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1. The congruence f(#*) = 0 mod ¢, where ¢ is a prime. The present
paper has emerged from the work of the writer On the composite Lehmer
nuymbers with prime indices [9], [10]. It has turned out that the existence
of infinitely many such numbers, so far established only conditionally
is related to some phenomena concerning power residues in algebraic

_number fields. The aim of this paper is to study these phenomena in their

own right and in full generality.

Notation. £, = ™™, @ is the field of rational numbers, P,
= (L) Por an extension K/ where K, & are algebraic number fields
Nxjois the norm from K to £.1f the field Kis fixed and ais anideal of K thern,
Na denotes the absolute norm of a. It the extension K/ is abelian then
FIE/Q) is its conductor. If a e K, £, ¢ K, a # 0, b is an ideal of K then

K .
(aL ) is the mth power residue symbol {see [2], p. 49-50). This symbol
m

M.
can be defined for b prime to f, = f{E( Va)/K}. (In fact the symbol can
be defined tor b with the m-power Iree kernel prime to f, hut for our purposes

alK
it is not needed.) f, is alzo called the conduetor of ( [I) ) . D{a) denotes the

m

diseriminant of o. @ denotes the complex conjugate of a. H,, is the group
of rationals congruent to 1 mod m. We call a set G = Q a group of rationals
mod mif (i) B, c @, (if) @is » multiplicative group, (iii) every element of G is
prime to m (clearly & /H,, is a group of residue classes mod m). If K=F,, then
& group G of rationals mod m is said to correspond to K it GYH,, is the maxi-
mal subgroup of Gal(P,,/Q) which leaves K fixed. [,] denotes the least
common multiple. |K| = (K : Q). For a finite set 8, |8] is its cardinality.

Let K be an algebraic number field. K™ denotes the maximal eyelo-
tomic extengion of K, Let ¢ = K*°. Let us consider the equation in un-
knowns n, § :

L) o= f*,  n natural, § e K™,
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Put
maximal » satigfying (1)
opla) =

if the equation (1) hag a
finitec number of solutions,
oo I the equation (L) has infinitely many solutions.

Let f be an arbitrary polynomial with rational coefficients irveducible
over Q, o a root of f. Put

It is easy to see that the definition of ¢(f) does not depend on the choice
of a. Let &, be the maximal eyelotomic subfield of @(a). Of courge i,
is also the maximal eyclotomic gubfield of Q(a’), where o' is an arbitrary
conjugate of a. This means that K, iy uniquely determined by f.

Put - :
C(f) = Cla) = (Q(a): K] = n/|Ky, '

~

where » denoteg the degres of f.

We shall prove the following

TEROREM L. Let o be an algehraic number differewt from zero ond
not & root of untly, w be degree of a. Theve enists a positive integer Ty = ky(a)
such that for every positive integer &b divisidle by ky and for all positive integers
D and r, whers (r, D)= 1 and r==1 mod (D, k) there ewist infinitely many
prime ideals q of the field O(a) such that:

Ng=1modk, Ng=rmodD,

The Dirichlet density of this sel of prime ideals is egual to

a i8 I-th power residue modq,

sla)n -
Ca)ke([k, DJ)

In addition to Theorem 1, we shall prove the following results:

- TEmOREM 2. Lt f be a polynomial with rational inieqral coefficients,
trreducidle, primitive, with the leading ocodfficient positive. Assume that f
i¢ different from o and i8 not & eyclotomic polynomial, Theve cuists & positive
integer Ly = ko(f) such that for every positive integer k divisible by g and
Sor all positive integers D amd v, where (r, D) =1 and r = L mod(D, k)
there exist infinitely many primes q sotigfying the condition: the congruence
F(&*y.= 0 mod g-is soluble, ¢ =1 mod k&, ¢ =r mod D. The Dirichlet densily
o of this sei of primes. satisfies the inequality

a(f) " e(f)

Oke(l, DY < =% T ke(ts, DY
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where
1 if f 4s not symmetric,
* 2 if flis symmetrie,
n 48 degree of f.

A. Rotkiewics [6] has proved the following

LeMMA. For every natural ¢ there ewisi imfinitely many primes p in
every arithmeticol progression ax-+b (w =0,1,2,...), where o and bo
are relatively prime positive integers such that eip —~1 and p|2P~De_1.,

Using Theorem 2 we shall prove a gimilar result (Theorem 3 in See-
tion 2) aboutl the so-called Lehmer mumbers.

We ghall study the equation « == 9%, where a, # are fixed, o belongs
to a fixed guadratic field, » is a positive integer, ¢ is cyelotomie.

Theorem 4 gives a complete description of numbers ¢ for which the
equution iz soluble for a fixed n. _

Leyua 1. Let &, be an algebraic number field. If c e k7 and o is
different from zero and from roots of unity then the number oy, (a) 25 & posilive
integer.

Proof. It is an easy conskequence of the theorem: The group of
S-unity (§ finite) of %3¢ is the direct product of the group of all roots
of unity and of a free abelian group (see [5]).

Lemma 2. Let F be a positive integer. Lot &y be an arbitrary olgebraic
number field, Gy be a group of rationals modF corvesponding o kyNEp.

We have:

G, = {8 € Q: there eaists an ideal o of k, such that s = Namod ¥,
- _ (a, ) =1}
Proof. I p is a prime ideal of k,NPy prime to F then
(2) . o - Npe@,.

Indeed, by Fermat's Theorem, g¥° = fmod p for every integer f
of hynPy. Hence p° = fmodp, where o = ({y = {¥), 0 on KNPy
belongs to the inertia group of p and the latter is identity because pt+#.

' Thus Np & G,. '
Put
@ = {s € Q: there exists an ideal a of k; such that s = Nagmod F,
(a0, F) =1}.

By Theorem 19 in [1] the extension k,Pxn/k, is the class field corres-
ponding to the group of ideals mod F: Na = 1 mod . Hence .

(®) (6 Bp) = (baPy s h) = (Pp: kanPp) = (@s: By).
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By the mulfiplicative property of norm and by (2} & = &,. Hence by (3)
Gy =G

LevMA 3. Let T be a positive integer. Let. ky be an algebraio number
Jield, § € kg, L € ks and ¢, (8) == L. There ewisis am ideal a of k, suoh that,

(ﬁ) —fp (0, F) =1, Ng=1lmodZ.
a ™

Proof. We may suppose that F is divisible by all conductors of
power residue symbols oceurring in this proof. If the asscertion of the lemma
does not hold then for some natural 4 such that dlm, d << m we have:

If (¢, F) = 1, Na =1 mod F then (ﬁ) == (7 for gome @ depending on q.

mw
Henee
ﬁd
(T) =1 for Nos=I1lmodF, (q,F) =1.
Heneo '
’ (ﬁdlkapw') L ( ﬁdikz___) -1
b m NkzPF/kab m "

for any ideal 5 of kFp prime t0 F since Niyg(Nyppd) = Nppp b
= 1 mod ¥. This means that % is mth power residue for almost all prime
ideals of %,Pp and by Theovem 16.7 (I) in [4], p. 153, % = 9™, y € k,Pp.
Hence § = P, y, € 55, 'mjd > 1. This is impossible gince ¢, () =

LevvA 4. Lot F be o positive integer. Let kby bo an algebraic number
Jield, B & kg, L, € by and ¢, (8) = 1, Gy be a group of rationals mod ¥ cor-
responding to kyNPp. For any rational integer © and § e Gy there exisis an
ideal a of %, such that

(%) ={n, (6, F) =1, Na=smodF.

-
Proof. We may suppose that F is divisible by f{k(V8)/ks). By
Lemma 2 there exists an ideal o, of k, such that s =z Na, mod F, (ay, F) = L.

By Lemma 3 there exizts an ideal a of %, such that (.,E,) = Gy
m

Qg

{0a; F) =1, Na, =1 mod . Put («E) = &8, T is'enough to take
m

0y
a = may %,
Proof of Theorem 1. Let « be an algebraic number differonﬁ
from zero and from roots of unity, » be degree of a. Put %y = @ (a
Lemma 1 ¢, (a) is a positive integer, say n,. We have

4y @ =gM, BekP, ¢ (f) =1. -

icm

Contributions io the theory of Kummer extensions 159

Henes fe kP, for Some positive integer m,. Let K, be the maximal
cyclotornic subfleld of k,. We have K, < P, Tor some positive integer m,.

Put ky = [y, my, my]. Let k be any posﬂswe integer divisible by %,.
Put

% .
ky = Py, ("E‘) faad (%2”) for sk, m =k/n,.
s P

Wo have aek,, fek, and

® Rl

Put (e) = afb, a, b inbegral ideals of %, (a, ) =1.-

Let D be any positive integer. Let F be a positive integer divisible
by kDN {(ab) and by all conductors of power regidue symbolg occurring
in this proof. Let &, be a group of rationals mod I correspondmg to the
field ky,nPpr. We have '

[P gl _ {Foa P 5o _ [k Ppl  [BPrl  |[Ppl |BnPyl | Pl
|y P LA %P | %o By [Pel kN Pyl [Pyl
sinee kNP = kNPp = K,, Ky c P, (ma|ky, kolk, kiF). Henee (kN Pyl

= [Pl Obviously Py < EynPy. Thus kNP == Py

According to the definition of @, S

Gy ={seQ: (s, F) =1, 5 =1 mod k}.

Put
A == {o an ideal of k,: (a, F) =1},
H, = {a an ideal of k,: (a, F) =1, Na =1 mod F},

H = {a an ideal of %,: (a, F) =1, Na = L mod F, (%) = 1}.

By the agsumption on F: A, H;, H are groups of ideals mod F in
virtue of Artin’s reciprocity law. First we shall prove the theorem for
D =0mod k. Let » =1l mod %, (r, F) = 1. Obviously r £@,. We have
B = K. Hence, by (4), ¢, (f) == 0, (f) =1. By Lemma 4 there exists
an ideal a; of %, such that

B

(e, F) =1, No, =rmodF, (_) —1.
: A /m;

Let O denote the coset of A with respect to H containing a,, ie., by (5),

O = {a an ideal of ky: (a, F) =1, Na =rmod F, (%) =1}.
: . .
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Put
(6) ho=(4:H).

Let d(0) (similarly latter &(C'), &(C”), &(0""")) denote the Dirichlet
dengity of prime ideals belonging to-C. Pub

" = {q, a prime ideal of &: Ng, s==rmod I, a is kth power residue
mod gq,}.
Let g, be a prime ideal of %, prime to ¥ and g, a prime ideal of %,

such that g, . Suppose that q, 13 of degree one over k. By the definition
of F q, is prime to ¢ and to & Hence

(M (—5—) =1 if and only if « is kth power residue mod q,.
2% '

Since q, is of degree one over %, we have by (7)

(8) (Eli) =1 if and only if « is %th power residue mod g,.
2/
Moreover
(9) , Npy00: = Nyl

The extension &y/k, i3 normal (%, = kPy). Let v e Gal(k,k,). We

have 7(a) = a (k = O(a)). ¥ g, ¢ C then wq, ¢ ¢. Indeed, if ({—) == 1
, 2/
then
(o e R e

- LEVE W /i W2/
Henee by (8) and (9) we have: If g, is a prime ideal of %, of degree one
over %k, and g, ¢ ¢ then there oxigt exactly |k,|/|k,| prime ideals w, (7
€ Gal(ky/k,)) of degree one over &, belonging to O and dividing a certain
prime ideal g, of k, belonging to O' (g == N kglinly)s Comversely, if q; is &
prime ideal of &, and g, e ¢, thon q; splits completely in &, and cach of

its prime divisor g, of &, belongs to . This follows easily from (8), (9)
and from Theorem 19 in [1]. Hence by Hecke’s theorem and by (6)

_t 1
1 . Z(Ng y Z’ (N,
(10) 5 =3(0) = Jim B (i) Bm
" 0 0p 10 g0 1
Se-l §51

= ([Teqlfn) A(0"),

(%] = ), where g, are prime ideals of %, of degree one over %,.
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Thus
[
11 d(0") = .
{11) () A

By Lemma 2 the quotient group A/H, is isomorphic with G [Ep.
By Galois theory
(4:Hy) =(Gy: Bp) = (Pp:kynPy) = (Pp:P) = |Pp| 1Py -
We have
Ny = o, (a) = ogry(a) == e(a).
By ({5) and by Lemma 4 (¢ =1)

(Hy: HY =m = kn, = kfo(a).
By (6)
Pyl E

TPy efa)

(12) ho=(A:H) = (4: Hy)(H, : H

We have (k,: K,) = (Q(a): K,) = nj|K,| = C(a) (see the begining of the
paper). Further K, ¢ P, < P since mylky, kok. Hence kNP = K,
and '

ol Pl el m Ota)
1By 1Pel NPy K )
Hence, by (12), :
. E ook ) ko
Bkl = [Pyl ————— =p(F) -C(a).
| ksl = [Pgl @ B = O g e
By (11) '
as) UO) = G

Suppose that D =0 mod k. Put
0" = {q a prime ideal of %,: Nq =rmod D, a is kth power residne

mod q},
where (¢, D) =1 and r =1 mod k. _

Let P be the group of all residue classes mod # prime to F and P,
its subgroup of residue classes mod F congruent fo 1 mod 1. Since for
ench rational integer & prime to D there exists a rational integer % prime
to ¥ satisfying v = & mod D, we have (P : P,) == ¢(D). Hence the number
of residue classes mod F that are congruent to r med D is equal to
o(F)jp(D) and all the classes are congruent to 1 mod % because of D
= 0 mod k. :
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It follows that the ¢ apart from at most finite number of prime
ideals g dividing ¥ ig the theoretic set union of @{F}/p(D) disjoint sets

of the type (.
r
Hence, by (13), d(0") = 2L

(D) da(0") and

g tla)n
(14:) d(O’ ) == U‘(W-

Thug we have proved the theorem for D =: 0 mod %,
Let D be any positive integer. Pub
0" = {q a prime ideal of k: Ng =L mod %k, Ng = rinod i), a iy kth
power regidue mod g},
where (v, D) =1 and ¢ == 1 mod {D, k). ‘
There exist rational integers », y sueh thatr =1+ ks +- Dy. Obviously,
C"" = {q 2 prime ideal of k: Nq = 1+komod[k, D], a is kth power
rosidue mod q}.
By (14) (theorem for D == 0 mod k),
e{a)n
A(0"") == st
O = Glate(tr, Y
The theorem is proved.

Lumywa 5. Let f(w) be an drreducible polymomial: aw™+ ... +a,,

Goy iony &, €4, ag # 0, a be 4ts rool. Let g be a prime nwmber prime to
" a,D(aga). The condition q|f(a") is satisfied for some rational imleger a if
and only if theve exists in Q(a) @ prime ideal q of degree one dividing q such
that o i8 k-th power residue mod q.

Proof. Necessity. Put &, = Q(a), N = Ny We have
(16) Fle*) = aN (2% —a) = N (ay® —a0)jal,

aye I8 algebraic integer. Suppose that g|f(#%) for some rational integor .
Then, by (15), g1V (42" —aa). Henco (g, ay® — ase) 5 1. Lot (g, o —a0)
where q is a prime ideal of k, . Obvicusly glg. Henco (q, @) == 1. We huve

t

(16) @t == a@* mod q.

- Let fbe any integer of %,. OF course k, = Q(a,a). Sinee (g, D(age)) =1
we have: ' : '

n—1 Conel . .
g = Z ey{@g0)! = 2 dy(aw*Y modq, -
i) demi}

Contributions 1o the theory of Kummer extensions - 163

where ¢; are rational numbers with denominators dividing D(aqa) and &
are rational integers such that d; = ¢, mod 4. f i congruent to a rational
integer mod g. This means that q is a prime ideal of degree one. By (16)
2* = amod q sihee (g, a)) = 1. Thus a is kth power residue mod q.

Sufficiency. Suppose that q is a prime ideal of degree one in &,
such. that glg and a is %kth power residue mod q. Then there exists a rational
integer @ such that 4" = ¢ mod q. Hence 6" = aea mod q, a,e is al-
gebraic integer. We have q¥ (a@” —a,e). Hence and by (18) qlf(=") since
qlg and (g, ay) = 1. Thus g|f(z"). The lemma is proved.

Proof of Theorem 2. Let f(#) = ap™-- ... +a, be a polynomial
satisfying the assumptions of theorem. Let « be any of ity roots. By the
assumptions of the theorem ais different from zero and is not a rootof unity.
Put &y = Q(a). .

Let ky = ky(a) = k,(f) be the constant given in Theorem 1. Let %
be any positive integer divigible by %,. Put

C = {g a prime ideal of %,: Ng =1mod %k, Nq =rmod D, a is kth.
power residue mod g},
B ='{g & prime number: g =1 mod k, ¢ = r mod .D, the congruence
' ' f(#*) = 0mod g is soluble},
where {r, D) =1 and r =1mod (D, &). .
It follows easily from Lemma 5: Xf ¢ € B and ¢ is prime to a,D{a.e)
then there exists a prime ideal q of degree ome in %, such that qlg and
geC. )

Convergely, if q is & prime ideal of degree one in k, prime $o a,D(aqa),
and q e ther ¢ = Ng e B. Hence

5 s
. . TNy -
an a(0) = Lm e ey L %_,
g1-+0 . g—+1+40
| = 8T

where g are prime ideals of degree one in &, and », > 0 is the number of-
prime ideals of degree one in %, dividing ¢ and belonging to 0. q and Ng
are prime to a,D(@a)disc(f,/Q) and to a, where %, denotes the normal
closure of %,. ' :

Let = be any isomorphism of %, such that

a if fis not symmetrie,

18 = _
(18) wle) a or o=t if fis symmetric

(r =1 or z(a) =a"%).
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Put
1 i fis not symmetric,

2 it f iy symmetric.

T is an automorphism of &,; morcover, if q is a prime ideal of degreo one
in k, dividing a prime g and belonging to ¢ and ¢'is prime to a, then 7q
has the same property. Indeed, if 4" = amodq (# € Q) then by (18)
o" = v{a) = o™ mod vq and since (7q, @) = L we have o™ = ¢ mod 7.
a # o' ginee a iy mot a root of unity. The number of antomorphisms
satistying (18) is equal to x. Tt 7(a) = o™ and ¢ is & prime ideal of degree
one in %, such that ¢ = Ng is prime to dise(k,/Q) then :

(19) W #q.
Indeed, 7 1 and the decomposition ¢ ==q-7q %y ... 7,q holds in B,

where 1, 7, 75 , ..., T,, are isomorphisms of k. (19) follows at once from
Dedekind’s theorem. Hence

(20) ® KV <1
Sinee f is irreducible and f(0) 0, f(o*) has no multiple roots. Let K
be the splitting field of f(«*). Let @, be the Galois group of K represented
as permutation group of nk roots of f(¢*). Let &, be the Galois group
Qf PUG,D]' .
The Galois group & of K, = KPy, p; is some subgronp of the direct
product &,d,. Put ' :

% ={ced: o= 0,0, 06Dy, 0, eB,, 0, fixes at least one root
ok (@), 0 = (& > G, Ep > S50}
% has the property: »¥z~' =% for every = e®. It is easy to see that
g eB,(g,discK,) =1 if and only if (—J%i) = (o> where ¢&%. Hence

and by Tehebotarev’s density theorem the set B has Dirichlet’s density,
say 4(B), and d(B) is equal to |%|/|P|. (In partioular, if # iz empty then
d(B) = 0.) By (17) and (20): :

- >z L
1 QaB qa 1 qsB gs
2 lim »—-———T—mg_ a(0) < » lip, T,
&=»l--0 ' g0
1
02 §—1 log 8 —1

where g are prime numbers prime t0 a,D (aqa)-dise (§,/Q) and to a. Hence
#d(B) < 4(0) < nd(B) snd

1 1.
(21) ;d(O)éd(B)é;d(G)-
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By the definition of ¢(f) and O(f): c(a) = e(f), O(a) = C(f). This and
Theorem 1 give: :

_ ne(f)
| O = TR DT
By (21)
| o(f) a el
O ke (T, D1 ~ Y S S T R (DT

The theorem is proved.

2. Application to Lehmer nnmbers. We shall give some application
to Lehmer num_bers. Lehmer numbers can be defined as follows:

(o —p") [{a —B) if n iy odd,
(" —p" (a2 —pY) if n is even,

-Pn(a; B) = [

where e, § are roots of the trinomial 22 —VL 2 -3 and L, M are rational
integers. :

Put for the moment P, =P, (a, f). Lehmer numbers can be also
defined as follows

P.' ‘L'P;’L—l _M—P;z,-g it m is Odd,
" P —MP,_, it u is even.

Suppose that o, 8 are different from zero and off is not a root of
nnity. Put &, = Q(a/f)i= Q(VEL), where K = L—4M.
Since ¢y, (a/f} is a positive integer (Lemma 1) we may put

(22) . alp =057, |

where w ig the number of roots of unity in %, 5 e k,, & is quotient of two
conjugate integers of &, if %; is quadratie, T is maximal positive integer
satisfying (22), ¢ e Z. Below dash denotes the conjugatie if %, is quadratie.

TamormM 3. If o, § defined above are differemt from wzero and a/f
s not @ root of unity then there exists o positive integer &, such that for every
positive integer I divisible by ky ond for all positive integers D and v, where
(D,7) =1 ond » =Lmod {D, k) there ewist infinitely many primes ¢
satisfiying the condition: ' '

g=rmod D, g = 1 mod By  aiPgenmle, 8.
wl
kg([k, D1}’

The Dirichlet density of this set of primes is equal 1o
where w, T are given in (22).

4 — Acta Arlthmetica 40.2
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" LEMMA 6. Let &y be an algebraic number field. If ¢ is o positive indeyor
and y € k" then ¢ (y°) = ecy (p)-

Proof. T y is zero or & rvoot of unity the lemma holds. Suppose
that p is different from zero and from roots of wnity. Let w = ¢ (v),
M o= %1( ). By Lemma 1, @, % are posifive mtagers We have y o= f*
and ¢° = 4" with 8, § e 5°. It follows that 9° == " and lhence m 2 ne.
There oxist integery a, b such that (¢, m) = ae--bm. Then pE™ o yoebim

' . m
= (8%°)™ and consoquently yp == &™@™ for some & k™. Thus ol
H
<n and m < (¢, m)n < en. Hence m = en.

Lvwa 7 (A. Schinzel). Let &, be o field. n a positive integer not divisible
by the characteristic of ky. A binowmial o"—a has over ky an abelian Galois
group if and only #f a¥n = ", where v e by and w, is the numbsr of n-th
roots of wnity conlained in k.

Yy

L
Proof. Sutficiency. If o =", yek; then Va = %, Vy,
wn_
Vy e k3 (Lw, € %)) where R§* denotes the maximal abelian extension

n_. ™. .
of %y, Thus Vaeld® and k,(Va, )k is abelian.
Necesaity. Assume that the Galois group of 4" —a is abelian, Let
a¥n = y™, p ek, n, &N, nn, n, maximal, Obviously fno<n, Wy 10 »
We are to prove that. sy = n. Suppose that n, < n. Let pl——, P 4 prime.

p® I-l

Put: Py, &= p " nofw,, Ty = Ha(Cpaia)y Ka=Tal V) < 6V, o)

c Ih(Va, Lo, ) = Tf,lb(l/a e ki), By the definition of nge: (kg : ky) == p@Tt,
Hence ¢ P ek and &, < - by = Ry Furbher é‘ ek, ¢ i1 # &y " beenuge
2", 5l :

1. @ == 0. Then (&g k;)|p —-1. Hence &y = ky and CI, € Fy, o contra-

distion.
P a1

2. w2 0. We have (kg :ky) < p®" and Iy == 754 Vy). Hence
2. B2
y =P,y eky. Thug & (Vo) e by = kl(l/é‘ﬂu,). Henge y == ngyf, vy & Ky
and a*n == yI™ ongn contrary to the definition of #,.

Remark 1. Lemms 7 is the main part of Theorem 2 in [7] and also
Theorem 2.1 of [8], but the proof given above iz definitely shorter.

LEMMA 8. Let by be an algebraic number fiold and let 1 denote an arbi-

trary prime. If e 7{:1, ':m-*l € kyy §yp ¢ By Jor a coviain n and E i3 not of the
Jorm &% o,y e kl, then 5 48 not the 1"1h power in B,
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Proof. Suppose that & = " ) where £; e i"°. Evidently the splitting
field L, of the polynomial #” — = is contained in F=°. Gonsequently Iy
is an abelian extension of &, . By Lemma 7 we have & - =" with p & k.
Consequently & = Cm_ly ‘ '

LuvmA 9. Let &y be a quadratic field, o € ky. If N (o) << 0 then o is not
the square of a cyclotomic number.

Proof. Since N(w)<< 0, the field %, is real. We may assume that
o >0 cha.ngmg the sign of o, if necessary. It follows that o' < 0, where
N(w) = ww’. Moreover, » is not a zquare in k, because N (w) < 0. Suppose
that o is the square of a eyclotomic number £. Dﬂdently £ig real and @G (&)

© 18 a normal extension of degree 4. Let ¢ be an automorphlsm of the field

O (%) satistying o(w) = o',

Applying o to &2 = o we obtain (¢(£)]* = o’ < 0. This is impossible
sinee o(&) is a real number. : :

Luywa 10. Let %y be a quadratic field, o o nontrivial awtomorplism
of it. Let w denote the number of roots of unily in k. If v ek, and y £ 0
then y © <& the w-th power of a eyclotomic number.

Proof 1.k, is real. Then w =2 and =7 = (YN ()]
. k, is imaginary. Let y, be a root of the polynomial z* — e,
Then y“"”"’ u—:yﬂ“’}‘“‘ ? =1. Hence y7° =1 sinee 7% = |p|*> 0
Hence y{ = y7'. Let 7 be the generating element of Gal{ky (y1) /&) . W
have ©(y,) = ngq It 1s enough to prove that ¢ and r commute.
Indeed,

oz{y1) = a(lpy) = (o7’ (Lo ) (7(7’1))_5_,_1 = 7(3’1—1) == 10 {p).
Ieymwa 11. Tet kl be a quadratic field and 5, ¢k, n be a positive

integer. Assume that either n-is odd or %, s imaginary. If N(5,) =1 and By

68 is_am - -th power in k, then E, is of the form (£JE'), E€k,. _
“Proof. Assume that £ g; = 87, 8y ek,. Hence N (5} = N(5,)" =1.

Bince every norn is rational and also nonnega,twe if kl is imaginary we have

N(E ) = - 1. By H]lbert’s Theorem 90 5, = EfE’ £ek,. H@nce = (§/¢')

T Lmvora 19, Leufk be a posﬂ‘we mteger tmd a, B sat-wfy the assumpt/wns
of Theorem 3. Put

o) = gy —alB) .@f a/f 18 rational,
(=) = ag(w—aff)(x—pla) if alf is irvational.

Suppose that f has rational integral coefficients, a,> 0, f is primitive,
g t8 @ prime number prime to a,KLM D(a,a/f). Assume that g = 1 mod k.

© The divisibility q|f(z®) is samfwd for some rational integer o af and only

if AP yrla, f). _ K
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Proof. ‘Assumo that ¢ =1 mod k. By Lemma 5, qif{a®) for some
@ ¢ Z if and only if there exists a prime ideal q of T, of degree one dividing g
such that «/f is kth power residue mod g. ¥ a/f =a"mod q (& e Z) then
(2B =1 mod q. Hence P gy (@, B) since (g, KIL) == 1. -
Let gl (e, B). Since (g, M) =1 it follows that

(23) (o[BI =1 mod o,
where g s o prime ideal of %, dividing ¢. Tence
(24) (a/p) = a/f mod q.

Put & = apa/f. 5 is algebraic integer. By (24) and Fermat’s theorem
Bt == Fmod.q. Since &, =Q(f) and (g, D(8)) = 1 it follows that H*
=y mod q for any integer ¢ of %,. This means that q is of degree one.

Henee by Huler’s eriterion and by (23) aff is kth power residue mod g.
The lemma is proved. '

Proof of Theorem 3. Let f be a polynomial as in Lemmy 19.
Let ¢, T, B have the same meaning as in (22). Let n, » have the meaning
of Theorem 1. f is of degree one or symmetric of degree two. In. each case:
nfx = 1. Since k, is cyclotomic we have O(f) = 1. By Theorem 2 and
Lemma 12 there exists a positive integer &, such that for every positive
integer & divisible by &, and for all positive Integers D, v satisfying: (D, r)
=1 and + =1 mod (D, k) there exish infinitely many primes g satisfying
the condition: ¢ =rmod D, g=1 mod k » QP geyymle, ). The Dirichlet

) . . . e(f)
density of thiz set of primes is equal to =’ -

¥ P 1 ip([k, DT)
prove that ¢(f) = wT. Obviously k*°= Q™ and 6 (¥) = 0g(x). Let us
put_ N(*) = l\_T,ﬂlm(*). By (22) and Lemma 6:

o{f) = e, (alf) = 0p(5T) = ep(E)T.
It s enough to prove that o

. It is enough to

(25) _ _ 0g(&) == w,

We shall prove

(i) If T 48 a prime and Liw then 5 is not the i-th power of & cyclotomic
number. : :

Tirst we shall prove that £ is not an lih powerin k. I a/f & @ this
follows from the dofinition of & and 7. If « /B ¢ Q then by Tomma L1
(Ey = 8, n =1); by the definition of Z and since I ig odd, & I8 not an o

Ith power in %,. Obviously &, ¢ %,. Now (i) follows at once from Lemmas 8
(# =1). :

Low =2, By (i)

(26) eald) = 2% 0.
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I & i8 not of the form +w? o ek,, then by Lemma 8 (I = n = 2) &
is not the biguadrate of a eyclotomic number. Hence w < 1.

Assume now that & = +w?, w €ky. By the definition of & and T
it follows that &, is quadratic and N (&) = 1. Hence N (@) = J-1. Tt follows

woe= EIE, Eely, T v L(£/F)® contrary to the definition of & and T.
By Lemma 6, 69(&) = ¢g(w?) = 209 (w). Hence and by (26) cp(w) = 247,
By Letmma 9 o is not the square of a cyelotomie mmmber, Henoe % == 1.
In each case

(27) W1,

On the other hand, & = p/8 = @,/8® = (Vw,/d)?, where y, ¢ are integesr
of %y, w; = yd iy rational integer. Henee & iy the square of a eyclotomic
number. This means that « > 1. By (26) and (27) w =1, and ¢p(5) = 2.
Thus (25). o

2. w =4. We bave &, =P, = Q(/—1). By (i)

(28) (&) =2% ux0.

By Lemma L1 (&, = {5, n = 2) none of the numbers %5 is s square
in P,. By Lemma 8 (I 5= 2, » = 3) &is not the eighth power of a ¢yclotomic
number.

Henee

(29) . wg 2.

By (22) & = p /¥, v e P,. By Lemma 10 5 is the biguadrate of a ¢yclo-
tomie number. This means that « > 2. By (29) and (28) # = 2 and e (5)
= 4, Thug {25). L

3. w = 6. We have &y, =P, =P; = QY —3). By (i)

(30) 6g(5) = 23,

=

By Lemma 11 (8y == {§ 5, n = 2, 3) none of the nuwbers £g 2 is 2 square
or a cube in Py, By Lemma 8 (n = 2; 1 = 2, 3) 5 iz neither the biquadrate
nor the ninth power of a cyelotomic number. Henco

(31) w<<l, ov<l.

w, = 0.

By (22) E = y[7,y e Ps. By Lemmu 10 & is the sixth power of & cyelo-
tomie number. This means that « 3> 1, » > 1. By (31) and (B0)Y U =0 ==
and ¢g{Z) = 6. Thus (20). :

Exsmern 1. Theorems %, 2 and 3 are not true for all pogitive in-
tegers k. Putin Theorem 8:% =2, ¢ = 2, § == 1. Then we have P, (a, 8)
= 2"—1 = M, where n id odd and M, denotes the nth Mersenne number.
It follows easily from guadratic reciprocity lasw that there is no prime g
satistying the econdition: gl My_1yy, ¢ = 3 mod 8 although 3= 1mod (8, 2).
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Txavpim 3. Pub in Theorem 3: h =& @ = —1-+24, = —1-24.
Tt follows easily from the biquadratic reeiprocity law and from the formula

(nf) eI = ( lg ") mod ¢ (see [9], p. 112) that there is no prime g satis-

fying the condition /P,y e, ), ¢= 9 mod 20 aglthough 9 =2 1 mod (20; £).
. BxawmPLE 3. Put in Theorem 3: % =6, @ == L-43p, f ==1--3p°
(o == "), Tt follows casily from the cubie reciproeity Inw and from the
formula.

(a/pya D8 = (_‘}J?) rod g

(see [9], p- 113) that there is no prime g swtisglying the eondition:
Q1P rysla, B); ¢ =31 mod 42 although 31 =1 mod (42, 6)

ExAMPIE 4. Put in Theerem 3: a == (L4V5)/2, § == (L—V5)/2.
Sinee a--f =1 we have P,(a,f) = u,, where u, denates Fibanaoei
gequence. The value of %, in Theorem 8 can be obtained by arguments
given at the begining of the proof of Theorem 1 (see the begining of the
proof of Theoren 3)

7‘;0 = [%11 ml? ml’.] == [2’ 20, 20] == 20.

Wehave w =2, T =1, Fk; = Q(}/ﬁ ). By Theorem 8 fhere oxist infinitely
many primes g such that gleég_yme, ¢ = 21 mod 40, The Divichlet density
of this set of primes is equal to 1/160. ‘
Remark 2. For any e, f in Theorem 3 the eonstant Ky == ky(a, £)
may be given explicitly. This will be an object of an another puper.

3. On the equation ¢ = ¥, Let ¢ € Q. From Lemina 7 it follows at once
the known faet: o iz the ath power of a eyelotomic number if and only
if one of the following conditions is satisfied for a suitable y e @:

(a) m =104 2, a =", (b) n =0mod 2, a==ey™, where ste=1.

Wo shall study in this scction the equation o = 4%, whoroe o belongy
to a fixed quadratic field, » is a positive integer,  i8 a eyelotomic namber.
Trom Lemma 7 we ghall dednee , '

TapowmM 4. Let K be a guadratic fiold, f its vonducor. Tha equolion
a =9, ae K, n a positive intoger, ¥ cyclotomic, holds if and only if one
of the followmg conditions 4 satisfied for « suitable c e Q, v, d e K:

() » ==l mod 2, o == {88 )yt
(ii) » == 0mod 2, a == &(8/d' )"f"‘no"’“g)",

(1i) m = 0 xod 2, K ds real, f == o b 0,662, 0 = s(u/f(a~|-1/f it 5
X aM™ aphere w,, 48 ths number of n-th roots of wnity contamed i IL g¥r = 1,
& de/n,otes the oowgugate of 4.

icm

Contributions to the theory of EKummer emtensions i71

Lovma 13. Let K be a guadrvatic field, f its conducior. Let fe K.
If B is the square of a cyclotomic wumber then one of the following conditions
is satisfied for a suitable ¢ ¢ @ and a suitable y e K:

(iv) B = oy,

(v) K is real, f = a®+b% a,bec’, f = VF(a+Vf)y?

Proof. The asgertion of the lemma is obvious if  is & square in K.
Agsume that § is not a square in K. Then the polynomial 42 —g is irre-
ducible over K. ‘

Pat g =9, 9 e Q™. The field K(9) is biguadratic and abelian.

We congider 2 cases:

Case 1: E(#) is not cyelic. Then by Galois theory K (VB) = K
= I-Q (Vo) = E(Ve), ¢ cQ. Heneo § = eyt, y e K. Thus (iv).

Cage 2: K (& is cyclic. We have I = K(§) = Q(#) since f¢ Q.
Let o be the generating element of Gal(L/Q). Then o* is the generating
element of Gal(L/K). Obviously ¢(f) = p'. We have ¢2(f) = § = (¢*(8))°

.= 9§ Hence o*{§) = —& since o % 1. Further.we have o%o(d)[d)

=a (D) [02(B) = o =) ( —~B) = o(#)/#. This means that o(#)/P? e K thus
o(P) = @ with y, e K. Turther o2(#) = o(yd) = oyt = N(y,) o
= —{, Hence N(y,) = —L1. The field K is real and K = ,3(;/f There
exist rational numbers @, ¥ such that 22 —fy® = —1L. Hence évery odd
prime factor of f is congrnent to 1 mod 4 and f = a®+b% a,b e Z. Put

vy = (@ —VF)[b. We bave N(y,) = —L and N(y/ps) =1. By Hilbert’s
Theovem 90: pyfy, = ¥’ [y, y € K. Further
. t | —]/.T—"(a’—]/f ‘2
r — ,& 2 ,32 — 2 - i 24,2 = .
BB = (o6 = y1 =iy ly Vi

Hence g = Vfla-+VF)y? Whem er since ¢ =e¢ (see also [3], (22),
p. 38), Thus (v).

" Remark 3. We have also proveﬁl the known fact: If K(VB)
cyclic and V¢ K then K is real.

TiEMMA 14. Lot K be a quadratio fiold. Let § e K. If § 4s the cube of
a cyclotomic number then

B=1(8/8)y% vy, 0eK.

Proof. The assertion of the lerama iy obvious if § is a cube in K.
Agsume that § is not a cube in X. Then the polynomial @* — g is irreducible
over K. Put f =9, 9 e Q™. The field I ~ E(#) is abelian. It is the

phttmg field of m” —pB over K. By Lemma T w; = 3. Hence K == Py
= QY —8). We have L = Py(#) and |L| = 6. The field L is cyclic of
degree gix. Let o be the generating element of Gal(L{Q). Then o is the
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generating element of Gal(L/P;). We may put o*(9) = g (p = &%),
Obviously o(g) = ¢*. We have o2(d:0(d)) = 0*(d) 6*(d) = gd-c(o?)
= oPo%c(8#) = ¥ o(#). This means that &-0{d) e P;. Further § = (8/8)y8,

where 8 = o(ff) = f'ePy, y = “«9'0‘?0)

Limvara 15. Let K be a quadratic fidd, f its conductor. If f = ¥n
p e K, & a eydlotomic number then one of the following conditions is satisfied
for a suitable ¢ eQ, v, 6K )

(vi) m == Lmod 2, § == (8/d")y"n,

€ Py (= K). The lemma is proved.

(vil) n = 0 mod 2, I is real, f = a2-++b2%, 0, b e Z, § = c¥V/fla-+V])ye.
Proof. w, = 1. (vi) helds triviaily.

W, = 2. By Lemima 13 we have (vil) or {viii).

w, == 3. By Lemma 14 we have (vi).

w, = 4. We haye K = P, = (¥ —1). Wo consider 2 cases:

Case 1: § iz a square in P,. Then

(82) B=fi=0, BicB, B eQm

Hence §; = 4, ¥, ™. By Lemma 13 §, = ¢y*, ¢ eQ,yeP, (=K).
By (82) B =+ ¢ thug (vil).

Case 2: B is not a square in P,. Then the polynomial #* — 8 ig irve-
ducible over P,. Put § =4, &, e 0™°, The field T = P,(&) is abelian.
|Z| = 8. L is not cyclic. Otherwise the biquadratic cyclic subfield of L
would contain the real quadratic field (Remark 3). On the other
hand. I eontaing P, which is impossible. Since the extension L /P, is cyclic
and of degree four the group Gal(L/Q) contains an element of order 4.
Hence the group Gal(L/Q) is of tho type (4,2). On tha other hand a bi-
quadratic eyclic field does not contain , beeause it containg a real quad-
ratic ficld. Hence by Galois theory

(83) L =HKP, ond KNP, =0,
where I, ig a eyelic bigquadratic field.
Let o be the generating eloment of Gal(L/P,). Let o, bo the generating
element of Gal(L/K,). By Galols theory and by (38)
Gal(Z/Q) = Gal(L/P,)Gal(L/K,).

¢ iz of order four and o, is of order two. ¢, o, are generating elements of
Gal(L /0.
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We may put o(dy) = id,. We have 0,(¢) = —i (otherwise by Galois
theory and by (33) we would have o, = 1 which is impossible). We have

0'(791'01(791)) =2 ¢ () ooy (8y) = Py 000 (D) = iy 0, (i)
== i ( —8) 0y (P4} == Byo1(Fy)
and %
03 (’!910'1(791)) = oy () 0} () = BP0, (By).

This means that ¢, = o, (9) s Q.
Further

NeyolBei(01)B)) = Np 0(edif) = Npyp(on(95)/8) = (o (95 Y1 = 1.
By Hilbert’s Theorem 90:
Bei(e/p) = 68, édeP, (= K).
Hence § = (8/3)¢%%, where ¢ = ¢;' €, 8,y = B/e; € Py(= K). Thus (vii).
w, == 6. We have K _-—_Pﬁ = Q(V —3). By Lemma 13

(34) B=opyl, @eQ, y K.
By Lemma 14
(35) B =887, byeK.

Put ¢ == ¢, N (8), p3 = y1/68, p, = yefc. By (34) and (35)
1 t
— (V0B =y =%, s vsek.

1 : : )
Hence F(é’/é)ﬁ =95 ¢eQ, y e K thus (vii). The lemma is proved.

Proof of Theorem 4. Necessity. Assume that a = 4", ¢ e O™°.
KPP, (9) iy tho splitting field of o™ —a over K. P, (#)is abelizn. By Lemma 7
awﬂ; == ﬂ-, ﬂ & ]_f . H@nce

(36) Lo o= 8‘8""'”7” == 'ﬁ'n, P = 1,

Thus 8 == 9, 4, & O™°, Necessity of the condition follows at onee from
Lemma 15 and from (386).

SQufficiency. Assume firgt (i) or {di). If ¢ e Q@ then Veis ayclotomie.
Since w,|w by Lemma 10 /0 is the w,-th power of a cyclotomic number.

-Heuee o is the nth power of a eyelotomic number.

Agsume that (iii) holds. It is enough to prove that l/f(a -H/f) iy a
square in ™%, By Lemma 10:
e

a—bi

= 6%, feQm°,
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Hence (a+bi)f = A2, Ae@Q™ and (a—bi)Vf = A% Henee AA =j
sinee f is positive. Hence

(a-+ bW F+{a—biWF+2f
2 2

Ha V7 AT 244 (A+AY
Va+vi) = a m(" b )

7
wheve (4 +A) V2 & @™°. The proof is complote.
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ACTA ARITHMETICA
XL (1982)

Kummer congruences for the coefficients of Hurwitz series

by

Cure SNYDER (Orono, Maine)*

1. Intreduetion. In Y. Carlitz [3], it iz shown that Hurmtz series f {@)
pubisfying the differential equation

4
(FPE=1+ D af' (o2

)

possess Kummer congruences, (These concepts are defined below.)
However once the polynemial function ou.the right-hand side of the
above equation has degrée greater than four, Caxlitz’s methods fail te
yield information about Kummer congruences. Nevertheless, he believed
that when f(z) satisfies

(f) = 1+f°

then f has Kummer congruences.

In this article we refiné the machinery developed by Carlitz and solve
the above problem in the affirmative. Moreover we show that of all Hur-
witz series f(w) satisfying in particular

(F) =1+

for m an integer orem:er than 4, only for m = 6 does f have Kummer
CONZIUSNCEH.

Although this is the only application of the maehmery developed
that is given, the metheds may be applied to other Hurwitz series satisfying
more general differential equations.

2. An analysis of the Qp operator. Let R be an integral domain con-
taining Z, the rational integers.
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