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Some estimates for diagonal equations over p-adic fields
by
M. M. DopsoN (Heslington, York)

Let K, be a p-adie field with ring of integers p and prime ideal p = (x),
where m i3 an algebraic integer. Let the rational prime above p be p and
the ramification index be e so that p° = (a°) = (p). Let the residue class
field % == o/p have p’ elerncnts, so that Np = p7. Let the degree [K,: Q.1
of K, over Q,, the rational p-adie field, be n, so that n = ¢f. Finally let
" exactly divide d and denote by m, the highest common factor (d, p7 —1)
of d and p’—1. :

Denote by &(d) the least s for which the equation

(1) @t ooy Fagl =0,

where a,, ..., @, are arbitrary non-zero p-adic integers and d a positive
integer, hay a non-trivial solution.

Tt was shown by Brauer {[4], Theorem () that if G(d) depends only
on d, then there exists & mumber I'(d) also depending only on d, such
that every general form of degree d in at least I'(d) variables over a p-adic
field represents zero non-trivially, although the number of variables
required to effect the reduction to the diagonal case is very large. A decade
earlier Artin had conjectured that I'(d) = @*+1 but in 1966 Terjanian
[20] produced o form of degree 4 in LS variables which did not repregend
zero non-trivially in ¢,. Subsequently other authors disproved the con-
jecture for every p-adie field Q,. For example Browkin [5] showed that
there exist forms of degree din » variables over Q,, which have no non-trivial
zeros and with logzn arbitrarily close to 3. Terjanian [21] extended this
result to finite extensions of @, and so in particular to K. Nonetheless,
Artin’s conjecture holds for all but a finite number of primes p in K gince Ax
and Kochen [1] have proved that the conjecture holds when the order of
the residue class field exceeds a bound depending only on d. Their methods,
which are model-theoretic in nature, are not effective for determining this
bound, although Cohen [7] has shown how a bound can be obtained in
principle.
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The number @(d) wag investigated by Peck [16] who showed that
G(d) < 4@+ 41,

an egtimate which evidently depends very much on the degree n. Sub-
sequently Birch [2] eliminated at the cost of introdueing an “inordinately
large nuwmber of variables” the dependenee on n, the degreo of the field,
sud proved thatb

' G (d) < (27 + 8% (mid)*.

In view of Ax und Kochen’s result Bireh’s estimate appears to be far
from best posgible though the poseibility when p is vamified of G(d) being
very large canunot be excluded. There are much hetter estimatey available
for G(d) in special cases. Siegel [L7] proved that & (2) == 5 and Lewis [15]
that G(3) = 7. More generally Gray [13] showed that when & iz an odd
prime

c : G(d) < (d—1)d+1.

Chevalley [6] proved Artin’s conj oeture for finite fields and it follows
from this and Hengel’s lemma that if the rational prime p does not divide d,
then

@) - F(d) < &1
In the p-adic cage, where K, = Q,, Davenport and Loewis [8] showed
that @(d)< @ +1 and that there is eguality whenever d--1 is prime.
When d-+1 iz composite '
G(d) < 3{L-+2/1+V1+4d )} B +1,

where there is equality when ¢ = p(p —1) for some odd prime p (191,
[3]). I& p —1 does not divide the exponent d, the estimate for @G(d) can
be much reduced [11] and for sufficiently large d,

) . G(d) < qrete
When & is odd, G(d) is much smaller and Tietdvéiinen [22] has obtained
the best possible estimate
G(d) < (L4-g)logyd-d
for sufficiently large odd d. '
The purpose of this note is to show that in the p-adie case
G (d) < 16n*(logd)'d?,

where n = [K,: Q,]. Although it depends on # and hence on the ramifi-
cation index ¢ and so, in view of Birch’s uniform estimate, is of limited
interest the above estimate iz simple to prove and represents s big im-
provement.on Peck's original estimate. In addition, when p is uncamified

 the estimate.is not far from best possible and indeed can be quite effective

when d hag the appropriate arithmetic character.

icm

Some estimates for diagonal equations 119

The proof makes use of a generalization due to Erdés and Rado [12]
of & box argument, which is purely combinatorial, and which permits
the coefficients in (1) to be taken to be equal at a small (but non-uniform)
cost. Thig idea has already been used in the p-adic case to get better
estimates for G(d) when p —1 does not divide the exponent d ([9], §3.3;
[111) and the arguments in the algebraic case are similar.

In their work on Waring’s problem in algebraic nurber fields, Korner
[14], Stemmler [18] and Tatuzawa [19] showed that every element in
the ring J, generated by dth powers of integers in K, can be represented
as & sum of 4nd dth powers of integers. As in the rational case, Waring’s
problem. and diagonal equations over p-adie fields have some similar
featured bul the methods employed by Kérner, Stemmler and Tatuzawa
do not appear to extend to diagonal equations.

It has been agsumed tacitly that d >1 and since G(2) and G(3)
have been determined, & will be taken to be greater than 3 throughout.
Also, in view of (2), it will be assumed that unless otherwise stated, p
divides d, i.e. that = > 0, so that p < d, and for each d, there are only
& finite number of primes p in K under consideration.

By absorbing dth powers of = into the variables and by multiplying
by the appropriate power of = where necespary, it follows from a box
argument that the number of coefficients in the form on the left-hand
side of (1} which are prime to m can be token to be at least s/d. For sim-
plicity we shall agsume that the coefficients a,, ..., #, are prime to = and
recover the general cage by taking d tines us many variables. More pre-
cisely, we define H(d) to be the least ¢ such that the equation (1), where
Gy, ..y @, aT6 Prime to =, has a non-trivial solution, so that

G(d) < AH(d).

As is well known, Hensel's lemma implies that the non-trivial golu-
bility of equation (1) follows from the congruence

@) i+ .. ol =0 (mod a7,

where p7~* exactly divides 2d and where ay, ..., a, ave prime to =, having
a primitive solution (i.c. a solution with not all the variables #,, ..., ,
divisiblo by ). Cousider the (’)

sebs ag, ..., a;, of r coefficients where

i1y ++y 4, are chogen from 1, ..., 8. The sets of snffices are of course distinet
though not generally disjoint. At least

)=o)
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have the same sum (med p™) or equivalently (mod #*%). Hrdos and Rado
[12] proved that if

oy 8 oy _ 1 ¥ —1
(4) p y(fr) >(T!)(’U 1) H 1 2!(,3}___1) “r ’.!('Jv___l)rwl)

then there are at least v sets of the coefficients whose surng are all con-
gruent (mod #”°) and which are such that the common part of any two
of the sets is the same. The inequality (4) ig satisfied if

(s =71y > g™ (r 10
and go iy satisfied if
(8 —7 1) = ordd I (gRrg)Mr

logp™
y = [M] +2,
log4:
where [#] denotes the integer part of the real number », so that
{4p™)'7" < 4.

Put

Then {4} is satigfied if s > r2v-}w—1. Hence if s satisties this lust ine-
quality there exist v sets
ﬂil, ...,_a{r; aj:ﬂ wany a'jr; a--; aml, iruy a'mr,

of r coefficients (where the distinet 8668 {fy, vovy 63y (g <ovs Frbs ooey (Myy oa
..s; m,} of suffices are not necessarily disjoint) such that the sum of each
set of coefficients is congruent to a (mod ) and such that the common
part of any two sets of suffices is the same. We put the wvariables corre-
sponding to the coefficients in the common part {&y, ..., 530 {J1, «vvy G100 ..
v O{my, ..., m,} of the sets of the suffices to 0 and so get with suitable
elabelling the o disjoint sets

Byyevey Bl Oypgy oovy fgy ooo Bgogyugar o= oy Ty

of u < r coefficients. Now make the following substitution :
Yo 1<ig

=2
yg, u{'i\<,2%=
wi = L R T ‘o

Yoy (""”"‘1)”{':%”'“?
_ \ 0, otherwise.
Then the congruence (3) becomes

a(yi+ ... +y3) = 0 (wod &™)
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and so in order to have o primitive solution of (3) it suffices to solve the
coNgruence

{5) Y+ oo +y? =0 (mod p”),

with not all of y,, ..., y, divisible by =, since (n°) = (p).
Denote by 0(d) the least » for which the congruence (5) has a primitive
solution. Then #ince p*< d,

logp™0(d)

2
6)  H@< {[ g ]+ 2} 0(d)+ 6(d) —1 < 16n* (log d)*6(d)

for all &> 4. It can be verified readily, by using the addition of residue
clagses (mod p*) for example, that 6(d) < 44 for all &, whence since G(d)
< d-H(d), we have

TaBOREM 1. For all emponents d and prime ideals p in 'any algebraiec
number field of degree n over the rationals
G{d) < 16n*(logdyd*.

Thig estimate evidently has o factor n? and o of &f2 where ¢ is the
ramification index and p” is the order of the residue class field. As a result
it is of limited interest unless the n2 can be replaced by a smail power of d.
Weﬂ ([24], p. 502) has proved that if d*< p?, then the congruence

an? byt -+ e2f = 0 (modn),

where a, b and e are prime to x, has a primitive solution. It follows by
a straightforward inductive argument and Hengel’s lemma that if d* < p”
then

H(d) < 3",

Plainly if p is unramified, so that ¢ = 1, then H(d) <
this result with (6) givey a. uniform estlma,te

Q{d) < 36 (logd)'d®

< 3" and combining

when p ig wnramified and p is odd, However, since it is likely that more
direct argnments will yield the best possible result (2) for all unramified
primes p, thiz estimate will not be proved.

The inequality (6) provides a fairly good estimate for G(d) when
P —1 does not divide 4 and the possibility that p might not dnmie d is
no longer excluded.

TeeoREM 2. Let p be unramified and suppose p —1 does not divide
the exponent d, where p = T 48 the rationol prime above. Then

Q(d) < C{logd)’a*"
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where O is an absolute constant, or if d is sufficiently large

G(d) < d¥te
for any positive e
Proof. Tf p —1 does not divide d then

0(d) < 18 (logd)d"*

([10] and [28]). Suppose first thut p” << @ Then sinee o = f, (6) implios
thit '
log @0(d) P )
Hd o Z et | L QL G () b O () e ‘ 5/
( )<{[ Tomi- ] PZI 0(d) 4 0(d) —1 < Olog d)*d™®,
whore € i8 an absolute constant.
When d* < p’ we have that

H{d) < 3% < 3p™ £ 3d%*

gince P> 7. As G{d) < dH(d), the theorem follows.

It p is wnromified and d is odd or, more gencrally if (d, p —1) divides
3(p 1), 50 that —1 is u dth power vesidue (inodp?), then 0(d) = 9. Tt
can bo verified readily that given any positive s, '

G(d) < @kte

pmvidlijng d is sufficiently largo when v = 0 and p iy sufficiently large
(p > 8"%) when v > 0. Of course if (d, p”— 1) divides $(p'— 1), so that —1
1s a;s dth power residue (moda®), o simple box srgument cun bo used. For
If 2°> N(n?) = p”, the congrnence (3) with ¢ = 1, must have a primitive
solution, whence '
logp¥
log2

As bofore it follows that if p iy unramified and (d; p~1) dividos §(p' ~1)
then given any positive &

H{d) <

)

Gy -z dre
for @ or p suificiently large. _

Dr Poter Ploasants has pointed out that it iy not possible to improve
the Brdgs-Rado result suificiently to give u wniform estimatc. For leb
@15 «1ey drbep-odio units whose images in tho regiduo elass field s (- GI(p?)

ﬁi[ 10%'1’]
d | log2

for_m & bagis over GF(p). Then no two distinet subsets of the

numbers of the form

o1, e . o . _ ‘
2 W”lsiuﬂﬁiggﬁéjéﬁlgrgwm,
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have the gsame sum (modw*). Thus the best possible result which the
o ' logp’
methods nsed here ean give has a non-uniform lower bound —7:;—%[-1—;%—]6 ().
0

The idea used here of grouping the coefficients so that the sums of
ench group are all in the same residue class is in contrast to the approach
oi Birch who works with coefficients distributed amongst many different
cosets of the subgroup of dth powers in &*. However, despite these two
approaches being to some extent complementary, I can see no way
exploiting this to improve Birch’s estimate or even to shorten his
arguments.
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K oznmoii opmyne 3urenst

T. B. Bunxeagse (Tommmen)

§L. Ilycre f = 3 aym,@;,— nenounciIeHHasn KBanpaTuunan gopma

Ighsi<m
¢ wumpexcom wumepumm #, S(f, q) — cooreercreyroman cymma I'aycea,

‘d == (—1)"™P et (2f) — mucupuvurianT gopMil f; Jalee TyCTh z M ¥ —

KOMIICKCHLIE IepeMeHHEle, HpuIeM Imz > 0.

Pamamarxan [12] momasam:, 9To OpE %> 3 (32 HCKIIOUCHKEM HYIEBLHIK
{opM mpm m =3 W HymZesbX (OPM, NUCKDUMIHAHT KOTODEX IOMNEIH
KBampar, opE m = 4) dyaKImo

wi(Zn—m)

a7

o

3 S(fH, g)
g —>-J 2 " (gr— H)" (g7 — HY""P|gz — H’

g=1 H=—e0
(g, H)=1

peryagpayio npu (urcupoBanucM T 1 Rez > 2 —m(2, momHEO aHamuTH-
YeCKH NMPONOIKATE B IOIHYID OCKPECTHOCTE ToukR # = 0. Jlanee, nomomus

(2) O(z; ) = P (T, 25 N)lsmos
DOKAzaN, UTO TPH 7 3> 3 WIMEET MeCTO PABEHCTBO
(3) Fplz; f) = 0n(z50);

rue F,(r;f) — mora-Qyuwxmua pona dopmsr f {cm., mamp., [12], crp. 432,
dopmyna (38)).

B cnmyuae m > 4 §yuaruwa (2) cormamaer ¢ pamonm IiisemmTeiima—
~3urens; a Hopmyua (3) — ¢ meeectHON Qopmyno# 3mrensa ([137, reope-
Ma 3). :

B yoomamyroft Bmme pabore PamamaTxam yTBEPRIAET, YTO B CHyyae
MOIORATENBHEIX B HENYIeBHX HeoIpeTeleHHNX OHHAPHEX KBAXPATHEIHEIX
dopm fyErLImI0 (1) HEBOBMOKHO ARAIINTHYCCKE IPOKOIKMTE B ITOTHYI0 OKPe-
CTHOCTE TOYEH # = 0.

OnuaKxo, B Ciydae IIONOMHTENBHHX NHATOHAIBHBX HBATPATHIHELX
dopym Pymrnus (1) eme pauee Owima mccienonpana Jlomamse [5], ®orTopsIl



