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1. Introduction. In the 1930’s a study of cut loci of closed surfaces
was made by Myers [4], [6]. Under additional assumption of non-positive
curvature or, more generally, the non-existence of conjugate points,
further results are possible, and these are summarized in Section 3 of the
present work. The lemmas in Section 4 are of independent interest, and
in many cases are stronger than what is needed to prove the theorems of
Section 3.

2. Conventions and definitions. Unless otherwise stated, M will
denote a compact, connected, 0 Riemannian 2-manifold without conjugate
points (i.e. the exponential map at each point is non-singular everywhere).
For X € M,, the tangent space of M at p, such that | X|| = 1, define

¢(X) = inf{a e R: ¢g(t) = exp,tX, 0 <t< a, is not length-minimizing}.
The cut loous of M at p, denoted by L, is defined by
L, = {¢(X)X: X e M,, |X|| =1}.

Two points of L, are equivalent if they are identified by exp,. [X] will
denote the equivalence class of X € L,, and 3 [X] the cardinality of [X].
A vertex of L, will be a point X € L, with 4+ [X] > 3. For convenience,
# [X] will be called the order of X.

3. Main results.

THEOREM A. If M 18 orientable and of genus @, them, for each p € M,
L, may not have more than 12G — 6 vertices nor less than 4G wvertices. For
each G > 1 these bounds are achieved by some M of gonus G at some p € M.

In faot, if m and n are positive integers with mm = 4G —2, we can find
some M of gonus G and p € M such that L, has (m -+ 2)n vertices, all of order
m-+2.

THEOREM A'. If M is non-orientable and G i8 the genus of the orientable
2-fold cover of M, say M, then, for p € M, L, has not more than 6G vertices
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nor less than 2G +2 vertices. If m and n are positive integers with mn = 2G,
we ocan find some M with M of genus G and some p € M such that L, has
(m+2)n vertices, all of order m+ 2.

THEOREM B. Let f: M — Z be defined by the number f(p) of vertices of
L,. Then, for each p € M, f has a local minimum at p. In particular, f achieves
its maximum on an open set. If X (M) # 0, then f is not constant.

CoROLLARY. If X (M) # 0, then there are two points of M with 4 or
more length-minimizing geodesics joiming them. (If X (M) = 0, there are
counterexamples.) For each compact surface S there is an M homeomorphic
to 8 and there t8 an open set of M, say U, such that if p € U, then there is
no point of M joined to p by 4 or more length-minimizing geodesics.

4. Proofs of lemmas and theorems.

LeMMA 1. Let (M, g) be a complete Riemanmian manifold of dimension
n and let. x: TM — M be the tangent bundle. Define P: TM —~ M X M by
P(X) = (n(X),exp(X)). Then P is a Riemamnian ocovering projection
where the metrio on M X M i8 g X g and that on TM is P*(g xg).

Proof. Since M has no conjugate points, exp, is of rank n everywhere,
and =z, under any conditions has rank n everywhere. Thus =, X exp,
has rank 2#. That P, is of rank 2n follows from the commutative diagram

™y L T(M xM)
a.xexk Axnz.
N/

TMxTM

where 7, and =, are the projections onto the first and the second factor
of M x M, respectively. Thus P is an isometric immersion. It remains
to show that TM (with the prescribed metric) is complete ([3], p. 176).
First note that the geodesics of M x M are precisely those curves of the
form y, X y5, where y, and y; are geodesics in M, as is well known. Thus
a curve of the form S(s) = sX, where X € T M, is a geodesic in T'M, since
Pof is a geodesic and P is a local isometry. Let y: [0, b) - T M be any
unit speed curve. We will prove that

ally @)l
at

where ||y(?)|| is the g-norm of the vector y(¢). This will insure completeness

since it implies that |y ()| < V§b + lly (0)ll, & fact easily verified using the
mean value theorem. Hence for all ¢ € [0, b)) we have

(+) <y3,

yt)e{X eTM: | X|| <7 n(X)eimnoy},.
where r, = ¥/2b+ |ly(0)||. Thus any curve of finite length will lie in & com-
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pact set (i.e., the one in the preceding sentence). This clearly implies geo-
desic completeness. That (*) follows by a long and not straightforward
calculation will be exhibited.

Let a: [0, ) X [0,1] - TM be given by a(t, 8) = s[y(t)]. We denote
a.(0/0t) and a,(0/08) by da/dt and 8a/33, respectively Then

a dlly (@I Oa 0
iy (o L Sl 2 f Iy OlFds = — | ( =),

since the curve f,(s) = a(?, 8) has speed |y(?)|| relative to the prescribed
metric on TM and this metric restricted to a tangent space of M is just
the pull-back of g by the exponential map on that tangent space. Now

da Oa a 8a da Ja
dtf( > dtf«“‘ as >+<°xP" Fiaadr )d’

by the definition of the metric on 7M. Let D/dtand D /ds denote covariant
differentiation along the curves s = const and ¢ = const, respectively.
Then the above is equal to

1
D Oa Oa
2!(“17 expta_s 1 €XPe 0_8>d8
(note that =, (0a/0s) = 0) which is

da
(e )

since the Riemannian connection has 0-torsion. Now, since the metric
is pa.rallel this is equal to

D _da

We have

D o da 0
ds P T
since expo B, is a geodesic, where B, is defined as above. Thus we obtain
Oa
2f <exPa at:etha >d3 -

da Oa
=2 [(e vy €XPs >(t 1)— <exp. y €XPy — > (t, 0)]

[<exp. % exp, a")(t 1>—<n.;,exp. fa >(t 0)]
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gince
Ja Ja
exp,..—at— = n.—at— for 8 = 0.
Now, noting that
Oa
€XPs 25 Il = 1)l

and using the Cauchy-Schwartz inequality, we infer that the expression
above is less than or equal to

da
Ne ——

ot

Here we also note that x, (0a/dt) is independent of s. Thus we finally get
ally (0l [ Oa da ]

7 < 2|y (D] || eXPa 2 o 7
2y (O)ll Cllexpa ¥’ (0l + lizes ' (£)11]
< 21y (@) IV2Illexps ¥’ (O)IF + llme ' (8)[212

2V2 ly (1)l

Assuming that [|y(t)]| # 0, we obtain (*) by dividing both sides by
2y (@Ol

LeMMA 2. Let (M, g) be a compact Riemannian manifold of dimension n
and let ny: S(M) — M be the unit sphere bundle. Define

h: S(M) L= L,
peM
by h(X) = o(X)X, where o(X)eR is such that o(X)X € L,x,. (Note that
o(X) ewists, since M is compact, and hence of finite diameter.) Then h is
a homeomorphism.

Proof. First we show that L is closed. Let 4, be a sequence of points
in L converging to A. Then =(4,) - n(A) and exp(4,) - exp(4), by
sequential continuity. Let d: M XM — R be the metric on M arising
from g. Then

d(n(4), exp(4)) = limd(z(4,), exp(4,)) =lLm|4,] = 4]

2l @l [

exp.%‘:’ + ](t,l)-

21y @l

+

by sequential continuity, the fact that A, € L, and sequential continuity
again, respectively. Thus the geodesic determined by A is length-mini-
mizing. We must now show that no extension of this geodesic is length-
minimizing. Consider the sequence

, 1
.A.” = (1 +Tn—) A“.
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Let B, eTM correspond to a length-minimizing geodesic joining
n(A,) to exp(4,). Some subsequence of B,, say B,,, converges to a point
B, gince the B, lie at a distance not greater than the diameter of M plus 1
from the set of zero vectorsin T'M (i.e., they lie in a compact set). If B
# A, then no extension of 4 will yield a length-minimizing geodesic,
by a corner-cutting argument, and thus, in this case, AeL. If B = A,
then for any neighborhood U of A there exists an N € Z such that, for
i> N, B, and A, both lie in U. But P(B,) = P(4,) and B, # 4,,
the latter a.ssertlon following from the fact that the B, correspond to
length-minimizing geodesics while the A,,‘ do not since they are extensions
of cut-locus vectors. Hence P is not locally one-to-one, a contradiction.

'We now proceed with the proof of the continuity of 4 and »~'. Let X,
be a sequence of points in §(M) converging to X. Then any subsequence of
h(X,) has a limit point ¥ € L, since h(X;) lies in a compact set and L
is closed. We may pick a subsequence of this arbitrary subsequence con-
verging to Y. Since the obvious projection of TM modulo the zero vectors
onto 8(M) is continuous, we get Y/||Y|| = X by sequential continuity
of the projection with respect to the sub-subsequence. Thus ¥ = h(X),
and hence every subsequence of A(X;) has one and only one limit point,
namely k(X). It follows that h(X;) converges to h(X) and h is continuous.
Now b is obviously one-to-one and onto. If ¢ is a closed set in S(M),
then O is compact. Therefore, 2(C) is compact, and hence closed. Thus
h~! is also continuous, and A is a homeomorphism.

LEMMA 3. Let p and q be distinct points of 8, a complete, simply con-
nected, O Riemannian 2-mamifold without conjugate points. Then the set
of points equidistant from p and q, say C(p, q), i8 a closed, conmected, non-
compact, C*-submanifold of 8 of dimension 1. Moreover, C(p, q) has the
Jollowing properties:

(1) If (r,0) are polar coordinates about p, then C(p, q) i8 regularly
parametrized for its entire length by some fumction F: (6,, 6,) — R, where
F(6) = (R(0), 6) and 0,—0, < m. Here we identify points of S—p with
their polar coordinates.

(2) If R(06) i3 a8 in (1), then there i3 a unique 0, such that R’'(6,) = 0
and R(6) > R(0,) for 0 # 0,.

(3) At ze€0(p, q), C(p, q) bisects the angle formed by the geodesics
Sfrom p to x and from q to =.

We call the curve C(p, q) the equicurve between p and ¢. If S has
constant curvature, the equicurves in § are easily shown to be geodesics.

Proof. First we note that O(p, q) is closed because it is the set of
points of § where two continuous functions agree, namely the distance-
from-p function, denoted by d,: M — R, and d,. Connectedness and non-
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compactness along with differentiability will be proved after showing
a local version of property (1).

Let #€C(p, q) and let y, and y, be the unique geodesics joining
p to x and q to w, respectively, and having unit speed and common mini-
mizing-length r,. From the Gauss lemma it is evident that the gradients of
d, and d, at @ are y,(r,) and y,(r,), respectively. Now, y,(r,) and y, (r,)
are distinct, for otherwise, by uniqueness of geodesics having a common
tangent vector, we would get p = ¢. Now, that C(p, q) is locally differen-
tiable follows from the fact that d(d,—d,) = d(d,)—d(d,) # 0 by the
duality of differentials and gradients via the Riemannian metric. This
proves that O(p,q) is8 a C*-submanifold of dimension 1, since d,—d,
is a submersion in a neighborhood of C(p, ¢). Now suppose we consider
the component of C(p, q) containing # and parametrize it via the polar
coordinate 6 with p as the pole. We note that C(p, q) is never tangent to
a geodesic ray from p, since this implies (V(d,—d,), Vd,> = 0, so we
have {Vd,, Vd,) = 1, whence y,(r,) = y,(r,), and p = ¢ by uniqueness
of geodesics. Thus, each component ¢; of C(p, q) is regularly parametrized
by 6 on some interval (6%, 65). Assume 6% — 6 > =. Then we get a contra-
diction from the fact that there would be a geodesic through p connecting
two points of C; and a broken geodesic of the same length through ¢ con-
necting them, which violates the fact that geodesics are length-minimizing
under our hypotheses on S. Thus we have proved property (1) for each
component of C(p, q).

We proceed to prove (2) in general. Suppose there are two points
-of C(p, q) which are tangent to the curves r = const. This implies the
exigtence of two distinct unbroken geodesics from p to ¢ since the gradients
of d, and d, are anti-parallel at those two points, a contradiction. This
establishes uniqueness. As for existence, we note that gince R (6) is monotone
if 6, does not exist, a right-hand or left-hand limit of B(0) for any compo-
nent (of C(p, ¢)) must exist and not equal oo or 0, whence the component
could be continued because of the fact that C(p, ¢) is closed and transverse
to the lines 6 = const. This also establishes that there is only one compo-
nent of CO(p, q).

To prove property (3) assume that x € C(p, ¢) and that fis a curve
through # and lying in C(p, q), taking B(0) = # and p’'(0) # 0. Now

$B'(0), ¥p(70)> —<B'(0), ¥4(ro)> = <B'(0); ¥p(ro) —¥g(T0))
a
= <p, (0) ) gra‘d(dp - dq)> = d(dp - dq)(ﬂ' (0)) = E’ (dp - dq)(ﬂ(t))t-o = 0.
LEMMA 4. L, has a finite number of vertices. Between consecutive vertices,

L, is a segment of an equicurve between 0 and some Y € exp,’(p) in M,
with metrio exp,g.
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Proof. We first prove that if X € L,, then X lies on some equicurve
of the form C(0, Y), where Y e exp-1(p)—{0}. Let yx be the unit speed
geodesic in M associated to X via the exponential map at p. We recall
here that, in the absence of conjugate points along geodesics in M, this
exponential map is a Riemannian covering projection if we use the pulled-
back metric on M,,. Since yx minimizes the distance between p and yx(||X||),
X must not be strictly closer than | X|| to any member of exp-(p)—{0}.
Indeed, otherwise we may find a geodesic from this member to X of length
shorter than yy, and thus this geodesic projects to a geodesic shorter
than yx joining p and the end of yx. On the other hand, if X is strictly
closer to 0 than to exp,’(p)—{0}, then the same will be true of (1+¢) X
for sufficiently small ¢ > 0. Hence the corresponding s-extension of yx
would still be length-minimizing. In either case we contradict X e L,.
Therefore

d(X, exp;’(p)—{0}) = IXI,

and since exp, ' (p) — {0} is closed, there is some Y € exp,'(p) — {0} realizing
the distance. Hence X € (0, Y).

Now we establish that there are a finite number of vertices. We know
that there are at most a finite number of points of exp,'(p) which are
in the closed disk, say D, of radius twice the diameter of M and centered
at 0, since otherwise exp,, would fail to be one-to-one in any neighborhood
of a limit point of exp; ' (p). Now, since L, is contained in the closed concen-
tric subdisk of D of half the radius of D, it is clear that only a finite number
of equicurves can contain points of L, (i.e., only those between 0 and points
of exp,!(p) in D). Each vertex of L, is the intersection of 2 or more of these
equicurves. In fact, the number of these intersecting equicurves is by 1
less than the order of the vertex. We just lift the geodesic segments cor-
responding to the other members of [ V] in reverse (starting at V) to locate
the members of exp,’(p) generating the equicurves passing through V.
Suppose that L, has an infinite number of vertices. Then, since the number
of equicurves with points on L, is finite, there must be 2 distinet equicurves
among them which intersect in an infinite set within the compact set D.
It is not difficult to show that at any limit point of this infinite intersection
set the two curves are tangent. We deduce eagily from property (3) of
Lemma 3 that both equicurves are between 0 and the same member of
exp,'(p) — {0} and must therefore coincide. Thus we arrive at a contra-
diction, and so L, can only have a finite number of vertices.

Now it is trivial to observe that since L, is a continuous image of
the unit circle (by Lemma 1), it cannot pass from one equicurve to another
without passing through a vertex. Hence, between consecutive vertices,
L is a segment of a single equicurve. '
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LEMMA 5. exp,(L,) is a 1-dimensional CW complew. Let v = exp,(V),
where V € L,. There are exactly + [V] length-minimizing geodesios joining
p to v. For some small convex disk about v, these geodesics divide the disk
into 3 [V] sectors. In each sector, there issues from v a 1-cell of exp,(L,),
and this 1-cell bisects the angle of the sector.

Proof. In making exp,(L,) a CW complex we let the 0-cells be exp,{V:
V is a vertex of L,}. The 1-cells will be the images of the equicurve segments
of L, between consecutive vertices of L,. Of course, we must verify that
either the images of 2 of these segments are disjoint or coincide. Suppose

exp, (8;) Nexp,(8,) # 9,

where S, and 8§, are open equicurve segments between consecutive vertices
of L,. Then there are points X, €8, and X, € 8, such that exp,(X,)
= exp,(X,). Since exp, is a universal covering projection, there is a cov-
ering transformation 7': T, M — T, M such that T(X,) = X,. Let ¥, and
Y; € exp;'(p) be the unique points such that X; e C(0, X;). Now

(0, X,) = d(0, X,) = d(T(0), T(X,)) = d(T(0), X,),

and thus X, e€C(0,7T(0)). Consequently, T(0) = ¥, and T(¥,) =0,
or T may be the identity. In either case,
T(C(0, Yy)) = C(T(0), T(Y,)) = C(X,,0).

Hence T'(8,) = 8, since T'(8,) can contain no vertex, T'(X,) = X,,
and the bounding vertices of §; cannot be mapped to interior points of
8, because all interior points are of order 2. Thus 8, and 8, are identified
by exp,. If 8, = 8,, then T(8,) = §, and T'(8,) = J,, whence T has a fixed
point in §,, T must be the identity and X, = X,. Thus exp, |8, is one-to-
one. Hence exp,(L,) is a 1-dimensional CW complex as indicated.

Each length-minimizing geodesic from p to v can be lifted to M, at 0,
and thus determines an element of L, in [V] and conversely. Thus there
are 3 [V] length-minimizing geodesics from p to v. It is clear that these
geodesics divide any convex disk about » into 3 [V] sectors. Let S be
a sector bounded by consecutive incoming geodesics g, and g,. Lift g,
starting at 0 and ending at V' e [V] and lift g, in reverse starting at ¥V’
and necessarily ending at some point X € exp~!(p) — {0}. By Lemma 3 (3),
C(0, X) bisects the angle between the lifts of g, and g, at ¥’, and the
part of C(0, X) issuing from V' into the sheet of § at ¥’ is a part of L, since
all other equicurves through V' must lie outside the sector bounded by the
lift of g, and O (0, X) because g, and g, are consecutive and Lemma 3 (3)
applies again. Projecting the situation isometrically by exp, establishes
the final sentence of Lemma 5.

LEMMA 6. The vertices of L, are precisely those points where L, has the

< interior angle less than w. In particular, the segments of L, issuing from
a vertex of L, belong to different equicurves.
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Proof. At a non-vertex, L, is smooth since in Lemma 4 we have
shown that, between consecutive vertices, L, is a segment of an equicurve
and we know equicurves are smooth. Now, if V is a vertex of L,, then its
order is greater than 2, and hence 3 or more distinet geodesics corresponding
to elements of the class of V connect p to exp(V). By Lemma 5, the images
of the sides of L, with members of the class of V as endpoints bisect the
sectors determined by the above-mentioned geodesics, and so it is clear
that the angle between consecutive side images is less than =. Pulling
back angles to M, preserves this inequality and we are done.

LeMMA 7. Let D be a conver disk about p € M such that D x D 18 evenly
covered by P. Let D, be the diagonal of D x D, and let D' and D* be sheets
of D x D. Denote D' "P~'(D,) by D} for i = 1,2. Define R*: n~'(D) > R
by RY(X) being the distanoe from X to the point DeNMyx, in M, x, with
melric eXPprx)g. Then

-

EZ (X ea}(D): R{X) = R}X)}
8 a 0% 3-dimensional submanifold of n—*(D). If ©: M, — T M is the inclusion,
then i t8 tramsverse regular on E for each q € D.

Note that M, meets E in an equicurve. We call E the equihypersurface
between D} and Dj.

Proof. The functions R, ¢ = 1,2, are mutually differentiable
everywhere except on DiuUD?. The proof that E is a smooth submanifold
of dimension 3 follows once we show that the differential of the function
R'—R? is non-zero everywhere on E. Let X € EnM,and Y, = D} nM,,
i =1,2. Let y, and y, be the geodesics (in M,) with unit speed such
that ¥;(0) = Y, and y,(r,) = X,% = 1, 2. Now, we have

i*d(R' — R*)(grad (R' — R*)oi) = d((R'— R*)o4)(grad (R' — R*)o1)

= |igrad (R'— R*)oq|?
but

(grad (B' — R*)oi)x = (gradR'oi)x —(grad R'od)x = y1(re) —ya(r) # 0

gince Y, # Y, (recall they are in different sheets). Hence we have proved
that not only is d(R! — R?) non-trivial on E, but also that i*d(R'— R?) # 0.
The second relation implies that Z is transverse to the submanifolds
M, qeD.

LEMMA 8. Let X € L, with q € D, and suppose X is of order 2. Then
there 18 a neighborhood W of X im TM suoch that W NL = W NE for some
equihypersurface E in TM.

Proof. Since X is of order 2, it is a member of precisely one equicurve
of the form C(0,,Y,) with ¥, eexp;'(¢). Now, this equicurve belongs
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to the equihypersurface E between the sheets above D x D containing 0,
and Y,, respectively. It is apparent that an equihypersurface is uniquely
determined by an equicurve lying within it in the case where we only
consgider those equihypersurfaces which have non-empty intersections with
the set U L, and where Dj is the image of the 0-section of #: #~*(D) - D.

Now 1t 18 evident that there are at most a finite number of such
equihypersurfaces as above even if we allow g to range over all of D,
since the second sheets of those equihypersurfaces are all disjoint, have
the same volume and occupy a region of finite volume. Now, since this
collection of equihypersurfaces is finite, the union of the ones not containing
X is clogsed in =-1(D). We take W to be a neighborhood of X which is
contained in the complement of this union and which is such that WnE
and W NL are homeomorphic to R’. (Note that L is homeomorphic to
S(M) by Lemma 2.) Now WNL c WnE since every point of WnL
belongs to some equicurve which must belong to E by construction. Also,
gince L is closed, LNW NE = W NLisclosed in WNE. However, WNL
~ R*, and hence is open in W NE by invariance of domain. Thus W NL
= WnE.

Proof of Theorems A and A’. We give exp,(L,) the CW structure
defined in Lemma 5. Let v,, ..., v, be the 0-cells of this complex. Let o,
be the number of length-minimizing geodesics from p to v, (i.e., the number
of points of L, identified with v; by the exponential map at p). By Lemma 5,
the number of 1-dimensional simplices in the star of v; is o; since these
1-simplices bisect the sectors determined by the incoming geodesics.
Remembering that each 1-simplex is bounded by 2 vertices and that
exp,(L,) is homotopically equivalent to M —p (via retracting radially
along the geodesics starting at p), we have the following formula:

A1 = 2 —(g}) = k= Do, - j(l—%o‘).

=1 =1

Now, since o,>3, we have k< —2(y(M)—1) = —2+44G (M),
and since 1—2G (M) # 0, we get k> 1. From the formula and the fact
that y(M) = 2—2G(M), we infer that

k
D) 0 = 4G(M)+2k—2,
=]

[

and using our bounds on % we get

k
4G(M) < D) 0, < 12G(M)—6.

f=1
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k
Thus we have proved the first sentence since }' o; is the number

fm=]
of vertices of L,. To prove the corresponding result for Theorem A’ we

need only to substitute }y(M) for y(M) and proceed in an analogous
manner. ‘

Now we show that if mn = 4@ — 2, we can put a metric on a surface §
of genus G (8 compact) and find a point p on § such that L, has (m +2)n
vertices, all of order m + 2. Once this is shown, if we let m = 1 and =
= 4G —2, we have proved that the upper bound on the number of vertices

, can be achieved, and m = 4G —2 and n = 1 will realize the lower bound.
First we show that § can be represented topologically by a polygon with
(m +2)n sides with the sides identified in pairs. We start with the standard
representation of § as a 4G-gon with sides identified via the scheme
aba ‘b 'ede"'d™!, etc., and consider a neighborhood of the point with
which the 4G vertices are identified. We illustrate the procedure for
the double torus (Fig. 1). Here we take m = 2 and n = 3.

Fig."1

We' now “pull apart” the vertex, forming a string of n vertices with
m + 2 rays issuing from each and in the process we create # —1 new sides.
Note that this is possible only if mn 42 = 4G. Fig. 2 clarifies this procedure.

Fig. 2

We label the new sides ¢ and f and cut along all the sides and obtain
the desired polygonal representation upon unfolding (Fig. 2). Now we
embed the new polygonal representation in the Euclidean plane E* (or
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the hyperbolic disk H?) in such a way that it is symmetrically placed
about the origin (or center) and has geodesic sides of equal length depend-
ing on whether 3 (M) = 0 (or (M) < 0). Now, in the case where y(M) < 0
we may dilate or contract the embedding to make the vertices have a com-
mon interior angle of 27 /(m +2), once we note that in the Euclidean plane
the vertices will have a common exterior angle of 2n/n(m +2), whereas
the desired angle is =—2x/(m-+2) which is always greater if mn # 2,
a8 it is in the case where G # 1. In the'case where mn = 2 (i.e., G = 1),
the exterior angles are equal and the embedding must be into E?. Now it
is tedious but not difficult to prove that, since the angles at the vertices
have been chosen correctly and the sides are all geodesic segments of
equivalent length, upon identifying the vertices and sides in the pre-
scribed manner we obtain the surface 8 together with a metric of constant
curvature. We need only to observe that the boundary of the polygon in
E? (or H?) is the cut locus at the origin (or center), say O, if we identify
E? (or H?) with 8, (with the metric pulled-back via exp,). Note that the
proof for the case of non-orientable surfaces proceeds in an analogous
way if we use the a’b?¢’ ... representations to begin the process.

Proof of Theorem B. Let f(p) = » and let P,,..., P, be points
on the sides of L, which are of order 2 and separate the n vertices. We let
Wi ..., W, be neighborhoods of these points as in Lemma 8, and put

U =a(W)n... na(W,),

where W; = WNE, and E, is the equihypersurface containing P,. Now
U is open since the W, are 3-dimensional and transverse to the tangent
spaces. We note that if P,, ..., P, are in order of increasing 0 (say 6 = 0
for P, and we have a fixed orientation on U), then P, and P, +1 lie on dif-
ferent equihypersurfaces (we use addition mod~ in adding indices), for
otherwise the vertex between them would be smooth, violating Lemma 6.
Since each W;NL = W,n E; is a smooth 3-dimensional submanifold of
T M projecting onto an open superset of U, we can find sections Iy, ..., I',,
defined on U and taking values in W; N L, such that Iy (p) = P,, ..., I'h(p)
= P,. Furthermore, we note that these sections preserve the angular
ordering of P,, ..., P, (relative to the vector field I', on U defining 6 = 0)
on some neighborhood of p contained in U, say U,. Thus it is clear that
f(q@) = f(p) for q € U,, since I,(q), ..., I',(q) lie on distance sides of L,.

Now let the function f be constant (with value #) and normalize the
vertices of L, for each p. We define a properly discontinuous action of Z,
on S(M) (the total space of the unit circle bundle) by choosing an orienta-
tion on M (or its 2-fold cover), letting the generator of Z, map each norma-
lized vertex to the next in the positive direction, and extending this map
linearly in 6 between vertices. Now we note that locally the vertices deter-
mine smooth sections of the tangent bundle, since they are determined
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by the intérsections of transversely intersecting pairs of equihypersurfaces.
Algo f = n assures us that a vertex cannot “split”. Thus it is clear that
the normalized vertices are bounded away from each other since g: M — R
defined by the minimum angle between adjacent vertices at each point
is continuous and greater than 0 on compact M, and hence bounded away
from 0. Thus the action is clearly properly discontinuous and Q: S(M)
- 8(M)|Z, is a covering projection. Now the function ¢: M — S(M)/Z,
which assigns to each point the orbit of vertices of the cut locus at that
point is a section of the bundle =': 8(M)/Z, — M. It is not difficult to see
that the primary obstruction cocycle for finding a section of the circle
bundle with map =’ is n times that of the unit tangent bundle (i.e., the
Euler class). Thus the existence of ¢ implies ny(M) = 0, and hence
(M) = 0.

Proof of the Corollary. If there are no points p and ¢, p # ¢, with
4 or more length-minimizing geodesics joining them, then every vertex
of every cut locus, no matter what point of M we choose, has order 3.
We have already seen in proving Theorems A and A’ that this can be
the case only if f (of Theorem B) assumes the maximal value of 12G —6
everywhere (or 6@ in the non-orientable case). Thus f is constant and y (M)
= 0 by Theorem B.

5. An interesting proof of a known result. In Lemma 1 we proved
that, for appropriate (M, g), P was a covering projection. For M compact
with x(M) # 0, there are no covering transformations other than the
identity, since a non-trivial covering transformation applied to the 0-section
would yield a nowhere-vanishing vector field. This observation leads
to the following previously known result:

THEOREM. If (M, g) is compact and without conjugate points, then
the center of n,(M, p) is trivial provided y(M) # 0.
Proof. There is a natural isomorphism

¢: m(M XM, (p, p)) - =, (M, p) X 7, (M, D).

Let 4 be the subgroup of =,(M,p)Xx =, (M, p) consisting of the
diagonal. The claim is that

971 (4) = im[PH#: =, (TM, 0y) - n, (M XM, p X p)].

Just note that any loop in T M is homotopic to a loop in the 0-section
of TM and then projects to a loop of the form ¢ x o. Conversely, every
loop of the form ¢ X ¢ in M x M lifts to a loop in TM, namely c(t) = 0,
Now the group of covering transformations is isomorphic to N(4)/4,
where N (4) is the normalizer of 4 in =,(M, p) X »,(M, p). Thus, by our
observation, N(4) = 4. Now (h,g) e N(4) if (h,g)(c,0)(h', g™ ") is of
the form (d, d) for all ¢ € n, (M, p), or heh™ = geg~ or (g 'h)e(g~'h)?
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= ¢ for all ¢, that is if g-*h belongs to the center C of =, (M, p). Thus, if
feC, then (f,1) e N(4), and 80 f = 1.

6. Concluding remarks. Theorems A, A’, and B suggest looking
further into the structure of the sets f~'(n) with 4G (M) < n» < 12G (M) —6,
where f(p) is the number of vertices of L,. Alan Weinstein has suggested
that there may be some relation between f~!(n), for small », and Weierstrass
points. Any results in this direction would be of significant interest.

In his thesis, Buchner [1] proved that generically the cut locus L,,
at a fixed point p, is stable under variations of the metric on M (for
dimM < b). For surfaces without conjugate points, it follows from his
result that (for a fixed p) L, will have only vertices of order 3 generically.
Theorem B implies that, for y(M) # 0, L, must have vertices of order
greater than 3 at some g € M. A conjecture is that generically these points
¢ are isolated or perhaps they form a 1-dimensional subcomplex of M
(P 1210). To answer this problem, a study of the subset 0 =« M X M,
consisting of pairs (p, ¢) such that g € exp,(L,), should be made. Specifical-
ly, what are the erucial generic properties of ¢ under variations of the
metric on M?

Finally, the reader may wish to consult the work of Weinstein [6]
and Eberlein [2] for additional sources pertaining to the cut locus.
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