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L. O(/p) and Q(V/ —p)

1. Introduction. Throughout this paper p denotes & prime congruent
to B modulo 8. We set p == 81--5. The fondamental nnit (> 1) of the
ring A of integers of the real quadratic ficld Q(V/p) is denoted by &,-
Weoe have .

{1.1) &y = ’}(t "HH/P):

where ¢ and » are positive integers satisfying ¢ = v (mod 2). The norm
of g, i —1 80

(1.2) Fepu? = —4.

We let 9, be the fundamental unit of the subring B of A of integers
of the form a-kyVp (2, ¥ & Z), that is, 7p 18 the smallest power of g, in B.
Tt is o rvesult going buaek to at least Dirichlet ([13, p. 249) that
ep, T e o= 0 (mod 2),
K g it f o= oss 1 (mod 2),

Fix

(1.3)

and that the ideal class mumber of A, written h(p), is related to the ideal
el nunvber of By, written & == k{p), by
l3h(p), B 0y ==

8

(l-“:l 7{; e .
) hip), it o, =gy,
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It follows Immediately from (1.3) and (1.4) that
{1.8) PP =

It is well known that i{p) (and thus k) is odd.
As 7, € B we have

(1.6) iy = T+ UVp,
where T+ UV;E is the least positive integral golution of
.n T epU® = —1,
and T, U are related to I, w by
T =12 U=l it t=wu=0(modd
(15) 2, 2, ( }s

T =¢+3)/2, U=uwu{f4+1)/2, i
Taking (1.7) modulo 8 we see that
(1.9 I == 2 (mod 4},

bo=a o= 1 (mod 2).

and that U is odd. Clearly sll prime fuctors of 7 are congruent to 1 module
4, 80 that U == 1 (mod 4). Thon, taking (1.7) modnlo 32, we obtnin
{1.10) U oz 4l -1 (mod 16).

Now we leb I = h(—p) denote the eluss nwnber of the imaginary

quadratie ficld QY _:3"7). It iy well-known that A = 2 (mod 4), as p == 5
{meod 8).

It is the purpose of this paper to relate the elags number § modulo
16 to the clags number % and the integer 7. We prove

TegorEM 1. If p is a prime congruent to 5 modulo 8, then:

(1.11) heo= Tk (mod 16).
The eongrucnece
(1.12) b= Th {mod §)

bag already been established by one of us [11] in notation invelving h,
h(p) and t. The congruence (1.12) will be reproved in thiv puper in o dif-
ferent way and wse of it will be wmunde in proving (L.11). The proof of (1.11)
follows the ideas of [9] bub with considerable differonce in details. The
congruence (1.11) can be expressed in the equivalent forra
Ik = T (mod 16),
- and this is analogous to the congruence obtained in [9] for primes p =1
(mod 8), which can be formulated
bl == T'+p —1 (mod 16),
since the clags numbers of the rings 4 and B coincide when p = 1 (1uod 8).
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Before starting the proof, we mention that in the seecond part of
this paper we will prove an analogous formula modulo 16 for the class
numbers &’ and & of Q¥ —2p) and Q(¥2p). (See Theorem 2, Section 9.)

To prove Theorem 1 we will make use of Dirichlet’s class number
forwulas for A(p), h({ —p), and A( —2p). For h{p) we usc:

(1.13) Vpep® = [T(1—g,

where g o oxp (2w fp). (A & sign under o product (or a sum) symbol will
always indieate that the product (or the sum) is taken over those integers
J satisying 1< f < p—1 and (jip) = +1.) Formula (1.13) is proved in
[10], Lemma 1, the square of (1.13) appears in Dirichlet [2], p. 494. From
(1.5) and (L.L3) woe abtain

pﬁlﬂn.:'; — H (1_91)3_

(1.14)

Tor h(—p) and h(—2p) we will use the following formmlas ([1],
™ 237635 [2], p. 493):

(1.15) b=z h(—p) = 2(8,+8,),
(1.16) b= h(—2p) = 2(8,—8s),
- where
.
(1.17) §= > (i), §=0,1,...,7.
ipfe<a<(+yp/s \ P

2. The polynomials G (z) and @_(z). Formula (1.14) suggests intro-
ducing the pelynomials

(2.1) @) = [[ o, 6_() = [[z—07p.
.|. —
With this notation (1.14) can be rewritten
(2.9) ¢_(1) = p*op.
Setiting
1
(2.3) ) = [ o) = G218 (),
Jean
and noting that :
(2.4) G(1) == p® = G (LIG_{1),
we have (s & iz 0dd)
(2.D) G.(1) = —p*nif,
where 7, == T—UVp = —1
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Wext, as in the proof of Lemmu 2 of [9], we obtain
G (1)Gy (1) = G (1),
from which we dedunce, by appealing fo (2.2) and (2.5)
(2.6} Go(~1) =g, G_(=1) = .

Trrther, following the proof of Lemma 3 in [9] we obiain, nsing here
(1.15):

(2.7) Gy (0) = —einy, G_() = —sing,
where
(2.8) g == (=)D
We note that
(2.9) h = 2¢ (mod 8), e = 2 (mod §).
We also note that, if o = exp(2ni/8) = —}-'5}/1/5 (so that w? = 4,
w = -1, w-{»cos—m/z w—w = }/2 then:
(2.10) G, ()G — w0} = G, (i)
follows easily from the definition (2.1), ns p == b (mod 8). Finally we

obgerve that

Ykl = T+ OVpYih- 3(T — OVp)*

and
D) = e (T TV ) — — (T~ TV}
2]/ y]/p 2l/p
ave rational integers. Morcover, as & is odd and T = 2 (mod 4) we have:
(k—-1)f2
%( }_n]n) . Z (%‘—I- )T“'l(pUz)”‘"l)lz"“

s ol (pp T2 |-( )Tﬂ(pm)(’f-m (wod 16)
= KI5 44 (1) 7 (mod 16)
= LT (2% —1 2% (& —1)} (mod 16),

that is '

211y %(np+ ¥} = &7 (mod 18).
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Similarty we obtain

1
{2.12) ?V—_ ny—my) = U = 4141 (mod 16).

3. The polynomials ¥(z) and Z(z). The polynomials [](z— of) arve
&

each of degreo L(p 1) = 4142 and their coeflicients belong to the ring
of integers of Q(}/;p). Tt follows that G, (2) and @_(2) are polynominls
of degree 121-- 6 which can be expressed in the form

(3.1) Go(2) = 3 V(@) —Z()Wp), G_(2) =} T(e)+Z(=)Vp),

where ¥ (2) and Z(g) are polynomialg of degree at most 12146 with

ational integral cocfficients. From (3.1) we have
1
75!
Tt is opsily deduced from (2.1) that for 2 # 0
UG, (1)s) = G, (2),

(3.9) Y(2) = G (2) 4G, (2), Z(e) = G_ (2} — G ()

so that by (3.2)

Y (L]e) == (o), HHZ(1fe) = Z(2).
ence the cocHiciont of 2% (0 = 0,1,2,...,614+2) in ¥(2) (resp. Z(z))
is the saine af that of ¥4, Using (2.2), (2.5) and (3.2) with 2 = 1,

wo see that ¥ (L) and Z(1) are both even. Hence the middle coefficients
rthe coclficients of %) of ¥(2) und Z(2) are both even. Thus we can. set

61-+-3
Y(z) — Z‘ aﬂ(zn + ,,512l+6—u),

(3:8) 6113
Z(8) == Z b, (" H%__zlzl-i-ﬁ-mn)’

fpma )

whare the a, and b, are integoers.

Wo now state three relations between the polynomials ¥ {2), Z (=) and
their derivatives (equations (3.4), (3.5), (3.10) below), which we will
ke ngoe of lader. The first two of these are trivial, the third is an extension
of n result of Liouville [8].

From (3.1) and (2. i‘») wo have (eb [4], p- 427)

(3.4) Yi(e) —pZ*(2) = 4G (2),
and by differentiating (3.4) wo obtain
(8.8) Y () X' (2) —pZ ()2’ (z) = 26" ().
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Taking 2 = o in (3.4) and (3.6) we obtain
(3.8) Y {w) —pZi{w) = —200—28i—20wi,
(3.7 Y(w) ¥ (0)—p4(0)Z (o)
= (81 —9p) +21(1L —p)w —21 (L + p)w* —(BL -+ 9p)w’.
Next we introduce the polynoniial

1
(3.8) H(2) = Z(%) &L,

=l

Using the Gauss som
i i — v
; o= =V,

we eagily deduce the following partial fraction decomposition:

K(s) 1 1
(3.9} 2?1 Vp = 2 fa—gf'_—z r—0

+

Since by (2.1), (3.2} and (3.9)

, .2 66/ 1 1
Y- Y7 = 6. =
7 (¢, 6 —G, &) 2 — ;' )

we obtain
7] ’ z_’p '_'1 2
(3.10) YZ—-Y2 = G-E(-;-_w-_mim)—)gml\f(z).

In order to apply (3.10) with z = ® we must first evaluate K(w).

This is done as in the first part of § 7 of [9]. We have

wr- Sl - Sl

g=1

For § == 0,1,2,...,7 we st § == 8r—j.
As 1< 8r—j< 8l+5, we have

re=1,...,1, for j=0,1,2,38,
r=1,...,8+41, for §=4,56,0,7,

8r —j - (2 --1)
Then, as ( ?” )m( Gy )’), we find that

»
1
(o) = — 3 o'
Jma0
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whero

[4
1 2 - (20414 .
Z(__i._..__):l)’ V) =07112135

T o] _fp
S NP F(21 41
3 27 -+ (21 4] . .
Z('”’MMJ)’ e d4,5,6,17.
eyl p

Noting that, with definition (1.16), §; == 8,_;, we find that
~8, J=10,3,

=81, §=105,6,

,'j e
“’Szn .? = 1: 29
_Saa 7 =4, 7,
go that
(3.11) Hlw) = {1 M (8, —83) 4 (- 0?) (8, —8,).

Now it hag been proved by Gauss and Dedekind ({31, p. 301 = [4],
p. 694), a8 well as by Dirvichlet ([2], p. 498}, {ef. also [5]) that:

(3.12) A8y == —h-W; A8, = 3h—h; 48, = —h—W.

As 8, e= 1 (mod 2) and 8y - 8, == 1--L (mod 2), each of these relations
proves the well-known result:

(3.18) B = k41 (mod 8).

Using {3.12) in (3.11) we have (as 83+ 8-+ 8+ 85 = 0):
2K {w} = —2h{w-+w?)+b (1+ o+ o+ of)

from which we deduce, after changing e into —w:

(3.14) 4l = K (@)L — o+ o+ w¥) - K(—o)(1+o+w®— o),

(8.15) N e K(w) (1 —w)+-K(—o)(d+o).
Taking ¢ - - in (3.14) and (3.18) we find:
(3.18) 12k o (B{L 0% —To) (¥ () E{w) — Y{(0)Z (o)) -

(B (L 0) FTe) (Y (— o) 4 ( —w) — ¥ (—w)Z'( ~w)),
(3.17) 128" == (T(1-f 0¥ —10w){¥' (@)% (@) — X ()2 ()}
o (T (L 4 0% -+ 100) (T ( — @) Z( —w) = ¥ (=) Z'( —w)).
Both expressions (3.16) and (3.17) have the form: |
H = {a(l+ of) —po) (¥ (@) 4 (w) — Y () Z () + ()" (),

where { )~ iy the same expression with — o ingtead of e.

*

4 — Acta Arithmetles XL.4
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In Seetions 7and 8 wo will find (see (7.30) and (8.29))
Y (0)Z (o) — ¥ ()Z (0) = a(l —w)-}bo?
with the expresgions for  and o depending on the parity of 7. Then, clearly;
{3.18) o H = daa 4205,

4. Congruences for the coefficients of Y (2} and Z({z). We bogin by
introducing the following notation. Whenever we wiife >a,, ., it will
be understood that ¢ and f are fixed rvational integers such that 0 = f<C e
and that the variable of summation # varies so that 0 < en - f < 61--3.

From (3.3), {3.2), (2.2), {2.5), (2.12), we have

2t = FT(1) = H{E_(2)+6,
that is

1)) = 3"Vl —mf) = p*(41-11) (mod 16)

(4.1) D) @, = 41+9 (mod 16).
Similarly we obiain
(4.2) E b, == b (mod 16).

Bimilarly, making use of Y (—1), Z{ —1), ¥ (¢) and Z (i), we obtain

(4.3) D) @ (—1)" == 9 (m0d 16),
(4.4) D78, (—1)" = —2T% (mod 16),
(4.5) D Gy (—1)* = ek (mod 16),
(4.6) _ Db (—1)" = —e(4l-+1) (mod 16).
Adding and subtracting these congrucences appropriately, wo got
(4.7 Dty == 2041 (mod 8),
(4.8) S’ ﬁ:: — (tmod 8),
(4.9) D) 8y == 21 (100dl 8),
(410) mel = 2% ea sy,

Tl
(4.11) Za,mﬂ =1——— (mod 4),
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2e+Tk
f.? ——-(—i:i———l (mod 4y, if I odd,
- 4
(412) Dby, =
et (24 T) iy
— T (l'l'l(}d ‘j:) 3 if 1 even,
Vir
(4.13) Z“’“’«“ =] iz““ (mod 4),
(Ze —T'E)

g+ —— (mod 4), i I odd,
4
(4.14) Bipin =
2 4n-3 (28—-1’]{})

(mod. 4), it 1 even.

5. Evaluation of ¥ (o) and Z(e). Taking z = » in (3.3) we obtain

(5.1) Y(w) = L+2Mo+( =1V Li+ 2N wi,
(5.2) Z(w) = I 4+2M o+ 1V Li+ 28 wi,
whoere

(5-3) = Mg (1" 4 (17 Y Gy (=)™,
(5.4) M o= 34 (=17 b (1),
(8.5) N = 31 (1)) 3 @i (— 21"

L', M', N are defined as in (5.3), (5.4), (3.5) by replacing a, by b,
(equations (5.3), (b.4), (5.5)). Cleaxly

M=M =0, i
N =N =0, if | odd,

I even,
{5.8)

snggesting that we treat the two cases I odd and I even separately.
Oase (1): 7 0dd. ¥From (5.1), (5.2) and {5.6) we have

(5.7) V() = L--2Me--Ii, Z{o) =L -+2M a-L%.
Appealing to (3.6) we obtain

(5.8) T2 M —pL? —2p M’ = —14,

(5.9) LM —pL' M = —3.

Further using (2.7), (2.10), (2.11), (2.12), (3.1) and (8.7), we geb
(5.10) IF—Q M pL* —2p M = —2:Tk (mod 32),

(5.11) LI —2 MM = e(dl-+-1) (mod 16).
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Finally we have
L= Y (1" + 3 tys (—1)" (by (5.3))
= Zam—k Z%mw (mod 2) == Zam mod. 2),
=1 (mod 2) (by (4£.7)).

Similazly we obtain L == 1 (mod 2) and M = 0 (mod 2). Then, appealing
to (5.8), we get M’ =1 (1110(1 2). Bumwmarizing we have

(5.12) L=L =M =1{mod8), M =0(mod2).
Oasge (il): I cven. From (0.1), (6.2) and (5.6) we have

(6.13) Y(w) = L—Li+2Nwi, Z(w)=L —Lii2N 0.

Appealing to (3.6) we obtain

(5.14) D+ 2N —pL'? —2pN'"* = 14,

(5.15) LN —pL'N' = —b.

Further using (2.7), (2.10), (2.11), (2.12), (3.1) and (5.13),

(5.16} L' —2N24 pL® —2pN"* = 2:Tk (mod 32},

(547 LL 2NN = —s(41-1) {mod 16).
Ag in the case when I is odd, we obtain

(518) L=L =N =1(med2), N =0(mod?2).
It is convenient to note here that

(5.19) I? =3 —eTk (mod 16), it 1 is odd,

and '

(5.20) L? = —1 —3eTk (mod 18), if 1 is even,

follow from (5.8), (5.10), (5.12) and (5.14), (5.16), (5.18) resnoctively.

6. Proof of % = T% (mod 8). We consider the two cases.
Case (I): T odd. Frow (4.12), (5.4) and (5.12), we have

= M me 41 7= =3 2e-- Th) (mod 2),
80, 08 2z = h (mod 8), we have
Th = —28~4 = 2¢ = }h (mod §).
Case (ii): 1 even. From (4.14), (6.5)" and (5.18), wo have
0= = by = 326 —Tk) (mnod 2),

il
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50
Th = 2¢ == } (mod 8).

We close this section by noting that the congruence b = Tk (mod 8)
enables us to obtain from (4.11), (4.12), (4.13), (4.14):

(6.1) Dy = 1—1 (mod 4),
(6.2) Eb,w_i = 1 (mod 2),
(6.3) Magys =141 (mod 4},
(6.4) Dbyuis = 0 (mod 2).

7. Proof of % == Tk (mod 18), Case (i) :1 odd. Differentiating (3.3)
with respect to 2 and setfing 2 = o we obtain

(7.1) Y () = 3P +2Q0 -+ 8Ri +48wi,
(7.2) Z' (@) = 2P +2Q 0+ 8R"i + 48 wi,

where P, @, ..., § are integers given by the following formulae:

(7.3) P o= (61-3) ¥ aya (—1)",

(7.4) Q = 3 ({6143 —2m) agp + (2m 1) Gy ) (—1)",
(7.5) R = Z(m—ﬁ)amm—l)m,

(7.6) B = 3= My — (81— A1)ty a) (—1)",

and P, Q',.R', 8" are given by the corresponding formulae (equs. (7.7)—
(7.10)) where each a,, above is replaced by b, . We note that (6.3} and (6.4)
guarantee that B and B’ arc integers.

Treom (5.4) and (B.4), wo see that
(7.11) P o (GU83)M, P o= (614+3)M,
and, from (5.3) and (6.3), that
(7.12) Q = 284-(61+3)L, @ =28 + (61+3) L

These two aquatmns show that, of the quantities P,Q, R, 8, P, ¢,
R and &, we need only consider B, R', 8 and 8. Tt will ,suffme to, cletel—
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mine them modulo 2. From (7.9), ag (2m+4+1){—1)™ =1 (mod 4) and as
311 is even, we have

2R = 3(@m-+1)(—1)"bimes — (BIH1) X By 1"

25 ~Tk
= Zbd,m-!-s ”‘(3l "I‘l)Zb'Lmn}-a = 32 btmn-s—ﬂ =1 (2 I ( 4 ”)"') (1110(1 4):

by (4.14), that is:

(7.13) B = 1-+3(2e —Th) (mod 2).
Similarly we obiain
(7.14) R = }{141) (mod 2),
(7.18) 8 = }(L+1) (mod 2),
Tk
(7.16) 8 = I —«l)—}—(zf )(mod 2).

We will now show that
(7.17) 8 = 8 (mod 2).
From (5.11) and (5.12) we have
L4+ —1 = LT = ¢(mod 4).
ITence, from (7.15), (7.16) and the result Tt = 2¢ (mod 8), we have
{2+ Tk) |
4

Next we replace ¥ (w), ¥' (), Z(o), Z' (o) in (3.7) by the formulae given
in (5.7), (7.1), (7.2) obtaining (in view of (5.8) and (5.9)):
{(7.18) : 2LR +2M8 —p(2L'R +-2M'8') = 819,
(719 BMR--4LS —p(BM'R' 4-4L'8"y
== (6] 8) (L —pL'*) — 48 —361.

We have used (7.11) and (7.12) to climinate P, P', @, Q'.

The next step is to wge (3.9) and (5.11) to obtain L' and M in terms
of L and M modulo 8. Wo get:

8+8 = I+ + = §(1+¢)+ 42 +26) = 0 (mod 2).

(7.20) I = 8eL--2M (mod 8),

(7.21) = —3L--sM" (mod 8).

Using (7.18), (7.14), (7.16), (T.17) and (5.12) in (7.18), wo obtain
(7.22) AL = 44Tk —2 (mod 16). ‘
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Next using (6.19) and (7.20) we obiain

(7.28) L} —pL'? == 8+ 4L’ = 4L+ 4s M’ + 8 —4e (mod 16},
Writing (7.19) modulo 1.6 we obtain by using (5.12), {7.13) and (7.23)
(7.24) 4(LS—I'8") = 4L -4 M" 62 — 41 — Tk (nod 16).

As A(L4+I)(8~8") = 0(mod16) by (5.12) and (717), (T.24) gives
(1.25)  4(IL'8—~IK') = —4L —4M’' —Be+41-- Tk (mod 16).

We need also the following which follow easily using (5.12), (7.13),
(7.14), (7.18) and (7.17):

(7.26) 8(LR ~L'R) == 4l — 4+ 2e — Tk (mod 16),
(7.27) §(M'R—MRE) = 4144 (mod 18),
(7.28) (M —M’'8) = 4L} 4 (mod 16),

and wsing (7.20) and (7.21) we havo

(7.29) I'M—LM = —2L-—-2M —3:2(mod8).

Using the expressions for ¥(w), Z(w), ¥'(»), Z'(w) given in (5.7), (7.1)
and (7.2), we obtain

Y{0)Z(0) — ¥ (0) 2 (0) = a—aw*+bo?,

where

a = 8(LR' —L'R)+8(M8' —M'8)+2(61+3}(L' M ~LM"),
{7.30)

b = 8’8 —L&)+16(M' R—MR").
Then using (3.16), (3.17) and (3.18) we obtbain:
(7.31) 8k = 10(61-+3)(L'M —LM') +40(M8" — '8+

-+ 40(LR —I'R) - 28(L'S — LS} + B6(M'R —MR'),
(7.32)  BW = 56 (LR’ —L'R)--56 (M8 —M'8)-+14(61+3)(L'M —LM") +
+40(L'8 ~L8")--80(M'R —MR).

Using (7.22), (7.28), (7.26), (7.27), (7.28) amd (7.29) in (7.31), wo obtain

3% = 8 —T% (mod. 16)
which for 1 odd, is equivalent to our main result (see (1.11))

h =Tk (mod 16).
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Using now (L1}, (7.92), (7-26), (7.26), (1.27), (1.28) and (7.29) in (7.32),
we have:
(7.33) B o= h-+-4M {mod 16).

We will use (7.38) in Sections 9 to 12. We note thab it is conuistent
with (3.13), as M’ is odd.

8. Proof of i = Tk (mod 16). Case (ii): I even. Differentiating (3.3)
with respect to # and setting 2 = o we obtain

(8.1) Y (@) = 4P -+ 2Q0 -+ 2Rw? - 4808,
(8.2) Z(w) = 4P --2Q @+ 2R 0 - 480,

whare P, Q, ..., & arve integers given by the following formulae:

(8.3) P = D) (2m—81—1) ypa( —1)",

(8.4) Q = > ((2m—3—61) a4+ (270 +1) ) (—1)™,
(8.5) R = (61+3) D g (1),

(8.6) 8 = 3 =Myt (BIHL — 1) Gy ) (=LY,

and P, @', R', & are given by the corresponding formulac (equs. (8.7)
{8.10}) obtained from the above by replacing each a, by b, . From (5.5} we
see that

(8.11) B = (61--3)¥, R = (61+3)N,
and
(8.12) Q = —28—(614-83)L, Q = —28 —(61+3)1 .

These show that, of the quantities P, @, R, 8, P, ¢, B and 8, we need
only congider P, P’, § and & . It suffices to determine 2 and P module
4 and S and 8 modulo 2.

From (8.7}, as (2m —1)( —1)™ = ~1 (mod 4) and ¢ is even, wo have,
using (4.12) g

P - 2(2% 13 (=) by g — 81 men“( —1)™
= — X bynpr 30 D by (m0d 4)
= —(1+30) ZbWH {mod 4)

(28 Th)

=1~ (mod 4),
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that iy

. 26 Ti
(8.13) P Ei; C 1 (mod 4).

Similarly, nging (6.1) for P; using (4.7), (8.4) and {8.12) for §: and
using (1.12), (4.8), (8.8) and (8.12) for §'; we obtain

{8.14) D=1 (wod 4),
(8.15) 8 == (L —1) (mod 23,
. o bt (h—2)
(86.10) 8" e L(L 1) 4 i (mod 2).

We now use (b.47) to show that
(8.17) S == 8 (mod 2).
From (5.17) and (5.18) we have
L+l -1 =Ll = —¢(mod4).
IMenee from (8.15) and (8.16)

O 0o i e
Sofm gt =l )T

) = ( (mod 2).

Noxt we putb the expressions for ¥(w), Z(w), ¥'(w), Z'(w) given in {5.13),
(8.1) and (8.2) into (3.7) obtaining (in view of (5.14) and (5.15))

(8.18) LP+2N8—p(L'P +2N'8") = 24271,

(8.19) 2NP-+2L8 —p(2N'P +2L'8") = (614 3)(N? —pN'?) —d5 —601.

(We have used (8.11) and (8.12) to eliminate ¢, @', &, E'.)
"he next step is to wwe (5.15) nnd (B.17) to obtain L' and N in terms
of I and N modielo 8. We get:

(8.20) L e —el--2N" (mod 8),
{8.21) N wn BL - 8sN' (mod 8).

Using (1.12), (5.18), (8.13), (8.14), (8.15), and (8.20) in (8.18) taken modulo
4, wo obtain

(8.22) 4L z= —06s —TTh 44 (1od 16).

Next from (3.18) we have:

(8.23) N2 —pN'? =1 —BN" = 142N (mod 8),



®
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go that (8.19) gives:
{8.24) L8 -1’8 s LN +1—1 (mod 4},
which, combined with (L L)(8§ —&") == 0 (mod 4), gives
(8.25) 'S —L8 = —L+N' —1--1 (mod 4).

We note also the following:
4 (L' P —LP') = 4] — 6l — L% (inod 106),
(8.26) 4{N'P —~ NP} = 4i ~6el - 8Lk (mod 16),

A(LP —~LP") —&(N'P —NP) w= 4L | de —4 (mod 16},
(8.27) RN~ NE) = 4L ~4 (mod 16),
(8.28) LN'—IL'N == 8¢ —2N"' (mod 8}.

Using the expressions for ¥ (w), Z{w), ¥'{w), Z'{w) given in (5.13),
(8.1), (8.2) we obfain (eliminating @, @', R, B’ with the help of (8.11),
(3.12))

Y' (o) (o)~ Y (@) 2 {w) == a—aw?--bod,
where .
a = 4(L'P—~LP')—2(614-3)(L'N —LN')-}-8(N'S - N&,

(8.29) , . , ,
b =8(NP—-NFP)+8(L'§—LS).
Then, using. (3.16), (3.17) and (3.18) we obtain:

{8.30) Sk = 20(L'P —LP') - 28(N'P — NP’y 4-28(L'8 —~ L8 4
- 40(N'8 —N8') 83021 +1)(LN'— L'N),
and
(8.31) 3K =28 (L’P-—LP’)—{-SG(I\T’SMNS’) —14.(61-+3) (L' N —LN') -+
' +40(N'P—-NP')+40(L'8 — L8y,
Using (8.22), (8.25), (8.26), (8.27) and (8.28) in (8.30), we obtain
3h = Tk -+ 4e (mod 16),
which, for 7 even, is eqﬁivalent to our main result (see (1.11))
h == Tk (mod 16).

Now, using (1.11) in (8.31) together with (8.22), (8.25), (8.26), (8.27) and
(8.28), we obtain

(8.32) ANY = h"mh—i—sh—z (mod 16).
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We note that (8.32) is consistent with (3.13), as sh = 2 (mod 8) and
afl N' i3 even. Use will be made of (8.32) in Sections 9 to 12.

L. Q(V2p) and Q(V —2p)

9. Introduction to the second part. In this part (Sections 9, 10, 11, 12)
we consider the ideal class munbers A" = h(—2p) and k" = h(2p) of the
quadratic fields Q¥ —2p) tmnd Q¥ 2p) vespectively. It is well known that
Boss B ez 2 (mod 4) and we have already moentioned that b’ = h--41
{mod 8) {soee (3.13)).

The fundamental unit of QY :‘3_'5) is
(9.1) &y = V+W¥2p,
whaere ¥V, W are the smallest positive rational integers such that
{9.2) VE—2pW? = —
The positive inbegers ¥V, W are both odd and:
(9.3 = 83 (mod 8); W =1 (mod4).

The aim of the second part ig to prove the following
TenoroM 2. Lel p «= 845 be o prime. Then

(9.4) h' = 2(W —1)+3k' V48l (mod 16).
Modulo 8 thig result reduces to:
(9.5) B o=k 427 +2 (nod 8),

which has already be proved by one of us [10]. We reprove (9.5) and use it
In tho proof of (9.4).
To prove (9.4) weo will evalmate []{w —o’) as:

(96) [Tt

The proof of (9.6) is similax to the proof given in [6], Lemma, to
evaluate F'_{(w) when p = 1 (mod 8), and will be given in the next section.
We will need the sixth power of (9.6) which, will be wrilten as:

_1)1 —~kf6 Ic /1 ST TLP -]-1/5)1’2 .

(0.7)  $LX (@) +Z(Wpl = (—1)* 2 S5 (1-46V2) = (1)
whore we define the rational integer g by

(9.8) 3%/ [2 = 3g+1.
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—1JEI e (1) = 1297 (mod 8);
28" = I’ (mod 8),

Rational integers Ty, Uy, Vy, W, are defined by:

(9.10) T+ TYp = —up"; Vi W2p = &gt
Then we have:

= (T, + U VD) Vit Welw— o) [Blo+ e

(9.9) =

)T,

that is

(9.11) = (LT, V- 14p U W) (o + wf) |- (340, V' - 200 U, Wi+
(0T, ¥y 14T W) (04 wWp + (14T, T, -- 20T, W )iV p.

Applying the binomial theorem in (9.10) written in the form:

(9.12)  T,+TUVp = (F—UVpY*;  Vi+-W¥2p = (VL WVapyost,

we find the following congruences;

(9.13) Tyo=h{mod18); U, == —{4l--1) (mod 16},
(9.14) V, = V(1—2¢% (mod 8); W, =1 (mod 4},
(9.15) W, = W{l-2g-+2¢%) = W--2¢(g--1) (mod 8).

Uging (9.13), (9.14), {9.18) we obinin congruences modulo 16 or 8 for
the coefficients of ¢, w+ o, Vp, (w-+ o®Wp in 3o:

(9.18) 1T, V,+10pTU, W, = Th V(1 —2¢2) —2W (1 +2¢ -+ 2¢°) -+
+ 81 (mod 18} == 3 V(1 —2¢%) —2 (mod 8),
(9.17) BT,V +TpU, W, = SRV (L —2¢%) -5 W (L +2¢--2¢%)
-} 4l (mod 8),
(9.18) TU, V10T, Wy e V(L —2g%) -+ 2h - 41 (mod 8),
(9.19) BULV, -+ 1T W, == 3V (1L —2g%) — 440 (mod 8).

10. Caleulation of [] (0w —¢%). In this section we make use of tho

following -clags number formulae of ])irichlet, naely:

—hep =2yp DL (e
H=hp) =2 D),

Fim

(10.1)

icm
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(10.2) 3h(p)logs, = klogn, = SVP 2 ( )
, b _ 2 e\ 8
(10.3) W= h(~2p) ~=V2p Z %( ),

(10.4) Wloge,, =V2p V(Sf ) =

newl
One tinds easily:

(10.5) [Two=d) = (—1¥i[[ 1+0*e).
We setb:
) B o ( dl)7‘_1 Wi Q'nd

{(10.6) Ly = 2*“““"—'%”*"_—:

Tl

ko thut oxp(z) = 14 oo’ and:

(10.7) (—1yYMF_(

- (5 o)

We ealculate 3';:

\-’ J’ __Z Z -—~l)ﬂ -1 ot 'nj _ = (_1)n—1 P Z an
ed ded 7
— ;=1 n=1 -
W_Z { —Ly gPn ]/1_9 Z” (—-—1)”’603"‘ (%) 1 Zm‘ (=1 ™%
. —_ e [ | — —_—
Teral 2 Foeme] ’i’b P 2 n=1 n
thuat is
L+e Vo o\,
(10.8) Do = —FlogT o + - M arr,
il ()
whoero

s T :
(M) (v =1,2,3, 4),

oY (L)
T m% 45 —u

and whore wo have used the formula valid for all #:

Setb-fil-3-t
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Using (10.1)~{10.4) one finds oasnily, as in [6], Proof of Lemmas:

T k ) h
= e = 108%,; y WE ——mr
L] ]/ L= iR 4]/29 ?
—mh'  k'loge,, =k Za’]ngfm
T e T T W o

Using these wvalues in (10.8), we obtuin:

. 1 1 -] o
(h—h") — M fog T

klogqy, k'log ey, + _TE’_
—— g

T, o
2 Y 6 i

which ig (9.6).

11. Case X: 1 odd. Using the values of ¥ (o) and Z(w) as given in
(5.7) one finds:

(111 3[¥(0)+Z(2)Vpl
= —f = (B +pL* -2 M- 2p M) i+ 2 (LM +p L' M) 0+ %)+
2V p [(LL +2MM"Yi - (I M - LM Y (o0 -} 0?)].
Comparing (11.1) and (8.11) we got:

(11.2) DA+ pL 2 2R 29 M . —14T, V, —20p U, W,,
(11.8) LM4pL'M = —5T,V,—TpU,W,,

(11.4) LL A+ 2MM = ~10,V,—10T,W,,

(11.5) LM G LM = 50V, —7T,W,.

Using (5.10), (5.12), (7.20), (7.21) wo evaluate the left-hand sides as
follows:

(LL6)  LP4pL®-F2M* - 2p M == — 26Tk -1 4 M* - 4p M'® (mod 32)
sr —h24-4 == 0 (mod 16),

(1.mn LM A-pl' M = —1 —2eLM' (mod 8),

{11.8) LL' 4 2MM == g4 4 (mod 8),

{11.9) LM 4 L'YM = — 3¢ (mod 8).

From (11.6), (11.2), {9.16) we obtain

(11.10) BV (1—2g%) = 6 (mod é).

icm
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. . b &
Introducing &’ by equations (9.9), (11.10) becomes é—% ¥ =1 (inod 4)

that is:

{31.11) b = E'V (mod 8).
Remembering that A" =z k-4 (mod 8), and linearizing we obtain:
(11.12) B oe= i3 27 42 (mod 8).

Now we use (5.12) and (5.19) to solve (5.9) and (5.11) modulo 16,
obtaining £ and M as linear functions of T and M’

L = (Bh4-6) L--10 M + 8 4-81' (mod 16),

(11.13)
M o=~ (ch-1) L (9% —36) M8 + 81’ (mod 16,
where the integer 17 iy defined by
(11.14) =2l +1,
s0 that
{11.15) 4i-+1 = 8V +5.

Thus, using (7.22) and (7.33), we find
(11.16)
(11.17)

Now, using (9.13), (9.14), (9.15) and {11.15), we muke more precise
(9.18) and (9.19) as: :

LI +2MM' = —2h+3e--h' 81 (mod 16),
LM - LM = 8h+4-Te+8-- 81 (mod 16).

(11.18) 10, V4107, W, = —3V, 420+ 81 (mod 16),

(11.19) BU,V + 7T, W, = TV;--2hg(g+1} + 81 — AW (mod 16).
Compaxing (11.16) with (1118} and (11.17) with (11.19) we ges:

(11.20) g = Vy~30 (mod 186),

(11.21) g = — V¥V, -3k 8 —hW - 2gh(g--1) (mod 16).

The compaorison of (11.20) and {11.21) gives, remembering that
B b w2 0 (mod 8),

(11.22) b0 =2V - AW -2¢h -8 (mod 16).
Noting that AW = (A —2)(W ~1}--2(W —1)+&, we find

(1L.23) B =2 OV -4 (W 1) +2gh -8 (mod 16).
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Now, we note that b’ = —h {mod 8),2g == }(3k' —2) so that finally:
(11.24) B o= 3E VA2(W —1)-8 (mod 16),
completing the proof of Theorem 2 when I is odd.

12. Case 2:! even. Using the values of ¥ (o) and Z{w) given in (5.13),
we find
(121)  [¥(@)+Z (0]

= — (L pL" 2N - p NG - 2 (LN - p L' N') (@ wB) -
VP L - 2NN 4 (LN - I N) (@ - 0%)].

Comparing the coefticients of 4, w- 0?, i}/;; and (o o™y in {9.11)

and (12.1) we obtain:

(12.2) L} pL 42N - 29N = — 14T, V,—20p U, W,
(12.3) LN +pL'N' = BT, V,+TpU, Wy,

(12.4) LI 9NN’ = —7U,V,—10T, Wy,

(12.5) IN'+L'N = 50, V,+7T,W,.

Using (8.15), (8.16), (5.17), (5.18), {8.20), (8.21) one finds:
(12.6) L4 pL? - 2N 2p N = 26T+ 4N* 4+ 4N (mod 32)
= 2sh--4 (mod 16),

(12.7) LN +pL'N' = 3+2N' (mod 8),
(12.8) LI+ 2NN = —g (mod 8),
(12.9) L'N+LN" = —3s (mod 8).
We first use (12.2), (12.6) and (9.16) to gef:
(12.10) RV (1 —2¢% = 2 (mod 8).
Az in the cage [ odd, this can be written, using (9.9):
(12.11) B = h o= —FTV (mod 8),
or equivalently:
(12.12) B oss b R2V 42 (mod_é).

Now we use (12.3), (12.7), (12.10) and (9.17) to get
B+2N' = 23 W - 2g(g--1) (mod 8).
Using (8.32) for 4¥', we have:
b o= h—eh —6W -+ 4g(g4-1) (mod 186).
Now we use (12.8), (12.4) and (9.18) to obtain
' & = V(1~2¢%) +4 (mod 8).
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Llminting ¢ we find, as 2" = &k (mod 8):
(12.13) B V(1 —2¢%) = 2W +4dg(g+1) (mod 16).
Noting that 1—2¢% = +1 (mod 8), we find:

(12.14) BV = 2W (L —2¢0) +4g(g+1) = 2W -+ 4¢ (mod 16),
thut is:

(12.1D) BV = 2{W 1)+ 3% (nod 16).
Multiplying by V we get the result of Theorem 2 for I cven:
(12.16) Aoz BV A-2(W — 1) {mod 16).
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