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Reflective functions on p-adic fields
by

Davip B. Hayss (Awmherst, Mass.) and MIcHAEL D. NUTT* (Wolfville,
‘ N. 8., Canada)

1. Introduction. For a fizved rational prime 9, let @, be the field
of p-adic numbers, and let K be a finite extension field of Q,. Let v: K~
->ZU{ o0} be the (normalized) p-adic valuation on K, 0 the ring of integral
elements with respect to », U the group of units of 8, @ 2 fixed prime el-
ement (Le., v{w) = 1),k = O/n0, ¢ = $K, and let

(11) oy = ¢ "

for all & e K. :

Given. & polynomial h(Xy, ..., X,) in s indeterminates (s=1) and
coetficients in @, let o,(h) be the number of zeros of the reduction of &
in the residue class ring 0/n"0 for each integer » > 0. The power series

‘ - _ .
(1.2) | Put) =, ¢, (h) (807",
. v={

which converges at least in the open disk [#{<<1 is called the Poincaré
series of h. It is conjectured (see [1], p. 47, problem 9 and also [8]) that
P, (f) is a rational function of f. As one easily observes, the rationality
of P, (t) means that there is a positive integer Ny such that all the numbérs
¢,(R), » =0, can be computed from eo(h)y €1(h); +vny Oy, () by means of
2 linear recurrence.

This conjecture has recently been proved by J.-I. Jgusa [B], [6]
using Hironaka’s deep results on the resolution of singularities of algebraic
varieties in characteristic zero. ‘

Our aim in this paper i to expand the relatively smadl class of poly-
nomials  for which the rationality of Py(t) can be proved by elementary
means.. Our results include all the previous results known to us for special

: )
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polynomials k. In addition, we verily the rationality of P, (¢) for any
polynomial » which has the property that no two distinet rmonomials
of 1 contain a common indeterminate. In particular, we prove that P, ()
is rational for diegonal polynomials, ie., for polynomials of the form

M XA 4 A, X e, A X -

where d,, dy, ..., &, ave positive infegers and 4, 4, ..., 4, and ¢ belong
to ¢. Recently B. Stevenson has provided an elementary proof of
this for forms, but along quite different lines, using characters.

Qur methods apply more conveniently to the following somewhat
gharper conjecture which we refer to ag the “Q-conjecture”.

The series Py(l) = N()/D(3) where N () and D(t) are polynomials
Q: in Z[t) and DY) is a product of factors of the form ¢*—1", m and
w being sirictly positive integers with m < ns.

Flementary proofs of the Q-conjecture for special polynomials do
exigt in the literature ([7], [8], [9]). In particular, the conjecture has
been established by elementary means for the following general classes
of polynomials:

(A) & is any polynomial in one variable.

(B) % is a form in two variables.

(0y h is any monomial.

(D) The manifold A(z,,
which lies in 0%

Proofs can be found in the dissertation of Shuck [8]. Also, see Gusev
[2] for another proof of the Q-conjecture for A of type (B) (and [3] for
2 partial result on polynomials in two variables).

T.et dw be the Haar measure on the additive grouvp of K normalized
50 that ¢ has measure 1. Viewed as a map from ¢ to ¢, b has a Radon-
Nikodym derivative (!) 0, in this measure. Since @ has finite meagure,
§, e L' (@), which justifies the following computation:

veny ) = 0 in H* hag no singular poing

6, ()~ == meag (B (2" 0)) = [ Oy(x)dw
i)
'ao'. that
(L3) g0 m)—g TV, (B = [ (@)de =4~ f on 7' u)d
. S ' Ir
for all » 3> 0. Shuck (Ioa cit.) uses (1.3) together with the change of variables

-theorem, for p-adic integrals to obtain his results. In this paper, we define

O] See the Appendix for ‘the definition and some properties.
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for every k > 0 the concept of k-reflectivity for functions in' Z1(¢). (Ths
presence of a linear recrxrence among the coefficients of the Poincard
series of k and the analogy of the reflection of images between a parallel
pair of mirrors suggested the name.) Then we prove.

THEOREM 1. If 0, is s- reflective, where s s the number of wmables
in by, then @ is valid for h.

TunorEM 2. If h is ¢ polynomial in one variable with integral coef-
ficients, then 0, is 1-reflective.

Trmogey 3. If the RBadon-Nikodym dervivatives of all the polynommls
h in s variables are s-reflective for some fiwed 5= 0, and if f is a form in
841 variables, then 0., is (8 +1)-reflective for every ¢ e @ (cf. [8], Theorem
3.6},

TarorEM 4. Suppose h (resp. g) is o polynomial in s (resp. +) variables,
and suppose that 8, is s-refleciive and that 6, is r-reflective. Then for any
constant ¢ e &, the Radon—Nikodym derivatives of the polynomials h(X,, ...

X)+g(Yy, ..., ¥)—c and R{X,,..., X 9(¥,:..., Y, )—¢ in s+r
variables each are both (s r)-reflective.

These theorems are proved below in § 5 after a preliminary deve-
lopment of the properties of “reflective” functions in §§2, 3 and 4. The
validity of the Q-conjecture for the :clagses (A), (B), (C) and (D) listed
above and for arbitrary diagonal polynomials follows as an immediate
corollary of these theorems.

The @-linear span of the series (1.2) for all polynomlals Wlth mteg,ra.l
coefficients containg almost all rational fonetions of the type in Q above
(see [7]). This result will not be needed in the sequel.

Note that thronghout, Z denotes the ring of rational mtegers, O
the ordinary rational field and C the complex field.

2. Rational fumetions in I'(®). Throughout the remainder of the
paper, whenever we refer to an “Z!-function” we mean s function in
IH(0) with respect to the restriction to ¢ of tlie measure dw introduced
in § 1. We adopt the convention that the domain of any funetion f defined
on O iy auvtomatically extended to K by defining f(z) = 0 for z e A\0.

I ¢ and y are L'-functions, then their convolution wp+y is defined
(as usnal) by

= [pl@)y

(2.1)

for all z e K. Observe that gxyp is also an L'-function (ie., it vanishes.
oif @). We also introduce the multiplicative convolution @, v of ¢ and
defined for 2z € KN{0} by

() ( (2 — ®)dw

dx
])______.

) ol

(P*my)(2) = f ¢ (@)y(ee”
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The integral in (2.2} exists because the integrand vanishes off the set
2.3) W) =@ K| 0< o) <o)}

which ig a finite union of muliiplicative tranglates of U. We define ¢,
at z = 0 by continuity if possible; otherwise, we put (p %, 9)}(0) = co.
We show in Proposition 2.3 below that ¢ %, v is also an L*-function. (The
reader should note thabt de/lw(y is the Haar measure on the multiplicative
group K* = K\{0} which gives U the measure 1 —(1/g).)

Given o and b in @ and an I'-function 08, we define

A, 0(R) = Oz a},
M, 0(z) == 0(bz)

(2.4)

(2.5)
for all ze®.
We note the standard tronslation formulﬂ.s

(2.6)
(2.7)

(@),
(bel)

a(?’*w
My (@ 5 )
for all L*funotions ¢ and p. We note also the following formula which is
valid for all # such that »(2) > 0:

o) '
= M AM %0 M _,0) ().

poal

Aaww = e,y =
Myg 4 p = @ %, Myy =

(2.8) M, Ay (@ 0 9) ()
This 38 clear sincé the operators M, A4, and A, M, have the same eifect,
and ¢ may be factored in ¢ as n*on™" for u =0 to v{0). We will need
thig result in Theorem 4.4. ,

In trying to apply (1.3) to study the Q-conjecture, one is led to in-
troduce the power series:
(2.9)

Goluy 1) = 3 g7 O(="u)t

veu(}

aggociated to o gwon I'function 0 and defmed for almost all we U.
Since

wenll p¥yy 1mﬂ

Wwe see by monotone convergence that the Bexiés (2.9) converges for ¢
in the closed unib diglk of the eompléx plane for almost all » € U. 'We put

(2.0 @) = an(u fdu, -—2, 'adl f@(m w)du] 2.

woul)

icm
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Note that
G;(1) = [ 6(z)de.
ProrosITION 2.1. For a polynomial b eO[X,, ..., X,]
(212) Py (1) = (165, (1) —1}/(1—1).

Proof The propomtmn follows from (1.3) by a simple calculatmn =

DEFINITION 2.2, An I*-function 0 is called rational if there is an
integer d 3= 0, functions a,(u), ..., az(u)(% e U) in L} () and 2 polynomial
D{t) e Q[t] such that o

@ (%) +ml‘(fw)t+... g ()12

(2.13) . B

GB(“’; 1) =

-

As an example of a rational L*-function, consider for a fixed integer

> 1 the function 6, defined for z €0 as follows: 0,(z) =0 if ntw(z),

and 0,(z) = g™ N, (w)/jnlx if ¢ =na"u, we U, where N,(u) is the
number of nth roots of % in K. Then, as one easily checks '

(0.14) G (u, ) = %

This funetion 6, is the Radon-Nikodyrm derivative of the polynomial
B(X) = X" viewed as a map from ¢ to itself. (This assertion will be proved
later in Theorem 2, using {2) of the Appendix.) Let us use (2.14) to compute
Py (t). It follows from (2.14) that &; (?) is a constant multiple of 1/(g—1").
Since 6, is a derivative, its mtegra] over 0 is 1, and so Gy (1) =1 by
{2.11). Thus, the eonstant multiplier is g-1. Plugging this geries into

(2.12), we find after a short ealculation that
TR LR
(2.15) Py = LEITE AT
gt
for h(X) = X% a vesult which iz in accordance with the (}-conjecture.

PROPOSITION 2.3. Let'qo and v be L*-functions, and let 6 = ¢4y .
Then 8 is also an IL'-function, and '

(2.18) Golu, 1) = [ Gy(s, )G, (ue, §)de.
[ 2

Further, )

(2.17) Go(t) = Gy {t)Gy(t) -
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Proof. Since the integrand in (2.2) is zere for » not in the set W(z),
we have for »= 0 and almost all ue U

6(n"u}y = 2 fqo(m‘;np(n”'mw‘l)-g& o { [Zv:qa{n“a)w(n”"“m“l)]de.

n=0 urr |-’1"f,rc o ==l

This shows that (2.16) holds in the sense of formal multiplication of
power series. Bub since the integrand in (2.16) is the product of series
which are eonvergent in the closed unit disk, it is also convergent there.
Hence, by standard meagure theory, G (u,#) iz absolutely convergent
“far t = 1 and almost all e U. Wo gee now by the calculation in (2.10)
that the integral of ||, is findie, and so 0 iz an I'-funetion. Equation
(2.17) follows from (2.16) by Fubini’s Theorem. m

COROLLARY 2.4. Let ¢, p and 0 be as in the above proposition. Then
_if ¢ and  are rvotional, so iz 0. .

Suppose g (resp. k) is a polynomial with coefficients in @ in # (resp. 8)
vartables. Let the variables in g be distinet from fhose in & so that gk
and gh are polynomials in r-s variables. Then it iy a simple exe.rcise
in the uge of Fubini’s Theorem, fo show that

(2.18) Opin = 0% 0y
and
(2.19) 0{]:’). o 0(;*7}161&'

‘We can conelude from (2.19), our example (2.14) and Propogition 2.3
that the Q-conjecture holds for any monoemial. '

- We cannot conclude in. general that the additive convolution of
rational functions is rational. This motivates the introduction (see §4)
of _the congept of refloctivity for I'-functions, a stronger conocept than
rationality, 'We prove in § 4 that the additive and mwlbiplicative con-
volutions of reflective funciions arve reflective.

_ 3. Almost lecally comstant fumetions. An L-funeiion ¢ is said to be
locauyl constani at o point zed il ¢ i constant in somoe neighborhood
of z. Wo defline B, to be the set of points 2 & ¢ sueh that ¢ is vot locally
conptant o 2. We eall the poinds in B, the branch points of ¢.

o ].)mmmfnlom 3.1, Let ¢ be an L'-fonetion, and let » be a non-negative
mteg‘er. Weo say thut ¢ belongs {o class &, if B, is finito and contains exactly
7 pointg, i.e., it @ has exactly » branch points, Let # = | %, for r > 0.
A function which helongs to # is said to be almost locally constant.

. Let he 0[X,,..., X,]. The singular locus 8, of & is the set of points
}n 0* at which the s partial derivatives of % wvamish simultaneously. It
is known (see [7] and [8]) that the Radon-Nikodym derivative &, is

icm
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locally constant at every point of ONA{8,). (See the Appendix for a sketech
of the prootf.)

PROPOSITION 3.2. The derivative 6, is almost locally constant.

Proof. By the above remarks, it suffices to prove that ®{S,) 8
finite. Let F¥ be the algebraic closure of I, and let 8} be the algebraic
variety consisting of the points in F° where the partial derivatives of h
vanish simultaneously. Clearly, it suffices to show that h(S}) is finite,
an assertion which belongs to classical algebraic geometry. We will use
the infamous Lefschetz Principle to prove it. By Lefschetz, we can take ¥
t0 be the complex numbers. We can then appeal to the analytic result
known ay Sard’s Theorem to conclude that h(8;) has Lebesgue measure
zero. But sinee h is an algebraic morphism, {8y} is either finite or else
contains a non-empty Zariski open set. The latter possibility is e_xclud.ed
by the fact that & nop-empty open set always has positive Lebesgue
measure. W . :

The above proof is due to J. Fogarty to whom we extend our thanks.
One can show by somewhat more lengthy but purely algebraic arguments
that h is actually constant on the components of S%. Proposition 3.2
will be used in this paper only when & =1, in which case it is trivial.
We prove it in full generality because it helps put our results in §4 in
pergpective.

We turn now to the main work of this section which is to show that
convolutions of funetions in # also belong to . ‘

TanoreM 3.3. Suppose ¢ and p ave L'-functions belonging to . Then
6 =@y also belongs to J, and in faci

(3.1) : , B, < B,+B,.

Proof. Any function in &% has r branch points for some integral
7= 0. I 7> 2, the function can be represented as a sum of r functions
in #,. Since  is distributive qyer addition, we may assumeé  with-
out loss of generality that ¢ and » belong to B0, Let us fix 2z, € 0.
Then for w e &,

(3.2) Blzg+0) = [ (@) p(aetw — ) da.

Suppose firstly that one of ¢ and y, 82y v, belongs to #,. Then there
ig a positive integer m such that y(®,) = (%) whenever o, == @, (mod ™).
We observe then that (2,--w) is constant as w varies in #™@. Thus,
8 € &, and so (3.1) holds. ‘

" Suppose secondly that both ¢ and v belong to #,. By additive trans-
lation, we may agsume that the gingle branch point of ¢ is zero. Let b
be the branch poink of . We have to show that § is locally congtant ati
#, when z, # b. Choose a positive integer r 50 large that ¢ is constant on
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B = g,—b+n'0. Next choose m 2 r so large that (2,) = w(x,) whenever
%, = &, (mod #™) bub @, s b (mwod »"). We will show that 0(z,+w) is
congtant for wea™d.

Let A = O\E. Sinee (2,4 w —a) is independent of w when w € #™ 0
and x €A, it suffices by (3.2} to prove that

“ Jol@)piee+w—a)d
X .

ig independent of w € »™¢. Bub this iy clear becouse ¢ i3 constant on §
and w48 = B for w ¢ #¢. Thus, 0 can have no branch point other
than b, and (3.1) holds. m

We wish to prove a similar theorem for the muii,lplluatwe convol-
ution #,. For this, we need to introduce the subgroups U =1-fa'0
(rz1) 01:‘ U. It is well-known that these snbgroups form a bfuse for the
filter of neighborhoods at 1 in .

I A< 0 then we put A* = AN{0}.

TEEOREM 3.4. Suppose ¢ end yp are I'-funciions belonging fo &. Then
6 =g+, v also belongs to B, and in faot '

(33) -~ Bbe B'BL.

Proof. As in the proof:-of Theorem 8.3, we can. assume that both ¢
and ¢ belong to &V, . Let us fix 2, = n’u4e in 0* where u, & U. Then
by (2.2) and (2.3), we have for any welU

(3.4) B (zom0) = Z [ ples) w(aﬁuom 1) de.
pry=e J

Suppose that beBy and ¥ B, imply that o(bb’) 3= ». Consider
2 term of the summation in (3.4) corresponding to given values ux and y
with p4y = ». By assumption, either ¢ iz locally constant at overy
point of =" or elge y is locally constant at every point of »*U. We assume
the latter possibility without loss of gemerality. Then there is o pugitive
integer # = #, such that w(w,) = p(@,) whenever oy, v, en’ U and @0
e U We observe that the summand corrosponding to u and y is eongtant
a8 w varies in U™, Taking the largest such r for all the summands, wo
conclude that 9 i congtant in the neighborhood 2, U™ of 2,. In particnlar,
if either of B} or By is empty, then zo is B) and (3.3) holds.

‘We have left to consider the case in which 99 han the amgla hranch
point g, and v hag the single branch point = °s, where s, & & U and
Fo+7o = ». By multiplicative translation, we may assume that g =
We have to show that £ is locally eonstant at 2, when 2,  a"s. By the
method used in the first part of this proof, it suffices to prove that the
summand in (3.4) corvesponding t0 4 = p, und y = y, is constant for w
belonging to a sufficiently small neighborhood of 1. Choose m g0 large

icm
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that ¢ is constant on «°F where B is wugs; 'U™, and put 4 = U\E.
Next choose r so large that r=m and p(®) = p(2:) whenever #,, @,
en T and @27 € U7 but @, ¢ =, U™,

Since w(n"“uowa Yy ig independent of w for we UM and eed; it
suffices 1o prove that

f p(a ) p(a s ) de
£

is independent of w e U™, hut this is clear because ¢ is constant on B
and wl = B for w e U"). Thus, 6 can have no branch point other than
7w"gg, and (8.3) holds. m

4. Reflective fonetions in I' (0). Let ke 0[X,, ..., X,], and let ¢ c @
It is then & simple consequence of the additive invariance of the measure
dx that

(4.1) By-o(2) = Op(z+0)
for almost all 2 0. .

DEFIRITION 4.1. An Ll-function # iz said to be reflecive if it has the
following two properties:

(R1) ¢ is almost locally constant.

- (R2) For every e¢e0, 4,0 is rational with denominator a product

of terms of the form ¢™ —1" for guitable strictly positive integers m and n.
(Of course, thiz denominator may vary with ¢.)

Given a reflective function 8, let 8§ be the set of all those complex
numbers which cccur as a pole of one of the rational functions G (%),
¢ e ¢. Sinee 0 has only finitely many branch peints, 8 is o finite set. Let
A (rvesp. B) be the minimum (resp. maximum) ordinary absolute value
of the numbers 8. Then we put

bd(8) = 1ogq

(4.2)
ubd (8) = ]ogaB .

Clearly, we always have Ibd(6) > 0. For k> 0, a reflective function ¢
is called k-reflective if vhd(0) < k.

Theorem 1 of the introduction is a formal consequence of these
definitions and (2.1.2).

‘We conjecture that the Radon-—leodym derivative 0, of any poly-
nomial % in ¢ variables over ¢.is s-reflective. By Proporition 3.2 and (4.1)
above, this conjecture is equivalent to the assertion that each 6, is
rational with denominator a product of factors of the form g iy
m < ns, m>0, and n> 0,

Let & be the set of reflective L'-functions. It is clear that 99 ina C-
linear gubspace of L'(®) which is closed under the additive trapslation
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(2.4) and the multiplicative tranglation (2.5). We show in this section
that & is also closed under additive and multiplicative convolution. We
firgt introduce z set of simple functions, the basic reflective functions,
which generate £ as a C-vector space.

Let ¥ be a non-trivial con‘mmmm character of the additive group
of K which is trivial on ¢. If r = 0 is an integer, then we define

1,(z) = Bzj")
for all # e K. Tt is woll known that the chavacters of the cornpact additive
group ¢ ave the functions of the form
(4.3) 231, (bz)
for 7= 0 and b € ¢, where b is determined modualo a”, provided & ig non-
trivial on #=~" U. Note that these characters all belong to #,.

A seguence of comples numbers ¢,, » 2= 0, i8 ealled a reflective coef-
ficient if the power series

(v ed)

Ao
(4.4) = Z‘ qret
HEST .

is 2 rational function with denominator of the type mentioned in (R2)
of Definition 4.1. The power series eonverges for ¢ in the closed unit disk
of the complex plane since H (f) can bave no pole in that disk.

Given a reflective coefficient ¢,, » > 0, and the ehdmcter (4.3) of &,
we define a function § on @ as follows: If 2 = n’u (» 3= 0, w e U} is a non-
zero element of @, then

(4.5) 6(2) = 6, B, (bu).

We ddefine 6(0) by continuity if possible; otherwise, we put 6(0) = co.
It is clear that 6 is L(6) by the caleulation following (2.9). Also, 6 is
almost locally constant with 0 as its only possible branch point. We
see that (1R2) holds for 0 sinece

Gylu, 1) = H (1) E, (bu)

and gince 0 is locwlly conghant ot uvery point ¢ € @, ¢ % 0. Thus, 0 is reflec-
tive. Any additive trangate 4,6, ¢ & 0, is also roflective. Wo say that
A0 is o basic reflective funchion cmtewd ot a.

ProrosrrioN 4.2. Let § be a reflective function. Let 1" be the C-linear

spave of veflective functions y such that 1bd(0) < Ibd (y) and abd (y) < ubd(0).
Then 6 18 a C-linear combination of basio veflective functions belonging to I

Proof. For the purpose of this proof, a function belonging to Iis
said to be INreflective. Since the denominator of G0ty 1) depends only
on the local behavior of 6 near ¢, we can write 6 as a sum. of I'reflective
functions. which belong to #,U%,. Thus, we can assurge withous loga
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of generality that # has at most one branch point, and by additive trans-
lation we can even assume that the branch point is zervo (if there is one).

Tor such a 0, we have the representation (2.13) for Gy(u,#), valid
for almost all v e U, Multiplying by the denominator D{t) and equating
coefficients, we find that each of the functions (), 0< i < 4, in (2.13)
is a finite linear combination of the functions f(='w), » = 0, on U. Each
tunction a;(v), 0 i< d, is therefore locally conqtant on U sgince zero
ig the onlv poseible bmnch point of 6. We can now conclude from (2.13)
that for v 2= 0 and w € U, 0(n"u) is 2 sum of fanctions of the form ¢,a(u),
where ¢,, » = 0, is a I'reflective coefficient and a(e), z € @, belongs to
#,. (The domain of any function on U is extended to & by setting it equal
to zero at the points in &N\ T.) Now, it is a simple consequence of the
Fourier Inversion Theorem for the compact additive group € that any
funetion in 4, is & finite linear combination of characters of £. E

Our proofs that the additive and multiplicative convolutions of reflective
funections are reflective use certain operations which produce new reflective
cocfficients out of old ones. We now introduce these operations. For
convenience, we drop the gquantifier “» > 07 when writing down a reflec-
tive coefficient with index “»”. No confusion shomld arise. When we
speak of the “poles” of a reflective coefficient ¢,, it is understood that
we refer to the poles of the rational function H (1) associated to ¢, by (4. 4)

Translation: For a fixed integer » = 0, ¢, is a reflective eoeﬂment
if and only if ¢,,, is a reflective coefﬁcwnf Further, ¢, and ¢, have
the same poles. '

Lower summation: If ¢, is a reflective coefficient, then d, = e,, is
#wﬁ
also a reflective coefficient. Further, ¢, and 4, have the same poles. except

that d, may have an additional pole at t = g.

Upper summation: It ¢, is a reflective coefficient, then d, = 3 ¢ “c,
I .
ig also a reflective cocfficient. Further, d, has the same poles as does ¢,.

Product: Tt ¢, and d, ave reflective coefficients, then ¢7"¢,d, iy also
a reflective coefficient. Bach pole of g~’e,d, is the product of a pole of ¢,
and a pole of d,.

The reader can easily verify the agsertions made for the first three
operations histed above. For the product, let H(t) (vesp. H'(!)) be the
rational function associated to ¢, (resp. 4,) by (4.4). We observe from
the standard integral representation for the Hadamard product of two
power series (see [4], p. 84) that the function H''(t) associated to ¢ ¢,d,
by (4.4) is rational. We see also from this same integral that the poles
of H''(3) are among the products «f, where o is a pole of H () and pis
a pole of H'(t). Further, the order of af as o pole of H" () is less than or
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equal to the sum of the orders of o and f a8 poles of H () and H' (1) respect-
ively. Thus, the denominator of H ‘' (t) divides the product of the factora
g™ —gn Y where ¢™ —1" is & factor of the denominator of H(t) snd

g™ —{* iz a factor of the denominator of H'(f). m

TerorEM 4.3. Lat ¢ and y e reflective functions tn L' (0). Let I' be
the C-linear space of reflective functions y such that

ubd (y) < max{1., ubd () -+ubd (y)},

=

(4.6) Ibd (p) = min {1, Tod (¢} --1bd ()} .
Then § = gy is a reflective function belonging o I

 Proof. By Proposition 4.2, we may assumo without loss of generality
that both ¢ and y are basic reflective tunctions. By additive translation,
we may further assume that both ¢ and y are centered at zero. Therefore,
we have @(2) = o,B,(aw) and y(2) = d,E (bu) where 2z =a"u, ¢, and
d, are reflective coefficients, r>1, and &, be@. We will exhibit 6(2)
= 0(z'w) as a C-linear combination of basic reflective functions belong-
ing to I

From (2.1) and the decomposition

(4.7) : = UJaU,

. #e=0
we find that

pe=0

(4.8) . 6(2) = Zg“" J'qa(n"s)w(n"u——:m"e)ds.
i

Breaking the summation in (4.8) into the parts where u<C#, u = » and
4> v, we obtain the representation

(4.9) - 6(2) = 68(2) +8:(2) g p(2) 8y (2} -
where '
]
8,(2) = 2 q"’”cl;dylﬂr(ba; ~tu),
Jroma(}
(4.10) 8u(e) = g0, [ By {ae)p(e’ (u—s))ds,
23
83(e) = 3¢ "6, [ B,(ae) B, (—bo*"e)de
. ) b v
- and where " . ]
(4.11) o = [ B,((a—b)s)ds.
: ir
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Let us adopt the conventions that a vacuons summation equals
zoro and that ¢, = d, = 0 whenever » < 0. Then §,(2) can be rewritten as

[ d r—1
2 q_“ G“ d‘, + Z qﬂ (Q!_"ﬂ'y«-a dp-—d) Er—d (b'u') *
prm ) 4=l

The first summation above is derived from ¢, and d, by the operations
of product, lower summation and iranslation applied in that order. It is
therefore a reflective coefficient belonging to I'. The summands in the
gecond summation above are derived in part from ¢, and d, by the oper-
ation of translation followed by product. It is therefore a linear combination
of basic reflective funetions belonging to I'.

We turn now to S3(2), which ecan be rewritten as

00 r—1
‘ [ Z; gj"“'"cy] JE,.(M)J&»{«- aZ‘: ¢ Cyis [JE,.({L&)E’,._d( —be) ds] .
poapfr om

The summation on the lett above is cbtained from ¢, by the upper sum-
mation operation followed by translation. It is therefore a reflective coef-
ficient having the same poles as does ¢,. The summation on the right is
» lnear combination of reflective coefficients having the same poles as
does o, by translation. Thus, by the product operation, in (4.9) g7 v (#)8s(2)
is a sum of basic reflective functions belonging to I

Finally, we investigate 8;(z). We have

(412)  84() = [q 0, &, BT +g e, [ B, (as)p(a (u—s))de

upn®
whera T is an integral which is independent of 2. The first summand on
the right-hand side of (4.12) belongs to I' by the produet operation. The
integral in the second summand_equals

B, (av) [ B, (ow)p(—a’w)dw.
i .

It suffices to show that the integral above is a reflective coefficient
having the same poles as does d,. In fact, it equals

S [ B, (an sy p(—a o) de = X ¢ra. [ B (ax" ) B, (~be)de

=l u. > U

which by upper summation and tremslation is seen to be a linear combi-

nation of reflective coefficients having the same poles as does d,. m
TuEoREM 4.4. Let ¢ and v be refleciive functions in IH0O). Let I' be

the space of reflective functions y for which (4.8) holds. Then 0 =g, pis

a reflective function belonging to I ‘
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Prool. et us say just for the purpose of this proof that an I'-func-
tion y belongs to I'at ¢ €@ if A,y is rational and the poles § of &y (£}

satisfy O <log,|f| <D, where ¢ is the min and D is the max appearing

in (4.6). Now # is almost locally constant by Theorem 3.4. Therefore, it
suffices to show that 6 belongs to I" at every point ¢ & &, For ¢ = 0, this
is clear from Proposition 2.3. For ¢ s 0, we proceed as follows. First,
it is clear that 4,0 and M,.d, 0 are rational or not together and, if rational,
the corresponding rational functions (2.13) have the same denominator.
Therefore, by (2.8), we may assume ¢ = 1 without loss of generality.
Ag wo see below, 4,0 is a cormbination of basic reflective functions, hence
rational.

In proving that 9 belongs to I" u% 1, we may assume that both ¢
and v are basie reflective functions by Proposition 4.2. If 2 = 1 is not
2 branch point of 8, then # belongs trivially to 1" at 1. Otherwise, we see
from (3.8} and the multiplicative translation rule {2.7) that we can assume
that both ¢ and ¢ are centered at 1. We may assume in other words that
p(l-+2) = ¢, B, {au) and p(1--2) = 4, B.(bu), where 2 = »"u, ¢, and d, are
reflective coefficients, » = 1, and a, b € 0. We¢ will show under there as-
sumptions that on a sufficiently small neighborhood of 1, .4,0(2) is a C-
lineay combination. of bagic reflective funetions belonging o TI.

For » =1, we have, since ¢ and y are cenbered ab 1,

A4.0() = [gl@)p(A+a)e)de =1+ [ gl )yp((l+)a)do
v 1-al
where I is independent of ». From. the decomposition (4.7), the second
integral above equals ' ‘

St [ o+t p((1+a7u) (1 + 7)) de
ur

pel

= Mg "o, [Blag)p(l+a"utas+nVue)de,
p=1 v ’

where 1+a*s, = (1+a*s)"". The proof now proceeds as does the proof
of Theorem 4.3 with only minor differences. One has to use the fact that
gince ¢, == —e(moda®t"), we have H,(gs,) = H,(—ae) for z sufficiently
large, One has algo to keep in mind that the reasoning need be valid only
for sufficiently large ». Wo omit the details since they are so similar to
those in the previous proof. m

5. Applications to the Q-conjecture. In this seetion wo give proofs
of Theorems 1 to 4 of the Introduction. Theorems 1, 2, and 4 were proven
in glightly different form in [7]. Shuek [8] gives more direct proofs of
Theorems 2 (Th. 3.1) and 3 (Th. 3.6) as they apply to the original Bore-
vich—Shafarevich conjecture.
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Proof of Theorem 1. This is a straightforward consequence of
the Definition 4.1 and the formula (2.12). m

Proof of Thoorem 2. It suffices by Proposition 3.2 and (4.1)
to.prove that each polynomial A(X) € ¢[X] has a rational derivative 6,
with denominator a product of factors of the form g—1". We will prove
this assertion, making use of the formula ([7 [8]) (see Appendix (2))

(5.1) B2y = Y I (@)
2eh—1(z)
for almost all z & 0. :

Suppose first that h(X) = X*(e+a°g(X)) for n > 1,6 T, ¢ > 2o(n) +
.1 and g(X) e @(X]. Then for z 5 0, one sees easily by Hensel’s Liemamsa
that the roots @ of h(X)—z correspond one-to-ome with those of X" —z.
Tt ig clear further that any such root » satisfies [z = l#lx and b (2)ig
= Ina™g = [n|glelic¥". Thus, we see from (5.1) that 6,(e) = 8,(2),
where 8, is the function introduced in Section 2 above. By (2.14), 8, is
rational with the required denominatbor.

We now consider an arbitrary polynomial %(X) e ¢[X]. We cover
each point @ € @ with an open ball F, as follows:

1) I h(a) 5= 0, then P, is chosen go that |h{x){g iz bounded away
frorn 0 for @ e P,.

9} I h(e) =0, let hiz) = b, (x—a)*+...+ba{#—a)® be the Taylor
expansion of k(z) at a, n > 1, b, # 0. Let p = »(b,), and put P, = a-- @
where » = 2o(n) 414 u. ' .

Since O is compact, there is a finite disjoint subcover # of the cover
{P,}, and we have

(5.2) . 0 = D 6l P)

FPed

where 8, (2; P) is the Radon-Nikodym derivative of the restriction of &
to P. Thus, it suffices to show that each 6,(z; P), P «#, is rational with
denominator of the form g—i* X P = P, is 2 ball of type 1 above, then
8,(z; P) = 0 for all z with (%) sutficiently large. Therefore, Gp(u,?) for
B(z) = 8,(=; P) is a polynomial in % and thus certainly is rational with
the required denominator. If P =P, 18 & ball of type 2 above, then under
the change of variable a—>a ="z we find after a short calculation that

By(2; P) = g7 b (mT ),

where h*(X) =z~ "*h(a+»'X) s & polynomial of the form eonsidered
in the second paragraph. of this proof. Thus, 6,(2; P) is rational with
denorninator g-—1". &

Proof of Theorem 3. By a polydisk in ¢" we mean & set D whieh
is the r-fold product of open balls in ¢. Since an open ball in @ has the
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form &, +2°0 for z, € @ and v, 3> 0, each polydisk D is the image of "

under a simple affine transformation T'p with coefficients from &. Let -

he®[Xy ..., X,] and let 8,(2; D) be the Radon-Nikodym derivative
of % viewed a5 a map from D to &. Then a siraple caleulation ghows that
(5.3) By (25 D)
for oll zed.

Now let f be a form in 0[X,, ..., X,,,] of degree d. Let B denote
(generically) any subset of @°+! which is a product of m copies of U and »
copies of @ taken in any order, where m =1, =20 and m+n == g1,
Since each snch ¥ is a finite union of polydisks, we can utilize (5.3) in
ecomputing the derivative 0:(z; E) of f viewed ag & map from & to 0. We
will show that each 6,(z; ¥) is (s +1)-reflcctive, To that end, we assume,
without loss of generality, that ¥ = U xB, where B = ¢° ig invariant
under multiplication by units in I. We have then for & given L'-function g,

= |det T'p|xbpr,,(2)

X, ) 4%, . X,

fo(f(Xey ey
K

= f HETF(L, Xy ooy X)) dZy oo Ky

under the change of variables X,—-X; and X,—»X, X, for 2 i< 8-+1.
Therefore, f and the polynomial f*(Xy, ...y Xpua) = Xif(1, Koy oovy Xoyy)
have the same derivative on H. If D is a polydisk in ¢**%, then the poly-
nomial f*Ty, remains expressible as & product in which one variable ig
geparated from the others. We conclude from (2.19), Theorem 4.4 and
{6.3) that 8p.(2; D) is (s-+1)-reflective, Binee ¥ is a finite disjoint union
of polydisks, 0r.(z; B) and hence also O(z; H) is (8-+1)-refloctive.

Let Dy be the polydigk in 0°! which is the product of &1 copies
of a0, and let F, = 0***\D,. One observes by a simple combinatorial
argument that the characteristic function of the subset F, of @' is
a Z-linear combinvation of characteristic functions of the sets J. There-
fore, O,(z; ') = 0;(2) —0y(2; Dy) is & Z-lincar combination of the deriva-
tives 6,(2; B) and honce is (8-4-1)-refloctive.

We nexti compute Oy(z; Do) in torms of 0y(z). Wo have for g € TH®)

o F(Zay vy X)) Xy - AX
Do .

=7 [ g{n f(Eyy ey Kos)) 4K

@s

e dXB-i—l !

‘u:nder the change of variables X,--a-srX, for 1< s+1 Thus, 6:(z; D)
= ¢**~10,(n~%2), it being understood as usual that O(®) == 0 if # e K\0O,
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We see now that the funetion

(5-4) () = O,(2) —* 70, (n %)
8 (s-+1)-reflective.
From (5.4), we conclude for ce @, ¢ # 0, »> v(¢) and % e U that

[v(e)id) :

O ute) = 3 g Vgp(m sy, 4 gsdg),
==l

where [-] denotes the greatest integer function.

Thus, the function 6;(z-+e) is.certainly rational for every ¢ .= 0;
farthermore, the denominator of the associated rational function (2.9)
hag poles whick are to be found among the poles of the rational funections
associated by (2.9) to the translates of ¢ by the values nw*e, 0 < A << v(0).
‘We learn also from (5.5) that the branch points of f;are a subset of B, UL{0}.
Therefore, in order to complete the proof, it remains only to show that
Go{u, ?) is rational with poles all less than or equal to ¢! in absolute
value. But from (5.4), (]_.--q““‘”t‘z)Gﬁf(%, 1) = @G, (u,7). w

Proof of Theorem 4. Again by (4.1) it is sufficient to prove this
for ¢ = 0. Clearly (2.18), (2.19) and then Theorems 4.8, 4.4 imply the
result. m

(5.5)

APPENDIX. THE RADON-NIKODYM DERIVATIVE
(For more details, the reader should eonsult ['7] or [8].)

When % is viewed as a map from 0° to ¢ it has a Radon-Nikodym
derivative 6, defined almost everywhere on k(&) by
NEX = [ flz)0,(e)de

R(B5)
for an integrable function f on h(0%).

The p-adiec Change of Variable Theorem (whose proof was sketched
by A. Weil [10]) can be used to prove the existence of 6, and provide
a formula as the integral of the absolute value of an (s —1)-form over
a p-adic manifold. We define w to be the form

(BhJOX ) AKX\ A - NAX Ay Ao A X,

provided that the partial derivative iz non-zero. It is an exercise in differ-
ential geometry to show that ¢ on M, = {X e ¢°: h(X) = 2} does not
depend on i exeept for sign. ‘
TEEOREM. For all z ¢ h(S,), |
0,(2) = f o|g-

The Junction 8, is continuous at a,l'l such 2's and locally consmﬂt

2 — Acta Arithmetica XL.3
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CoROLLARY. It is immediate that, if 8 =1,

2 0, = 3 W@z
( ) Ma)y=z

g8 hat B (a) o
o P'Sxf'lfzft of th(ec))r/em. Let T < ¢* be an open and closed set conmu_nng
8. and congider h on the compact open get &*\T' = W. Partition W 11}1;(.»
allfinite number of disjoint open sets on each of which ab lea.a? one partial
is non-zero so W = \_JW; and let i, be the minimumm value of ¢ guch that

ohjeX, = 0 on W,. Lét H, be defined on W, by HA(X)_ = _TY ;:vl;gze ;Yi():: X,
except ¥, =h(X) 8o the Jacobian Jy of H .uln W : l.S oh /, P _.,:é H .
By the Implicit Function Theorem the a.mu_lyym :&r-fmsfmmatmg ; %1§
bijeetive on ¥, where {V} further partitions W into imitlely many dlﬁ]ou?t
open sebs and (suppressing the A's) has a local mr\re;rse H~1 also an :malytw.
trangformation mapping ¥ in H (V) 1;;) X = H(Y) where X; = ¥, for
j o= = ie., for j =4}
' "?E‘::L in‘?L‘ 'fqul(nﬂio(n 17" on (’)Js, th(:,1 Change of Variable Theorem gives

[ FEX)4X = | F(Y) |det T{H (D)) |F Y.
¥ (V)

Now
[Amx)ax = I 3w (XX dX
: W W F
] i ition of uni ' fig in TR (6%). Let I = fom,
hepe {7} is a partition of unity on {1} aud' fisin . :
:;rhere {ﬂiiers_}K is the projection of the jth component of K* onto K
so that f(h(X)) = F{H(X)).

Thus
[fpx)ax = > F()|detd o H (X)) |z 4T .
W 7 aiv) _
© Now by Tobini’s Theorem we can write the right side as -

&h -

1 .
T (H-1D)| ATy ... @Y @ g 4¥,
vy

]

L

N .
D srgay,

2] 1 | ' ‘ 3
where V' is the projection of V (ie., V’A).intollﬁf" which omits the ith
component. Since the sum. iy finite, (1) implies that

o o 4
00 (=) z% Vf 7 ()

for almogt all # in k(W) and & s viewed as & map W-— o ‘
Now, for z in R(W) the integral fiolg, where mt:egmtmn_ ig over
M, AW, can be evaluated to obtain the same resulf. This egtablishes the

]‘ g g ..
AT,y e ¥ @Y gy - 4X,

e

icm

Reflective functions on p-adie fields 247

formula above for almost all 2 in 2{W). Since the integral is well-defined
and continuous (see below) for all 2 ¢ i (T) it gives a continuous Radon—
Nikodym derivative for such 2. Let 67 (2) = [|w|z where the integration
is over M nW for any =z ¢ h(S;) and consider

(%) [Hm@)ax = [ o) flede

w N 112]
for a positive continuous funetion f on the compact set A{@*). The filter
of open sets T' containing §, bhas a countable base. The numbers corre-
sponding on the left side above, form a bounded upward dirccfed neb
of positive numbers.

So, by the dominated convergence theorem

im | 62 (2)f () e
TS, w(imy

exists.

The restriction of f to pogitive continuous functions can be elimin-
ated and the regult extended to all f continuous with compact support,
and hence to all integrable f, i.e., foh e L'(¢®). Thus by (%),

lim 67 (z)
T8y
is, in fact, the Badon~Nikodym derivative for all » ¢ A(S,) and is given

by the formula Iim [ jo|x where integration is over M,nW.
T8y,

For z ¢ h(8,) [ lolg is the resuls.
M,

The explicit gepresentation of 6,(z) as

2 J‘ ch -1

""——(Yn v Yoy 9(Y), Yi+17 “eey Ys}
T a1 K

X,

' &Y, _1dY, ... dY,
where ¥; — 2 gives the parametrization on each V of M, nW. It is clear
that 8; is Ioeally constant there since |6k /80X (Y} is.

In particular then, 6,(z) is continuous for 2 ¢ h(8,) and in I'{R(07)
ginee for f = ygu,

ar( DAY, ...

M!s)f)h(z)da: m,};{:dx =1, m
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ACTA ARITHMETICA
XL (1982)

Uber die Verteilung der Primzahlen in Folgen der Form
[firn+x)}, 1T

von

FrEDRICHE ROESLER (Minchen)

Es bezeichne #,, die Menge aller verallgemeinerten Polynomfunk-
tionen : .
i %
F) = ay*+ Y ay”
fuxl
mit positiven Leitkoeffizienten @, reellen g, und monoton fallenden
Exponenten %>k, > -..> k, > 0. In [2] war die harmonische Dichte

Die(P, f)(x) der Menge P aller Primzablen in der Folge [f(n+@)ln
definiert worden als der {nicht iminer existierende) Limes

i/n
DE;,,“(P, f)(’w") = lim 1< N, [f(n+2))eP .
N-reo E 1}"”
Ign<N,neP .

Diege Dichte hat die Higenschaft: .

SaTz. Fiir jede Funktion f aus F , vom Grad k> 12/6 und fiir fast
alle o (im Sinne des Lebesgue-Mapes) aus dem Imiervall 0 < o<1 st

Di(P, f)(2) = L[k

Diese Behauptung wurde als Satz 11 (ii) — und zwar fie alle f ausg
F,, vom Grad k> 2 — schon in [2], § 7, bewiesen, dort aber unter der
Voraussetzung, daB der Primzahlsatz in der Form

(PZ82) nly) = liy+0(¥ylogy)

giiltig ist, nnd die Richtigkeit dieser Abschitzung ist dquivalent zur
Richtigkeit der Riemannschen Vermutung. -

Satz 11 (i) in [2), § 7, machte eine &hnliche Dichteanssage fiir expo-
nentiell wachsende Funktionen f, und zum Beweis dieser Aunssage reichte
der schwichere (und bewicsene) Primzahlsatz

(PZS1) se(y) = liy +Ofyexp(—log?y)}.



