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Let ae () I; then
iwsl
s a1
{d"la"}e[a,——g—), no=1,2..

There are uncountably mawy such numbers since ab each stage in the
construction there are two digjoint choices for Ip,,.

Reforences

(1] M. @. Lggleston, Seie of fractional dimension whiol otcur in some probleme of
aumbsr theory, Proc. London Math. Soc. B4 (1951-52), pp. 42-93.

2] P. Lrdos, Problems and vesulis in Diophantine approvimations I, Repurlition
Modulo 1, Leoture Notes in Mathematios, Vol, 475, Springer Verlag, New York
1975.

(8] B. de Mathan, Sur un probléme de dengité module 1, C. R. Acad. So. Paris,
Series A, 287 (1978), pp. 277-279.

[4] — Numbers contravening & condition in density moedulo 1, t0 appear.

[6] C.A. Rogers, Haunadorff meoqsures, Camb. Univ. Press, . 1970.:

[6] R.C. Vaughan, On the distribution of ap mod 1, Mathematika 24 (1877), pp.
135-141.

[71 1. M. Vinogradov, On an calimate of trigonomelric sums with primé nwmbers
(Russion), Tzv. Akad. Naok B88R, ser. matb. (1187) 12 (1048), pp. 226-248,

ILLINOIS 8TATE UNIVRRSITY
Normal, INinois 817061, USA

Received on £0. 2. 1979
and in revised form on 24, 9. 1978 (1137)

ACTA ARITHMETICA
XL (1982)

On a result of Littlewood concerning prime numbers
by
D. A. GorpgToxN (Berkeley, Calif.)

1. Introduction. We define

(1.1) p(@) = > A(n)
nw
where
(1.2) 4(’"’) _ {log;p, ) m—»pm.,p prime, m integer > 1,
0 otherwige.

The primne number theorem ig equivalent to.
(1.3) p(@) ~x (a8 @->o00).

Agsuming the Riemann Flypothesis (the RH), we have the more precise
resalt :

(1.4) p(0)—a = O(a"logs)
and, on the other hand, we have (withoot hypothesis)
(3.5) p(@) —z = 2, (x"*logloglogew).

The result (1.4) is due to von Koch in 1901, while (1.5) was proved by
Littlewood in 1914 (see [4], Chapters 4, 5). Presumably (1.5) is mnearer
to the truth. The basis for these results is the explicit formula for y(w):

pl@+0)fy@—0) ® 1 _
(1.6) - '—'“’“'ZE —% (0)—5 log(1 —o™)

L3

the summation being over the non-trivial zeros of the zeta function,
¢ = f-+iy. (The RE allows us to fake f = 1/2.) The series in (1.6) is
neither absolutely nor uniformly convergent, and is understood as

i , a?
E — == Hm . M’——.
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For applications it i3 often useful to replace (1.6) by a formula due
to Landaun ([6], pp. 108-120, [1], Ch. 5): For % some abhsolute positive
constant,

+logx) (x=3,y=8).

2 zlog?z glo
(L. ‘w(m)-- ~—<Fc( £ -

o+
Y

irl<w

If y 3= o' loge, (L7) implies (5 an absolute congtant),

e
(1.8) ‘w(w)—-—mn}« —i< Katloge (w35, ¥ o logw).

|¥l<y

Agsuming the Riemann Hypothesis, Littlewood proved in [7] that
the condition > #*loge in (1.8) can be replaced by y > o™ In this
paper we show, again assuming the Riemann Hypothesis, that we can
take y = &V*[loga.

This light improvement allows ug to give a simple proof of a result

due to Cramér in 1919; assuming the RH, and letting P, denote the nth

prime,
(1.9) Dups — 2 = O{pifflogp,)

(see [2], [3]). Our proof is similax in principle to the proof given by Ing-

bam ({5], p. 266), but proceeds more directly to the result. We also give

% simple proof of the closely related result, assuming the RH, h < w,

h h
logz’  o"loga

~»00  af $->o00.

(1.10) @ (@-+h) —m(@) ~

Here .n;(m)' is the number of primes less than or e¢qual to . This result
was stated by Selberg [8].

2. A lemma. We nced a lemama due to Littlewood [7].

LovmA. If |2] < 1/2, (mez|< 2, then

(L 2Y® —1 —maz| < 2.6 |m|{|m]-+1) |}

Proof. Leb |¢| =r, |m| == u, and we may supposé #>0, u> 0.
We have .

_ ‘ (12" —1 —me

= ml{m D) Simm D on
¥i(

= wlp-+1)n!

1 pp L) . Aptn—l) L, A==l —pr
.u(.“+1 Jwl - #(p+1)re

fimmg

b
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‘With ¢ fixed, the second to last expression clearly increases with Hy amd
so is maximum when py = 2/r. Thus we have
(L—r)"%r—3
2(24)
This last expression is strictly increasing for 0<<r<< 1. To mee
thiz, we differentinte and obtain
1 [[2r2log (1 —r)+ 201 (L —#) 2 (2 1) ~1] + _3 .
2(2 - r)E(L —r)" 2(2 )

==

Expanding log(L--») and (1 —r)"? into power series (valid for 0 < ¢ < 1)
and muliipling out shows thiz expression is positive. Since 0 < r < 1/2,
wo conclude ~

(L—B)y*-3 16-3

é == = . .
T 2(2.5) 5 26

J. The main theorem. Throughout the rest of this paper we will
aspume the Riemann Hypothesis. Thus the complex zerog of (s) are
¢ = f--dy =% -+iy. We denote by 6 a number satisfying 16] < 1. The
number denoted will, in general, be ditferent for different oceurrences
and may depend on variables, Most of our formulas will hold *for o suf-
ficiently large”, and we will denote this by %o > A", where 4 iz sorwe
positiveé absolute constant which may differ on different occasions.

TemoreM 1. Assuming the Riemann Hypothesis, we have

(8.1)

(@) —m- Z l< -+ 24 logy, @3> 3, y>A.
I7!<u
In pariicular,

. o

(8.2) Cop(@) -2 = — Y — - 0(x"logw)
%)

uniformly for y = 0" logm, v > A; and

. /0
P(@) —w-|- 2 z < 1.5 loge, w> 4.

2] <M floge

(3.3)

Proof. Let v, (x) fa,u ydr., The explicit formula for v, (») ig, for
o=l,

P . oy gt ,;-* e
Su d B e e D ————————— o
B4 @) =3 = et 7 7 O+ er(2r—1
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(see [41, p- 73). Let % be a function of & such that L < k< 2/2. Then
pu(@ L h) — . (a) '
4=k
m:l_h)9+1 — gt +1 Cr )_F §.1 (m:bh)l—‘lr_wl-w
*3 2 elo+1)( L) ¢ had  2r(2r—1) )
Now E— (0) = log2n < 2'; and for a3,
Legr _ l-2r e el X
:F} Y (@ h) % < @7 (2+1) < ¥ [__E b 1]
k 2r(8r —1) lmd Dp(2r—1) L | 2r O 29 —]
roul rw ], P ],
Hence for o= 3, L h<m/2,
p@h) —p@
(3.5) ) i
b (@ o BYETY (20 h)ett — gt ¥
=g s — D e To s e e o
& |Z o{o+1)(:h) 2 ele+1) (k) ’
¥l <y =y _

where K depends on # and &, and [K|< 3.
We have {without hypothesis)

'11 - 1 1og1' .
T€ :J;E -2-—7-‘: T “’{"“O(T) (1!8 T—)—OQ

(3.6)

{see [4], Th. 25b; an argument like the one on p. 98 gives this vewult),
The second gum on the right of (3.5) is in absolute value

gnfz 1) g 1 6% logn 2 1oen,
< SETAUT BT gL S o)< T
¥ v amy vy
Ivl:a-u Ry
for > 4.

Weo have uged here b < 2/2, (3.6), and the fact that the zeros of {(8) are
symmetric with the real axis. Next, tho fhwst sum in (3.5) is ogual to
007 N @R et (g A1)t

ole-+1)(£h)

: 4
17l <y Iri<y _
Denote by w, the general term of the seeond sum. Thus

s [ (L +hfw)t —1F bfe(e-+1) ]
(@ -+L)(LA) '

Wy =

icm
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We now apply the lemma takmg # = J=hjm, m = o+1, and impose the
condition

(3.7) y<alh.

The two conditions of the lemma are thus satisfied, for |2| = hjz < 1/2,
and, since |y| < ¥ in our sum,

lme| = lo--1l(k/2) < (3/2-F|p|)(hlz) <

(3/2+y)(hjo) <341 < 2.

Therefore,

2 2:610+1] (lo-+11+1) (hfa)*

le(o+1)(Eh)

e +1|-+1
lel

< 2.6~ R (1--1[7) < 307 '*h,

o] <

= 2.627Y2h < 2,627 R(1+(2/le))

sinee 1/lg] < 1/ly| < 1/i4.
Let N(T) denote the number of zeros of {(s) with O< A
{without hypothesis)

< 7. Then

) ) T T T _
and consequently
r
(3.9) N(T)<2—log1’ for T>=>A.
™

Returning to our gmg,

- - ¥, -
‘ — Zwa i Z 1< Bhy™ ' (é—;logy) < g™ hylogy,

yl<y b<y<y

for ¢ > 4. Combining these results in (3.5) we obtain

Py (@ = B) — (%) #**logy —15 x°
q0) BRI TR wpd o o 0,0 hylogy — M —
(3.10) 5 :L 0y = g 0w hylogy D)
ly|<y
for y> 4, o3, 1<h<s/, and subject to (3.7). (The term K was

awhgorbed into 0 m””lng__,y fhy sinee wo rounded up to obtain this estimate,
and by (3.7) this term is = 0w'2.) The 0’s depend on o and h, and will be
different in the cages -+-h and —h.

Sinoo 'q)(w) ia nomlurmsmg, wo have

Pu(o—h) —
—h

. m—t—h ~h—- X
%()m% J p(z)dr < pio) < J qp(rdrw——(ﬂtﬂ%ﬂ—).

o~k
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Hence from (3.10) we obtain, subject fo the same conditions,

3121, h
<T08Y L iyiogy + 7

(3.11) o

i
pla) - Dl
i<y

Oompzhring the first two terms on the right, we choose hy == @. Thus (3.7)
is satistied, and we Dhave, for y > 4, @23,

a0
() —a-{- 51 ME

<2 120 l0gy.

praes 2y

Inf<y

This proves (3.1). .
We now pick a'flogz <y< e and obtain

- 2
y(@w) —2-+ E m—g— |< % R loga -+ 25 logs = O(aloga).

l7l<y

For y > o Landsuw's result (1.7) implies

4
p@—at 3= = 0flog's) (y>03>3).

[Py

Equation (3.2) now follows. _
Tinally, sctting ¥ = o /logz in (8.1), we have, for » > 4,

- anld
wle)—o+ . >7 < 10" logw + 24P loga'® — 20 logloga< S0 loga.
vl -
19 <M logx ¢

4. Application to Cramér’s theorem. Ag a simple consequence of our
theorem we have

Trmoruy 2 (Cramér). Assuming the Ricmann Hypothesis, we have

(4.1) w(n-h BePloge) —x(w) > @ for a> 4,
and .
(4"2) Praa — P < 417}1:,210@1711 j"o'r =

Proof. Tn what follows wo suppose o is sufficiently large, und will
not indieate it aguin,

Tt 1 < & < /6. Replpeing @by @ -+ in (3.1) and taking y== 2**/loga,
we have :

{w~+M)logw
QM

porh—@rmy 3 2 (a-+ 1) Tog (@)

Iyl <aMlogm :
< a'loge - [$1PPaMMogw < 1.Ta?logw.

icm
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GOmi)ining this with (3.3) we have

. & - k)Y —gt
(43)  plath)—ple) = h- SR P PPRTS I
Iri<zVloge
Since
w-{—h @], &k
( ) - f ot {y < m—mh’
e g ‘
(4.4)  p(@ . k) —p(x)
= 4 O~ 12p, 2 1+ 8.2600"loge
: il <alfflogs
1 g '
= k~}—26m"1’2k[§7-t Togs log(2** /logm)] +3.26" log
by (3.9),

oh
=Bt 43.200"oga.
+2n +38.20%log s 7
Thug, taking % = Bz'*log®, woe have .
{b
(4.5) (2 balogw) —w(ws) > bu'*logw — (-2— +3.2) #'?loga > x'*logz.
T

Finally, we have for 1<k e ([w] = integer paxt of w),

logp I‘log (w4 h)]) .

(4.6)
logp

wlo-b) —y(z) =
B sat-h

103p+0( 2

Pt b

= 2 (logz+O(1)+0 ( 2 10g2w)
xCpEBti Pl
= {m(o+h) —n (o)} {loga-- O(1)} + O ("*).
Combining (4.5) and (4.6) proves (4.1). Next, taking &= 40'*loga in (4.4)
2IVES ‘

(4.7) p(@ - 42" logm) —w(w) > 1a'loga > 0.

Hguaation (4.6) now- implies oe(w-+dwlogw) —om(w) > 1o > 0. Taking
D == Py WO KOO Py — Dy < ' loge = dp; logp, .

The constants in (4.1) and (4.2) can be decreaged. The b in {4.1)
may be replaced by & number lesg than 4 and the 4 in (4.2) by a number
less than 2. Tt is interesting to compare this with the conjeetured result

(I81)

(4.8) p(@+B)—p(@) = h+ 0, 1<h<o.
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We can give an easy proof of the best result known in this direction,
" agsuming the RE. It is stated in [9]. _
THEOREM 3. Assume the Riemamn Hypothesis. Let b be a function
of @ such that (i) h<w, (ii) b is monotonically inoreasing, and (iii) A f{a**log )
00 a8 &—>o0. Then

(4.9) pla+h)—p(z) ~h
and
(4.10) (w4 b) —nlz) ~ hiloge.

Proof. The two assertions are equivalent by (4.6) and (iii). Thus
we ghall prove (4.9). Let ¢(2) be any function guch that p(w)-oo ag g->o0
and g(x) = O(logx). Then by (4.3)

Y (@ -F by —af
wlw+ k) —p(w) = }"“2)1 me——";

where 3 is summed over |yl < 22 J(logw)p(®), and D), is summed over
? (loga)p () < |y| < #"* logz. Handling ), as before,

i wlm ﬂ;l,’ﬂ
v(@+h) —p(@) =kt 0 (’“” (W)‘“g(uogwi%’(ﬁ))) "

+0 (mm Zn -35) 4 0 (& log @) .

R_.mt
_ Z’ﬂ @iﬁ)w._ﬁ_ - O (#"*1og x),
@

Since (see [4], p. 98)

41 A ,
(4.11) Z - = - log"T +0(log 7),
0y
we obbain
b
b)) — w-=h+0(-—-——)-l-u
plw--h) —p(w) @

+0 (w’{zl;é (loga™ —loglog #)? wf,; (loga™® —loglogw —~log p(m)f +

+0(log m)}) 0@ loga)
I ' .

mh+0@W)

) + Ofa*® (log@)(logp (@)} + O(&'loga) .

Hence,

(412)  plo+h)—p(@) = h-l-o(i

; (m)) + O(w”“ (log ) (l.ng(p (w))) .

icm
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We obtain the theorem by picking b larger than the last order term, i.e.
b= o' (logm)p(x).
We note that by (4.4), K any positive constant, and > 4,

(4.13) [E(1~1/2n) —3.2]0" logew < p(w+ Ka'2logx) —u(2)
< [E (14127 4-82]x"loge.

It scems to require new ideas fo replace (4.13) by an asymptotie result.
The above proof shows how Theorem L must be improved in orvder to
obbain new results om primes in ghort intervals. Let g(2) be any funetion
monctonically increasing to infinity. Then the result

;]

,],.1;'..

2° i
4.14) pB)—0 = — — - O[EB({2)} wiformly for o >»———o
‘ ) V> logarp@’

<y
@ > A, implies (with RE) y(@+h) —9(@) == b+ O{hjp(@))+ OB (@), 1<h
<®, ©> 4. This gives (i) wle+h)—yp(®) ~h if h/E(z)—>oc0 a8 z->co
and (i) P,e1—p, = O(E(p,)). When y ~ 2 /loge the terms in the sum
in (4.14) are O(logw). This, together with the cancellation between terms
in the suro makes it seem reagonable that F(z) is smaller than in Theorem 1.
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