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On a certain infinite series for a periodic arithmetical
function

by

TapAsmiee OxapA (Hachinohe, Japan)

1. Introduction. Let ¢>2 be an integer and let f be a function
defined on the ring of integers Z with period g. Then Baker, Birch and
Wirsing proved that if f satisfies the three conditions (A), (B) and {C)
below, then f =0 ([2], Theorem 1).

(B) f(1), ..., f(g) are algebraic and @, is irreducible over Q(f(1),...
<.y (9)), where &, denotes the gth cyclotomie polynomial and @ denotes
the field of rationals.

O)firy =0 1< (r, )< ¢.

This resolved in the negative a well-known problem of Chowla as
to whether there exists a rational-valued function f periodic with prime
period for which (4A) holds.

The main purpose of this note is to prove aresult which provides a de-
seription of all functions f such that (A) and (B) hold. It can be stated as fol-
lows: Xf f satisties (B), then (A) holds i and only i (f(1), ..., f(¢)) is a solution
of a cortain system of @(g)--#{g) homogencons linear equations with
rational coefficients, where #(g) denotes the number of primes dividing ¢
(see Theorem 10 for the precise statement). Thus, in particular, it reveals
that if 2¢(g) +1 > qand f(n) e {1, —1} whenn =1, ..., g—~L and f(g) = 0,

Tthen
Zi(_@ 0
N

whenever the series is convergent (Corollary 186).

‘ This gives a partial
angwer for a conjeeture of Brdds ([4], p. 430). -
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Our argument is a slight modification of that of Baker, Birch and
Wirsing and depends on a combination of the basic regult on the linear
independence of the logarithms of algebraic numbers due to Baker [1],
Theorem 1 with the nonvanishing of the Dirichlet IL-geries at s = 1.

2. Notations and definitions. As in Section 1, we denote by ¢ any
natural number 2 2 and by f a function defined on Z with period g. We de-
note by .D = D, the get of all Dirichlet characters to the modulus ¢. We put
z =", We denote by P the set of all primes dividing ¢. For peP
and m €Z we denote by u,(n) the exponent to which p divides n. For
simplicity we write

J={acZ: 1<a<q and (a,9q) =1},
={reZ: 1<r<gand 1< (r,9)< g},
and
L' = Lu{g}.

For ¢ e J we denote by @ the integer for which @ e J and o =1 (rod g).
We define for r e l’

logp
(1) A = D) =5 +logr, 0,
. peP(r)
where

: 3
P(r) = {p eP: w{r) > v,(¢)}.
Note that if we define for y ¢ L' and p e P

[%(q) +1j(p—1) it peP(r),
e(r,p) = .

_ (") otherwise,
then we have

(2) Ay = Ds(r, ploggp.

nel
‘We define further for el and aeJ

1 1\ 6, @, m)
A S =5 H(I’W) 2

DEP(r) #eS(r)
where
8r) = { ] »": 0 g a(p) < plg))
peP(r)
and

6(&4 4, m) = i it réa,('r,q)fn (mod q),
" 0 otherwise.
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Remark. Ag usnal we adopt the convention that the sum (resp.
the product) of an empty set of numbers is 0 (resp. 1). Therefore we have
8{r) = {1} when P(r) is empty.

3. Preliminary results. We define

g1

H(n) = Hy(n) = ——Z Ilog(l—9)  (neZ).

The function H(n) arose essentially in Lehmer’s work [3] {cf. also [B])
and was used to evaluate the infinite series Y f(n)/n. We note that H (n)
= y(n, g) —y/[q, where y(n, q) is the BEuler constant for the arithmetical
progresgion »--mg (m =1,2,...) and y is Buler’s constant ([3], The-
orem 1).

Luvwma 1 ([3], Theorem 8). We have

L Q@
L PYCE

el

provided Z‘ F(¥) = 03 which is a nscessmy and sufficient condition for

r=1

convergence of the infinite series ‘? S fayin,
n= 1

COROLLARY 2. (A) holds if and enly if (),
of the system:

- F(Q)) 18 @ solution

We set
‘ N 1
® H(z) =——= Y H(als) (zeD).
p(4) &=
Clearly (8) is inverted by
4) Hia)= S H(xza) (acZ, (2,9 =1).
yeD
Lovua 3. We have
1 o log
(5) ) == > 22,
4 neP P
where y, 43 the principal character io the modulus g. For y 5 y, we have
‘ . 1 '
(6) Hiz) = ——L(1,%).

p{g)
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Proof. (8) follows from the formulas (6) and (16) in {3] and (8)

follows from Lemma 1 and (3).

LevumA 4 ([3], Theorem 2). Let 1< d << g be a common divisor of r

and q. Then

1 ¥ 1
Ha(?') == Eﬂq/d ('d—) —»7!«]0{;65.

Remark. If we.deline Hy(n) = 0, then (7) is also true for d = ¢, .

gineo we hawve

. 1
H,(g) = ] logg

by (2) in [31
By Lemma 3 we have that H(y) 5= 0 for all y e D, which enables

ug 0 define the function

__ 1 vz Z,(a,q)=1).
W 4 Ey S 0=

The following i3 easily proved by using (1), (4), (8), (2), Lemmas 3

and 4 and the orthogomality properties of the characters and we omib
its proof.

Lewoaa 8. (i) If a,ced, then
- 1 ifeo=
S'E (@) H(5o) =[ ia=o
= 0 otherwise.
1
ii K({0) = ———.
@ DK =

(iil) If » ¢ L, then

é’ Hiar) = W(Q){fi’(xo) - —}A (r)}-

) H@ ) K@

aeJ

=5 )

LEvua, 6 If aed and 'PEL then

o A(r)
K (ab)H (b A SU—
é (at) (-’) o WA
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Proof. By Lemma 4 the left-hand side of the above is equal to
- r
(10) (ab) H’(bd)———logdZK ab),

where d = (r, ¢) and H'(n) = Hz(n). By Lemma 5 (ii) the second sum
in (10} is egual to

Iogd
99 (OH (50)

'Applying (4), (9) and the orthogonality properties of the characters to

the first sum in (10) reduces it to

1y EW [
11 - —
o @p(@) £ B (1o9) (“ )

where D' = D,;. Since for any nonprincipal character w € I’ we have
by (6)

By _ ol (1_3@)“’1

Hiwy) — gl@d) 14V

and we have
?(9) ( 1)
(12 S g 1—=),
) o(a/d)- LL)
(11) becomes '

1 [ 7(p) H' (y,)
13y —m— —_ ki
) B ,,%‘”(“d)n -2 et mwd

peP(d)

where y, is the i)rincipal character to the modulug g/d. If we put
E(@) ={ []
pep(d) |
then the first sum in (13) becomes

i<a(p) < °°}7

= A(r, a)'y |

11 8(r, a, n)
P PR )'f"”}ﬁ‘n;;m—’—;’"“-.’L
since
gw(a%)fp(n) = qa(%)a(,., a, )
and

2D =3 (mod %-)
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for any » e B(d). Lagtly we have

1 H'(ypy logd | A
______{__ G (0

(q) 8 (o) | a9 (D H (1)
in view of (5) and (1). Combining those results, we get the lemma.

The following lemma plays o crucial role in the proof of our main
theorem (Theorem 10} and is a reformulation of Leramag 2 and 4 in 2],
whose proofs rest on an application of Theorem 1 of [1] relating to the
linear forms in the logarithmg of algebraiec numbers. .

Levva 7. Lel oy, ..., a, be algebraic numbers such that @, s irreducible
over Qay, ..., o). If

then

Zq' o (ay) =0

Jor any integer @ with (e, q) =1.

. THEOREM 8. Let K be an algebraic number field such that &, is drre
ducible over K. Then the numbers H{a), acd are linearly md@pmden
over K. .

Proof. Suppose that there exist o, e K such that
D) a,H(c) = 0.

ced
Then by Liemma 7 we geb
| > o, H (o) = 0
ced
Multiplying both members of the above by K(dh) and summing over
bed gives ug

(b'ed).

a, =0 (acd)

in view of Lewmsa 5 (i). This proves the theorem.
The following is a stight generalization of [2], Corollary 1 o Thuarom 1.
CoRrOLLARY 9. Let (g, p(q)) == L and let y run through the nonprincipal
characters to the modulus q. Then the numbers Zlog;p Hp—L) and L1, %)

are linearly imdependent over Q.

Proof. By Lemma 3 it suffices to prove that # (y), y e D are linewrly
independent over @ and this follows immediately from (3) and Theorem $
on noting that @, is irreducible over the g(g)-th cyclofomic nwmber
field wnd the matrix [y(a)] (yeD, a ed) i nonsingular,

icm
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4. Results. Our main theorem is as follows.

THEOREM 10. If f satisfies (B), then (A) holds if and only if (f(l), .
-2 f(@) 15 a solution of the following system of o{q)+i(q) homogeneous
linear equations with rational eogffictents:

for+ D4t a + —f@ =0 (aed),
rel
D fmetr,p) =0 (peP).

refl’

Proof. Since f satisties (B), we have by Corollary 2 é.nd Lemma 7
that {A) holds if and only it (f(l),...., f(@)) is & solution of the system:

q
(14), DwH{G) =0 (bed),
rml
¢
(14), Em =0.
re=l

Henece the following two lemumas lead to the pi-oof of the theorem.
Levwva 11. The complete solution of the system (14} is given by

(16) = — Y aA(r,a)— ( % (eed,
1\
(16) | @, = ~m%m,d (r).

Proof. If we sam both sides of (14), over the ¢(y) numbers b e J,
we obtain

2 ZH(bo)+2 2H(br)+w ZH(EQ

e beJ rel. ©  DeJ

aPRECLCE) ne(@|H )~ A0+ O H (@

ced

=(Not Na) 0@ —EL N 40) ep@ Hg)
rel g rel .

estf
= —i’i;q—);m,mr) =0

3 — Acta Arithmetica 40.3
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in view of Lemma b (iii) and (14), and the fact that
. 1
H(g)—H(xo) = ~——q-él(q)-

SBolving for @, we get (16).
We next multiply both members of (14); by K (@) and sum over
bed to obtain

ZI{(ab H(Be) - S‘ } K (ab) H (br) -+-2,H (g) V,ﬁ:(ab)

cEJ beJ re.b beJ

- T S PR ()
2, |2Mw> .ZW“”' v szﬂ(xo}.

reds rel

=, +2w.£l(# a)+-— =0,

rel, ()

where we have used Lemma 5 (i), (iv), Lemma 6 and (16). Solving for z,
we get (15) and this completes the proof of the lemma.

LEMMA 12, Let @y, ..., 3, be algebraic numbers. Then (@, ..., o,)
i8 a solution of the sysiem (14) if and only if it satisfies the following system:

1
Bt > @ A(r, e+ 2, =10
g plg) *

Dlaslr,p) =0 (peP).

rel/
Proof. By (16) and (2) we have

2, ad(n) = D11 Y ae(r, o) logp =0,
relf =

pelP rel’

(aed),

which implies that

D oe(r,p) =0

ral’

(p k),

since logp, p e P are linearly independent over the field of all algebraic
numbers by the fondamental theorem of arithmetic and Theorem 1 of
[1]: This together with Lemms 11 proves the lemma.

The following two corollaries follow immediately from Theorem 10
and the theory of homogeneous linear equations on noting that the ¢(g) -
~+-#(g) linear forms in Theorem 10 are lincarly mdependent

OoroLLARY 18. Let K be an algebraic number fidd such that &,
ts drreducible over K. Denote by F, the set of all funmetions f: Z - K mth

icm
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period ¢ such that (A) holds. Then F, is a vector space of the dimension
q—p(q)—1t(q) over K and has o basie of funciions h: Z - Z.
CorOLLARY 14 (ef. [2], Theorem 1). Lef

¢ =pt... o

be the prime power decomposion of g and 16t vy, ..., r e L’ be such that

dete(ry, pp)] =0 (5, =1, ..., 8).

Assume that [ safisfies (A), (B) and .
(OY  F&) =0 4f relNr,...,r

Then f = 0.

ExXAMPLE. Let ¢ =} ...pft and let 0< B <q (4, ?a =1,...,1)
be integers such that 8, = 0 if j > k and ,Bﬂ >0.Putry = H phik. Then

. Fwal

o

i

”,8,,>0.

§=1 3=1

det[e{ry, p,)] = Hé‘ (ry, p5) =

COROLLARY 15. If f satisfies (A) and (B), then

) < (ﬂ ' )

2@ + ———lf(q)l

g,
@(q) fae _)

where

M = max|f(r)|.
rel )

Proof. By Theorem 10 we have for eed

1n  fla) —= 19

Zf(r A(r, a)—

rel

(

g/d

— _2 Z Fldm) A (dm, a)—T!) fo)

1<d<q (m q.‘ff)ml

1 ( ) f(adﬂ
- M= 5 ——f(0)-
Iéq d P!.;’(Yd) (Q) neS(d) w(Q)
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From this we obtain

ron<a Y 3 [T (-] D2+ il

d|q ,‘PEP(d neS(d)
1 1
- MZ “Jml}]@(l“ﬁ) g i)
T<d<
= ( )ﬂ ~—— ()}
1<d<q
M 1

= W(q—«p(q) —1) %—Wlf(q) )

where we have used (12) and the well-known fact that
Deld)y =g
-dlg
Thus the proof of Corollary 15 is complete.
BxaMPLE. In case g = p°, & power of prime p, (17) becomes

f(pw 1 a
Hla) = Z ~ sy [ @ed),

since d = p” (» =1, ..., a—1), P(d) is empty and S(d) == {1}

Erdoés conjectured ([4], p. 430) that if f(n) e {1, —1} when n = 1, ...
...y §—1 and f(g) = 0; then

2 f(n} -0
whenever the geries is conmvergent.

‘We can give a partial angwer for the conjecture ag a direct congequence
of Corollary 15.

COROILARY 16. If 2¢(g)+1 > ¢, then the conjecture is true for ¢.

¢ Bxamein. Assume that po> +1, where p, = min P and

t
log2
i = 4{q). Then we have

i:l 99(q ‘_ IY(1+———)<erp(g-f;i—l)éexp.(pnt_l)g2.

pel

Therefore, it py= +1 the con]ecture is true for g.
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Remark. Tf f is even, then Theorem 10 and consequently Corollaries
14 and 15 hold without the assumption that &, is irreducible over Q(f(1}, ...
.y f(q)) This follows immediately from {2] (Section 8) and Lemma 12.
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