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Abstract. In order to give an integral representation to a broader class of superharmonic
functions in the plane we use instead of the usual logarithmic kernel a new A-kernel,
already considered by M. Heins, equal to log(1/[x~—y|) for |y] €1 and to log (|yl/|x—yl)
for {y| > 1. The corresponding potentials, with the logarithmic or A-kernel (up to a harmonic
or a constant function), are compared and characterized. The study of the case of a harmonic
minorant outside a compact set is deepened. This suggests an extension to harmonic spaces
without positive potentials and has close relations with the Arsove functions of potential
type, the pseudo-potentials of Anandam and the equivalence notion of J. Guillerme.

I. INTRODUCTION

1. In the potential theory in the plane, one considers the logarithmic
kernel

L(x,y) = log——— Xy

and its corresponding potential with respect to a positive measure A:

Ui(x) = |log—— dl (x)

|x—
defined as
——dA(y)- [ log~

§log* ————-dA(y)

1 1
=yl Tyl
at every point, where it is well defined (finite or not).

Actually, it is rather trivial but perhaps not well known that iff Uf is
defined and finite at one point or iff

j' log D di(y)

is finite (for some r > 0), then U} is defined everywhere on R? and
superharmonic, and called a (true) L-potential. Moreover, for a super-
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harmonic function, with the so-called associated measure u (given by the
local F. Riesz representation), u is equal to a certain U7, up to a harmonic
function ifl Uf is a (true) L-potential and then A = u. See other developments
in [5].

But in order to get an integral representation for a larger class of
superharmonic functions, one is led to introduce a new kernel in RZ:

log

— i i<,
(1) Alx,y) = A

log lyl = 1.

Ix =yl
Actually the kernel log(|y|/|x—y|) was introduced in an auxiliary way by
M. Heins [10]; he proved that if u(x) is a subharmonic function of order
less than one in R? and is harmonic in the neighbourhood of the origin,
then there exists a Radon measure g > 0 in R? such that

2 u(x) = u(0)+lim | log =)l du(y). '

T2 yl<r |yl
A little later, M. Brelot, in a study [7] on the behaviour of a subharmonic
function in the neighbourhood of a singular point, improved the previous
result by replacing lim | by a true Radon integral and the growth condition
by the weaker one that the mean MM+ of u* in the circle x| = r satisfies:

f—F5—dr< +o0 (ro > 0).

ro T
See in [7] many developments with the kernel log (|y]/|x —y|), other ones
and similar ones in R*, but with a measure 0 in the neighbourhood of the
origin. We shall use it often.

2. In this paper we consider only the kernel A in R? but with other
details and aims. Such a study will actually interfere (sometimes being even
included), with previous papers like [10], [3] or [4] on various questions
off potential theory, often inspired by the theory of entire functions. Therefore
we present in chiefly as an introduction and a tool for an easier development
of these questions.

In Chapter Il, instead of the Riesz type representation of superharmonic
function, by using the logarithmic potential, we consider the same problem
with respect to the kernel A. We give a representation by a A-potential,
up to a harmonic function, for a larger class of superharmonic functions
(with an associated measure u > 0) characterized by some equivalent con-
ditions like

du(y)

iyi>r |Vl
obviously weaker than those of the first representation.

< +00 (r>0),
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In Chapter III we consider the integral representation in the case where
the additional harmonic function is a constant. This will imply the improved
Heins’ result. We shall mean by A*- (or L*-) potentials the true A- (or L-)
potentials up to a constant, the symbols A* (or L*) denoting the families
of such potentials, and we shall try to characterize A*-potentials.

In Chapter IV we recall some old results and recent notions that will
be completed and used, first of all those concerning admissible superharmonic
functions (Anandam [1]) (i.e. functions having a harmonic minorant outside
a compact set). We know that L-potentials are admissible [5], but it is not
always true for A-potentials. We recall that two admissible superharmonic
functions are said to be equivalent (Guillerme [8] and [9]) if the difference
between their greatest harmonic minorants outside a disc (equivalently, a non-
polar compact set) is bounded at infinity (outside a compact set). We shall
characterize admissible A*-potentials. They form an equivalence class in the
set of all admissible superharmonic functions and are identical to the pseudo-
potentials in R? (introduced by Anandam in an axiomatic theory [27).
Let us also emphasize that a function of “potential type” (Arsove .} 18 tiic
difference of two admissible A-potentials up to a constant and that any
admissible A*-potential is a function of potential type.

We continue the study in Chapter V by developing the relations between
the admissible A*- and L*-potentials. Thus any L- or L*-potential is
a A*-potential and any admissible A*-potential is equivalent to an L- or
L*-potential.

We hope, and it was our main purpose, that this elementary paper will
suggest some research of integral representation in a harmonic space without
a positive potential.

II. A-POTENTIALS AND INTEGRAL REPRESENTATION

3. We have defined the A-kernel. It may be useful to remark that, for
Iyl =2 1, A(x,y) is the limit, as r — oo, of the difference Gj(x)—Gj}(0),
where G} is the Green function of the disc Bf, with its pole at y. That can
be seen from the expression of Gj.

DerFINITION II. 1. For a given measure 4 > 0, let us first define U (x),
or [ A(x, y)di(y), as

[ A" (x, p)dAi(y)— [ A~ (x, y)di(y)

on the set of x for which this difference is well defined (finite or not).
Note that U’ is identical to

3%

log ——'l-—d (j;)+ j Iog

vt =yl SN iz x—
AT

A

- dl(y)
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for every x for which each part and the sum have a meaning. The same
remark is true if we decompose the last integral into the sum of
and ] (r>1).

1€yisr Iy|>r

Tueorem 11.2. The following statements are equivalent about this UA:

(i) U} is defined and finite a.e. on some open set w of R>.

(ii) U} is defined and finite at two different points not collinear with 0.

iy [ AW

bizr |V

(iv) U4 is defined everywhere and is superharmonic on R2.

Such a U’ is then called a “(true) A-potential”.

Proof: The implication (i) = (ii) is obvious.

Now we prove that (ii) = (iii). Suppose that Uj} is finite at the points
x, and x, not collinear with 0. Let I be the middle point of (0. x,) and |/
the straight line through I perpendicular to (0, x,); let 4 and &' be two
angular domains with a small angle 6, situated in the opposite sides of
(0, x,), having vertex at I and being bounded by two semi-lines through I
having [ as their bisector. The complement of § U & consists of two domains
o and 4", one containing 0 and the other x,.

Now, |y|—|x; —y| is of constant sign in each of the domains é and 8"
and its absolute value majorizes a fixed ¢ > 0. Since, for small real ¢,
[log (14+1)| = t/2, the quantity

log( D_)l ) equal to —log(l+—|xl_yl_|y|>
e =1 |yl

is of constant sign and its absolute value majorizes ¢/2|y| in &, = 6"\B§,
o'y = 0""\B§ for o large enough.

The finiteness of Uj; implies the same property for the integrals over the
two subsets of {|y| > 1}, where log (|y|/|x; —y]) has a constant sign, and
therefore [(dA(y)/|yl) is finite when taken on &’ and &7

We can now proceed with a similar construction relative to x, in such
a manner that the parts of 4 and ¢ outside a disc Bj are contained in the
regions analogous to &, and &, where j'(dl(y)/lyl) is finite. Consequently,

[ (da(yyly)) is finite.

Iyl>r

Finally, we show that (iii) = (iv) (which obviously implies (i)). When
1 (B§) = 0, the proof is contained in [7], theorem 1'(a), p. 145. For this
important point we give here a direct proof.

For a fixed x and |y| > r > |x|, log (|yl//|x—yl) is of a constant sign on
the semi-spaces |y| < |x—y| and |y| > |x—y| and is majorized in absolute
value by (Jx—y/—|y])/|y| on the first semi-space, by (|y|—|x—yl)/Ix—y| on
the second one, because log|l+z < z for z > 0.

is finite for some r.
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Further, since |y] < |x|+]|x—y}, we have

log ‘Iy’ < log <1+—le —) < il < d

lx—y| |x — yl Ix — i Iyl —Ix|’
and so
(¥l d’(y)
log ——— dA(y)| < Ix| _—
||.v|j>r o8 Ix =yl | ML |yl =[x

Let us now consider x to be variable, with |x| < ¢ < r (g, r fixed) and with
the previous conventions, the integrals | A(x, y)dA(y) and

Iyl

log —l——dl(y) { log L di(y)+ I log

I¥l<1 |x— 1 1sy<r |x — I iylzr 1

di v

making sense and being equal at the same x. The sum of the first two
integrals in the latter expression is for all x in B§ a superharmonic function
and has A as its associated measure in Bf, and the third integral s, for
every x e B§, the limit of the integral taken on {r < |y| <’} as r - oo,
as it can be seen by considering log* and log~. Moreover, the convergence
is uniform on B§. Since this integral is harmonic for any r’, the limit is
harmonic.

Consequently, U} has a meaning for any x and is superharmonic in R?
with A as its associated measure.

I1.3. IMPORTANT EQUIVALENT CRITERION FOR A TO DEFINE A TRUE A-POTENTIAL.
Recall that the previous condition (iii) on any measure 2 > 0 on R?:

di(y)

< 4+ for somer >0
yi>r |V

is equivalent to:

* ] (B
j (O)d r< 4+ (ro > 0);
ro r
Same result with
dA A (Bp)
W and [-—5- Zridr (>0

which implies A(Bj) = o(r").

(See [7], Lemma 2, C with a correction of the misprint (read oP~*
instead of OP*) obvious by a transposition of Lemma 2, C)

4. Integral representation. It is now easy to prove:
THEOREM [1.4. A superharmonic function u in R* with the associated
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measure u is a true Ul-potential, up to a harmonic function, iff U% is
a true A-potential; and then A = p.

Another criterion is that | r *M,dr be finite (ro > 0), and then
WM, = o(r) (r - ). ro

As regards the second statement, we have only to prove that it is
equivalent to:
an Br
j #(20) dr
r

is finite.
ro
More generally, let us see that for any a > 0, the condition

ac

f r- 17 dr

ro
is equivalent to:

J rot *u(Bpdr < + 0.

ro
By replacing in the disc {|x| < 1} u by its Poisson integral we get another
superharmonic function with the same u and ] for r > 1. Thesofore we

may suppose u(0) to be finite (r > 1). By the Riesz representation thecorem
in the disc Bj we get

r r
u(© = M+ [ log—du(y) = M+ [ log-—du(y
, ly<r 3% Iyl <r12 |yl
and that is

> M +log r u(BY?).
Consequently,

rrlTrR < — TV u(BYP) log 2411 2 u(0).

Hence, if | r~!"*9M:dr is finite, then | r~'~*u(By)dr is finite (r, > 1).
ro fo

PO

Conversely, suppose [ r~ ' *u(Bp)dr < +oo. The left-sided derivative

ro
(dM,/dr) at t = logr is equal to — u(Bp). Hence r(dMM/dr)” = — u(B,) and
j r~%(dMM./dr)” dr is finite. But this integral is equal to the Stieltjes integral

ro
L

[r“'d?]i,',-il]l,’, is decreasing, and therefore always > 0 or < 0 for r > ry
o

large enough. We may apply [7], Lemma 1. Then [ WM d(r~* or

fo

[= 8]
—a | r~1"*Mdr is finite and r M, — 0.
’0 e
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CorovrrLary ILS5. If a superharmonic function v majorizes, at infinity, u,
a true A-potential + a harmonic function, then it is itself a true A-potential
up to a harmonic function.

Indeed, M, is upper bounded (r > ry) and majorizes M.

Remark.

APPROXIMATION PROPERTY I1.6. Every true L- (resp. A-) potential u of
a measure pu = 0 is the pointwise limit of a sequence u,+v, of C®-functions
where u, is a true C* L- (resp. L*-) potential with compact support and v,
is a function that tends to O at any point and is harmonic in every fixed
disc if n is'large enough.

We decompose u = up +v), then sum of the potentials of the restrictions
of u to B0 and CBO" (R,10). The convolution with a usual function like
C,-e!/lxlfea=1) on Ben continued by 0 (C, being such that the dx-integral
be equal to 1) gives for g, = 0 the wanted u, and v,.

III. INTEGRAL REPRESENTATION UP TO A CONSTANT

5. THEOREM IIL.1. Let u be a superharmonic function with the associated
measure p = 0. If it is a A*-potential (i.e. a true A-potential, in fact, Uj
up to a constant),'then M, - = o(r) and even u™ (x) = o(|x]) (|x|] = ).

If j — I -dr (ro > 0) is finite, then u is a true A-potential U%+ const.

Proof Since (a+b)” < a”+b~ when a or b is finite, we consider the
true A-potential v = U% and prove that v~ = o(|x]). Now,
_ |yl
v(ix)= | log din+ | 1 d}t(y)
NER! | l Iyl>1 |X

| _
The first term v, is obviously equal to log |—x|—)t(B(‘,)+s(x) (e(x) = O for

Ix] - o0); it is < O at infinity and o(|x]) (x| = oo).

As regards the second term, denote it by r,, we have v; (x) = o(|x})
as a particular case (s = 1) of Theorem 1, f(*) in [7] when using Sec-
tion 3, last line. Hence the wanted property of v~ being majorized by
vy +v; = o(lx]).

Let us now start with u satisfying:

a0
§r= 29~ dr finite.
ro

(*) Let us mention a misprint in this theorem. In the first line of B, instead of “qui
entrainerait «” read “qu’entrainerait o«
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Since M, < —M,-, it follows that for M, upper bounded, | r 2M.dr is
ro

finite. Hence u = a potFntial U% (= w)+a harmonic function h (Theorem 11.4).

Now h~ < w' +u~. This is obvious at any x where u(x) = + o0, because

w(x) = w* (x) = 4+ 0. Suppose u(x) is finite; then so is w(x). We get at x:

=u-w, h <u +(—w)” =u +w",
h™ <u 4+w—w".
We know that M, = o(r) (Theorem 11.4); we just saw that M, - = o(n);

the hypothesis implies 9;- = o(r) (use for instance 114 for inf (u, 0)).
Hence M- = o(r), which implies that h = const,

6. Order of a superharmonic function. In agreement with the definition
of the order of a subharmonic function, we choose the following:

DeriniTioN II1.2. The order of a superharmonic function in R? is the
infimum of the set of all real ¢ = 0 such that lim inf (6} /r*) > — oo where

‘of, is the infimum of u on the circle I',: |x| = r.

THeorem II1.3. Let u be a superharmonic function in R>.

If ue A*, u is of order < 1. If the order of u is < 1, then ue A*.

Suppose ue A*. We know that u~ = o(|x|), which implies ¢”_,- > Ar
for a A real finite < O and r large enough (r > r,). Hence o/r > 4; 1 is
a o of the definition and the order is < 1.

Conversely, suppose that the order is < 1. There exists ¢ 0 <o < 1)
such that ¢7/r¢ > A (A finite < 0) (r > some r,). The minimum of u on
I, is attained at a point x,. If u(xg) >0, —u~ =0 on I',. If u(xy) <O,
inf (u, 0) majorizes u(x,) on I',, ie. ¢"_,- = u(xy) = of,. In any case,

Oy~ >4 (r>ry); MM-/re < —4;

o (JRr_
r2 M- < (=72 [ ——dr is finite.
r

ro
Then ue A*.
Application. The "second part of the theorem implies the original

(improved) form of the Heins theorem. Indeed: when u is harmonic in
a neighbourhood of 0, we have

u(x) = | log W du(y)— [ loglyldu(y)+k;
R |x—yl <1
hence
u = — | loglyldu(y)+k,

vl<1

and the Heins’ result.
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Remark. The order t of u is equal to lim sup log |o}|/log r, just as for
u subharmonic.

The proof is the same. Obvious if u > 0, which implies u = constant.
If not, for r large enough, o] < 0. Then for ¢ > 1, o}/r® > 4 (4 < 0) implies

. log |o},
lim sup log loul. <

r-<  logr
Hence this limsup is < t. If this limsup were < t, then o}/r¢ (for ¢
intermediate) would be lower bounded and ¢ would majorize the order 7.
Contradiction.

Ve

IV. CASE OF ADMISSIBLE FUNCTIONS

7. From the study of the behaviour of a subharmonic function in
the neighbourhood of a point (the point itself excluded) [4], we shall extract
some results and transform them to statements involving a superharmonic
function given on R? or only outside a disc. (?) '

Let u be superharmonic outside a disc. The mean M on |x| = r is
a concave function of t = logr. The quotient by ¢ has a limit A for
t—> +x, Le. r > oo (A finite or —o0). The derivatives (right-sided or
left-sided) of that function of ¢ have the same limit A, but they may be
interpreted as two outer generalized fluxes of Riesz, up to the factor 1/2n
(see [4], p. 26, or [5], p. 304).

When u is defined in R? these fluxes are equal, up to —2n, to the
associated measure of the disc {|x| < r} or {|x| < r}; and if r - o0, we get
finally A = — [du (see [5], p. 307).

We know also that for u superharmonic outside a disc the existence
of a harmonic minorant at infinity (i.e. outside a disc) is equtvalent to the
condition: A is finite (see [4], p. 32 or [5], Theorem 2). The “special
case” where there i1s such a minorant of the form: klog|x|+ a bounded
function (k finite), is characterized by the condition lim (M, -/log r) (or

equivalently: !'_."; (M7, /log r)) is finite [4]. Then the greatest harmonic

minorant outside a disc has the form Alog|x|]+ a bounded function.
Moreover, in this case, u(x)/log |x| has a llmll inf equal to A = lim (9 /log r).

An example of this special case is given by any L-potential (see [5], p. 307,
where in line 18, o, has to be read: —a,).

(3) In the following considerations such a closed disc may be generally replaced by
a non-polar compact set.
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8. As a particular case of a notion introduced by Anandam [1] in
a harmonic space without a positive potential, a superharmonic function
in R? is said to be admissible if it has a harmonic minorant outside a disc
or some compact set.

We have recalled above a criterion that we repeat in the following
theorem with a direct proof.

THEOREM IV.1. A superharmonic function u in R* with the associated
measure p > 0 is admissible iff |ull, ie. [ du, is finite.

Proof. We apply an inversion having the origin 0 as its pole and
transforming -« into «' and u into u' associated to «'. The hypothesis on u
implies that ' admits a harmonic minorant, and a greatest one, denoted ',
on some B{\0. Then

u (x)—h(x) = { G(x, y)du' (y),

where G(x, y) is the Green function of Bj\0 and also of Bj. Let x # 0
be fixed such that u'(x)—h'(x) is finite. G(x, y) > ¢ for y in a neighbourhood
N of 0. Hence y'(N) is finite; thus so is the u-measure of a neighbourhood
of the point at infinity, ie. |g| is finite.
Conversely, if |[u] is finite, 4’ may be continued in the neighbourhood
of 0 (with u'(0) = 0) and there is a Green potential of g’ in a B§ or
5\10}; u’ will be this potential up to a harmonic function which will be
a minorant and we get a harmonic minorant for u -outside a disc.
FIRST CONSEQUENCES. IV.2. A true L-potential (of A > 0) is admissible,
because the property of | log|yldA(y) being finite implies the finiteness of

lyl>r
2(CBy) or 141 (see [5], p. 307).
IV.3. A true A-potential may be not admissible.
ExampLE. Consider the measure u given by the density: |x| /2 if |x| > I,
0 if [x| £ 1. Then

d e ) )
R 2n [ r~*%dr is finite
Iyl> 1 |yl 1

and

{ du(y) = 2n [ r~"*dr is infinite.

Iyl>1 1

IV4. Any superharmonic admissible function with an associated measure
>0 is equal to U4 up to a harmonic function. (Because | (duf|y)

U
Iyl>r
< 1/r { dy finite.)

9. Characterizations of admissible /1-potentials. It is interesting and useful
to extract from the above-mentioned results the following property.
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LEMMA 1V.S. Let u be a harmonic function outside a disc, majorizing
a function alog |x|+ constant outside some disc. Then u is of the form:
Blog|x| + a bounded harmonic function at infinity. In particular, if u is
harmonic in R2"then u = const.

Proof. The final property is obvious by considering the mean on |x| =
which implies 8 = 0, u bounded, therefore constant.

The first statement may be proved directly by using an inversion.with
pole at 0. We get u’; then u’'—a log |x| is lower bounded in the neighbourhood
of 0, therefore can be continued as a superharmonic function, harmonic
outside O; therefore it is of the form: Blog(1/|x]) + a harmonic function.
Hence the conclusion for u.

Lemma 1IV.6. Let u be an admissible A-potential with an associated
measure p. Then u(x) > —|p| log (1+|x]).
Proof. Indeed, by defifiition

1
uix) = | log~—ydu(y)+ | log )

dﬂ.(y) = Il +12.
Iyl <1 |x—yl ES! fx—yl

If we set x| = g, then |x—y| < ¢+]y| and the first integral majorizes

1
[ log
Iyl <1 1+Q

du(y) = —u(Bg)log (1+e).

Now, applying a circular projection of the measure y onto a line through
the origin, we get a new measure characterized by the increasing function
v(r) = p(By). Then

] - I (N ———dr

> 1= flog - (+>

> —(lull —p(BS)) log (1 + ).

Consequently, u(x) = — |ul log (1+|x|).

We get now with the A-potential a “special” type of a minorant at
infinity.

ProrosiTiON IV.7. The greatest harmonic minorant of an admissible
A-potential u outside any disc is of the form alog|x|+a harmonic function

bounded at infinity (i.e. in a neighbourhood of the point at infinity). (More-
over, &« < 0))

dv (r) = [v (r) log r-:g

Proof This is a consequence of the previous lemma where
—lul log (1+4|x]) = —|lu| log (x) + a bounded function at infinity

and of a recalled result of Section 7.

For a direct proof, let h be the greatest harmonic minorant of u in
(x| > 0). We know that h is of the form 7ylog|x|+v harmonic in R*+
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a bounded function. The function h, just like u, majorizes — | u| log |x|+
constant at infinity; therefore v majorizes some function of the type
plog |x|+ constant at infinity. Hence, by Lemma S, v = const.

Remark. For a superharmonic function u with the assocnated measure i,
in R%, we have recalled that 9. /logr — —|/u|. When | u| is finite, this is
equivalent, owing to IV.4, to the same property for U4.

It is possible to give a direct proof of this property of U, rather simiiar
to that of IV.6.

We may now summarize some characterizations of admissible
A*-potentials.

TueoreM IV.8. Let u be a superharmonic function in R* with the
associated measure p. Suppose that u is admissible, i.e. A = 11m (M /log r)
= —ull is finite (MM, standing for the mean of u on |x| = r) Then the
Jollowing statements are equivalent.

(1) ueA*;

(i1) outside a disc (or compact set), u majorizes a harmonic function of
the form o log |x|+ const;

(1ii) lim inf u(x)/log |x| is finite (then equal to A) or

|x] = o
(iii') the order of u is 0;

(iv) WM+/log r or equivalently M, -/logr or M, /logr has a finite limit
as r — 0.

For such a ue A*, the greatest harmonic minorant of u in a set |x| > ¢
with ¢ large enough is — ||u| log|x|+ a bounded function at infinity.

Proof. (i) implies (ii) in view of Lemma IV.6. (ii) obviously implies (iif).
The recalled results of Section 7 give the equality with A4, the equivalence
of (1) and (iv) and the final assertion of the theorem. Obviously,
(i11) = (iit) = (i) (see II1.3). We show directly that (iii) = (i).

Let u > alog|x| at infinity. Since u is admissible, we get, according
to IV.4,

u = an admissible A-potential v+ a harmonic function w.

Consequently, by using the greatest harmonic minorant of v outside
a disc, we see that w majorizes at infinity a function flog x|+ a constant;
hence it is a constant. Thus ue A*.

Note that, regarding (i), (ii), (iii) and the final assertion, one could
avoid the recalled results of Section 7, giving direct proofs based on the
previous properties established in this paper.

CoroLLARY 1V.9. Any superharmonic admissible function minorizing or
majorizing a A*-potential at infinity is a A*-potential. If u, v are admissible
A*-potentials, then so is inf(u,v), f.i. inf(u,0 = —u".

These are easy consequences of (iv) and Proposition IV.7.
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10. Relations with functions of potential type (Theorem IV.10). According
to [3], Theorem (16), the definition of a function u of “potential type”
is equivalent to: u equals the difference of 2 admissible A-potentials plus
a constant; therefore also: u equals the difference of 2 admissible superharmonic
functions of order 0 plus a constant. And thus, any admissible A*-potential
is a function of potential type.

We have therefore at our disposal, regarding admissible A*-potentials,
all the properties stated in [3] for the Arsove functions of potential type.
This paper [3] contains, in a different setting and wording, several results of
our paper that are here deduced from older properties; e.g. IV.1, IV.2, IV 4,
IV.8, (i), ('), (iv), IV.9, etc.

11. Coincidence with the pseudo-potentials. Let © be an admissible super-
harmonic function in R? for which h is the greatest harmonic minorant
outside a disc. As a particular case of a notion introduced in the axiomatic
theory [2], we say that u is a pseudo-potential if, for some a, h—alog |x|
is bounded at infinity. (This does not depend on the disc, as can be
seen directly or as a consequence of the following.)

THeorem 1V.11. The admissible A*-potentials are precisely the pseudo-
potentials in R*.

Proof If u is a A*-potential, it is a pseudo-potential according to
the final property of the previous theorem. Conversely, if v is a pseudo-
potential, it majorizes at infinity some function of the form: o log |x|+con-
stant, and thus, according to (ii), it is a A*-potential.

12. Notion of equivalence. Let us recall that two admissible super-
harmonic functions are said to be equivalent if the difference between their

greatest harmonic minorants outside a disc (equivalently, a non-polar
compact set) is bounded at infinity {(Guillerme [8] or [9]).

THEOREM IV.12. If u is an admissible superharmonic function equivalent
to ve A*, then ue A*. In other words, A* is an equivalence class in the
set of all admissible superharmonic functions.

Proof. By Theorem IV.8 the greatest harmonic minorant of v outside
a disc By is —| ulllog|x| + constant, where u is the measure associated
with v. Hence u equivalent to v majorizes — {| ul| log |x|+constant at infinity.
Hence ue A*.

V. RELATIONS BETWEEN L OR L* AND A OR A*-POTENTIALS

13. THEOREM V.1. (a) Any true L-potential U} is a A*-potential U + const.
(b) Any true A-potential U’ is an L*-potential U} + const iff | log|yldA(y)

Iyi>r

is finite (in particular, if the support of A is compact).
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Let u be an admissible superharmonic function; then the following statements
are equivalent:

(1) ue A*;
(1) u majorizes an L*-potential;
(i) u is equivalent to an L-potential.

Proof. (2) and (b) are easy consequences of the following equality
(whenever it has a meaning):

fA(x, ydu(y) = [ L(x, yydu(y)+ [ logiyldu(y).

ylz1

Now, in view of (i), u has outside of a disc a greatest harmonic
minorant « log |x| +a bounded function at infinity (& < 0) (Theorem IV.8).
But the function equal to a«log|x| for Ix| > 1 and to 0 for |x| <1 is
a U} = p (for a suitable measure 4 on |x] = 1). The function u has the
same greatest harmonic minorant as p outside a disc, up to a bounded function
at infinity; and v majorizes p+k in R? for a suitable constant k. So we
get (it) and (uii).

In turn, (i) or (ii1) implies that u majorizes at infinity an L*-potential,
which i1s a A*-potential, therefore u is a A*-potential.

14. Approximation of a A*-potential by finite continuous L*-potentials.

THEOREM V.2. Any admissible A*-potential u is the limit of an increasing
sequence u, of finite continuous L*-potentials with compact supports, where
each u, is equivalent to u.

The greatest harmonic minorant of u outside a disc is of the form
alog |x| (x < 0) +a bounded function at infinity; hence if p is the patential
«log |x| in {|x| > 1} extended by O on {|x| < 1}, then u(x) > p(x)+4 in R?
for some constant A.

Let f, be an increasing sequence of finite continuous functions tending
to u, satisfying the condition u(x) > f,(x) > p(x)+4 in R%. Let v, be the
infimum of the family of superharmonic functions majorizing f,. Then uv,
is a finite continuous superharmonic function (see [6], Theorem 2). It is
even admissible and equivalent to p(x)+4. Hence v, is an A*-potential.

Let us replace in the annulus n < R < g, v, by the solution of the
Dirichlet problem. The boundary values v, define a superharmonic function
v? satisfying

p+i<vi<o, <u
The limit for ¢ — o0 i1s a superharmonic function u, satisfying
p+A < u, <v, < u,

u, is increasing (like v,) and is equivalent to u; hence it is also a A*-potential,
harmonic for |x| > n; it follows that u, is an L*-potential.
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