. We set

(4.6)
$$\psi_{\nu}(r) = \frac{1}{2} \log |F(-r)|$$

and note that we can satisfy (4.4) and (2.6).

In the first instance it follows from Lemma 2, (3.8) that

$$\int_{9R_v}^{R_v'/9} \frac{\psi_v(r) dr}{r^{3/2}} > \frac{1}{10} \sum r_n^{-1/2},$$

where the sum is extended over all those r_n which satisfy

$$9R_{\nu}^4 < r_n < \frac{1}{18}R_{\nu}'$$

We deduce from (3.3) that (2.6) will be satisfied provided that R'_{ν} is chosen sufficiently large. We must also make sure that (4.4) is satisfied. Thus if R_1 is sufficiently large, $R_{\nu} > R'_{\nu-1} + 1$, and R'_{ν} is sufficiently large compared with R_{ν} all the conditions for the construction of Lemma 1 will be satisfied and we deduce the existence of the harmonic function $v_{k+1}(z)$ satisfying (4.2). Since v_{k+1} is harmonic in D_k and continuous in \overline{D}_k we may suppose without loss of generality that v_{k+1} is a polynomial, since by a classical theorem (see e.g. [6], p. 299), v_{k+1} can be uniformly approximated in \overline{D}_k by harmonic polynomials.

Next we check that (4.3) holds on Γ_k . Suppose first that $z = te^{i\phi}$ is a point on Γ_k which lies in an annulus

$$(4.7) R_{v} < t < R'_{v},$$

for some $v \leq N_k$. Then since D_k contains the sector S_v given by (2.4) we deduce that

$$(4.8) \pi - \eta_{v+1} < |\varphi| \leqslant \pi.$$

In view of our construction and (4.6) we have

$$v_{k+1}(z) < \frac{1}{2} \log |F(-t)|, \quad R_v < t < R'_v$$

for $z = te^{i\varphi}$. For $t = R_v$, R'_v the inequality continues to hold since then the right-hand side is positive while the left-hand side is not. We have not so far made any requirement of the quantity n_{v+1} , but we now chose n_{v+1} so small that

$$\log |F(te^{i\varphi})| > \frac{1}{2} \log |F(-t)|,$$

in the range (4.7), (4.8) and deduce (4.3) in this case.

Next we suppose that $z = te^{i\varphi}$ lies on Γ_k but not in any of the ranges (4.7). Suppose first that

$$R_{v}' \leq t \leq R_{v+1}$$

for some v, such that $1 \le v \le N_k - 1$. Then by our construction F(z) has no zeros ϱ_p such that $\frac{1}{2}t < \varrho_p \le 2t^4$ and so

$$\log |F(z)| > -6$$

in view of (3.7). Also by construction

$$v_{k+1}(z) \leq 0$$

in this case. Thus we have

$$v_{k+1}(z) \leq \log |F(z)| + 6$$

in this case so that (4.3) still holds. If

$$t_k \leqslant |z| \leqslant R_1$$
 or $R_{N_k} \leqslant |z| \leqslant t_{k+1}$,

the conclusion is similar. Thus (4.3) holds on the whole of Γ_k , and our inductive step is justified.

We can now complete the proof of Theorem C. It follows from (4.2) that $v_k(z)$ converges locally uniformly in the plane to a harmonic function v(z). Also for $|z| \le t_k$ we have

$$|v(z)-v_k(z)| \leq \sum_{v=k}^{\infty} |v_{v+1}-v_v| < \sum_{v=k}^{\infty} \varepsilon_v = 2^{1-k} \leq 1.$$

In particular

$$|v(z)-x|<1, \quad |z|\leqslant 1,$$

so that v(z) is not constant. Also since \bar{D}_k lies in $|z| < t_{k+1}$, we have on Γ_k

$$v(z) \le v_{k+1}(z) + 1 < \log |F(z)| + 7$$

in view of (4.3). This proves (4.1) and completes the proof of Theorem C.

References

- [1] K. F. Barth, D. A. Brannan and W. K. Hayman, The growth of plane harmonic functions along on asymptotic path, Proc. London Math. Soc. (3) 37 (1978), p. 363-384.
- [2] A. Edrei and W. H. J. Fuchs, Valeurs déficientes et valeurs asymptotiques des fonctions méromorphes, Comment. Math. Helv. 33 (1959), p. 258-295.
- [3] W. K. Hayman, Meromorphic functions (Clarendon Press, Oxford 1964).
- [4] On Iversen's theorem meromorphic functions with few poles, Acta Math. 141 (1978), p. 115-145.
- [5] F. Iversen, Recherches sur les fonctions inverses des fonctions méromorphes, Thèse de Helsingsors 1914.
- [6] S. N. Mergelyan, Uniform approximation to functions of a complex variable, Amer. Math. Soc. Trans. (1) 3 (1962), p. 294-391.

IMPERIAL COLLEGE, QUEEN'S GATE, LONDON

Reçu par la Rédaction le 20. 9. 1978