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A note on |ap—qg|
by

3. SRINIVARAN (Bombay)

1. Introduction. Toward the question as to how small jap —g| can
be made, with given real a (> 0) and primes p and ¢, infinitely often,
Ramaclhandra [21 proved a theorem which, for instance, asserts that

lim {{ min min |2"p —g))p~%) =0,
poeie  1sn<ifs g=p .
holds for every fixed & 0 < s<<1 (see Theorem 1 of [2]). In this note,
we prove the following imyprovement of his resuli.

THEOREM 1. There is a natural number N with the following property.
Let By, ..., By be any N distinet, positive veal numbers given. Then there
exist twe of these numbers, f; and §; say (i + j), such that (with p, ¢ primes)

min (8,3 — ;¢
(1) lim 222« .
. e logp

temark. Ramachandra’s theorem asserts this with logp replaced
by p° and N = [4/e]. Actually, we show that the cnsuing stronger form
of this result is true:

THREOREM 2, Suppose that p is a sequence of primes salisfying, for
some 8> 0, as 3+

2 1= dzflogi.

s
pEp

Then there 48 a natural number N = N (8), depending on 4§, such that
if {1, ..., By} 45 any given set of N distinet, positive real numbers, then
there are two of these numbers, f; and f; say (1 + j), sueh that with p and ¢
m p oné kas {1).

In the lagt section, we include some corollaries of this result.

2. Proof of Theorem 2. Nofation of Theorem 2 holds in this section.

Set d, = min{g—p), where p ep and minimum is over ¢ > p. By the
gep _ - _ ‘ :

prime number theorem, we have easily that for some ¢ = ¢(d) >1 the
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number of pep which lie in any interval (as z—oo) (z,e0] is >
¢'(c —1)zflogz for some positive 8’ depending on 5. OQur proof depends
on the following

LuMMA. Tn the above notation, we have for some K = K (4), as T 00,

(2) 2 d, > sx(c—1)

r
pegEon
Jor some &> 0, depending on 8.

Proof. By the remark preceding the statement of the lemimna,
we have that the number of pe(w,wjnp with d, < Klogz iz =
1 (¢ —1)z/logw provided that K is suitably large. Next, by Brun’s
sieve (ef. [1], Cor. 2.4.1 on p. 80) '

(e—1)a b dy{e—1)u
1 —
Z < log?x 2 o(b) < logx

pe(zez]np b<d loge
dy<dy logz

where d,—0 as 8,—>0. Thus, for small enough 4, > 0, the left-hand side
of (2) exceeds '

(¢ —1) 8,logw(% 0" — &y)mfloga = em{c—-1),

provided we choose (as we can certainly do) 8, sufficiently small.

Proof of Theorem 2. Let us suppose that all our intervals of the
form (2, ex] which occur below ave contained in (X, X?) for sufficiently
large X. Introducing 8(y) = 0 or 1 according as (y —2Klog X, y+2Klog X)
My is empty or not, we see that the above lemma yields

°x

[ o) dy > ew(o—1).

@
Now using this with 2 replaced by B '@, where B8 (L<j< N)are a given
set of pogitive reals, we see that

cx N

f (2 B(ypY) dy > Ne(e—1).

z i=1

This shows that, if Ne > 1, there is a y in (@, on] with 8(y8") =1 = s
for some 1 < i< j < N. Thus we can ensure the existence of two primes
#: and p, from p for which

(1B +18;1)~"18:p — Bygl < 8Klog X < 16Klogp, .

Sinet?_ there are only finitely many choices for"i, j, Theorem 2 follows
provided only ¥Nz>1; ie., for some ¥ = N(4), which is effective, too.
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3. Concluding remarks. In this section we give a few corollaries
to Theorem 2. First, we have the consequence analogons to the Corollary
in [2]. Indeed, we can prove a ccrtain extension of that result as follows.

COROLLARY 1. Let ¢ be a positive real number. Consider the sei

m: lim 22F

A, =
= logp

min ja™p —q]
[ < 03 p, g in py-

Then we have

. {1
= E >
hm(w 1)/.£|>0

T m=<zx
med
with 4 depending only on 6.

Proof. By choosing 8, = a™, 1< n< N, where ¢ is an arbitrary
positive integer, we see that, by Theorem 2, a jt € 4, for some j (L <j < N)
depending on ¢. Now consider 1, £ < £/N. Obviously for = »/2N? values
of 1 we get the same wvalue of j, for sufficiently large ». And for these t
the ecorresponding ji’s are distinet. Thus we have this corollary with some
Az=1/4N? (say).

The next corollary is simpler (though ineffective).

CoBOLLARY 2. There ewists a finile set of positive reals {By, ..., By}
sueh that if o is any positive real number, then for a certoin j = jla) < M
we have

minjap — ;4|
linbﬁéiio— < 0.
s 2p
pEP

Proof. This follows by an iterative construction of A%, in view of
Theorem 2.

Finally we note that the method of proof of Theorem 2, in the cage
f's do not exceed X, enables one to uphold the statement there with an
N = N(4, ¢) and the “liminf” bounded by (§'+e¢), where ¢ > 0 is any
preagsigned number. Thus we can also state

COROLLARY 2*. Let e > 0 be given arbitrarily. Then there exists a finile
set of positive reals {fy, ..., fary {with M = M (8, ¢)) such that for every
a, 0<< a<<1, there i3 a j = j(a) < M to fulfill

min |ap — B,g]
lim B2 (57 ).
= logp

Further it is possible to objgin, corresponding te Corollary 1, the

following
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COROLLARY 1*. Let & > 0 be given arbitrarily. Then for every a, 0 <
<1, there is an infinity of natural numbers j = j(a, &) to Fulfill
min |ap —g] | |
lin B2 (57 ).
=3 logp
In particular, the inequality |ofp —q| < (1+
solutions in primes p and q.

e)logp has infinilely many

References

[1] H. Halberstam and H.-E. Richert, Sieve methods, Aeademic Press, 1974.
[2] E. Ramachandra, Two remarks in prime number theory, Bull. Soc. Math.
France 105 (1977), pp. 433-437.

SCHOOL OF MATBEMATICS
TATA INSTITUTE OF FUNDAMENTAL RESEARCH

Homi Bhabhe Roal
Bombay 400 005, India

Recoived on 19.6.1979 {1166)

ACTA ARITEMETICA
X1T (1982)

Generalizations of Ramanujan’s formulae

by

 YasusHr Matsuox4 (Nishinagano, Japan)

Ramanujan found the following formulae: For positive a, § with
aff = n* and.an integer » > 1,

4 ) ) e—m}

1 o {—-——w«g(l —2)
1—2
= ({85 ) t Me e,
(2 ~("—1){C(2"2 L g;m_ov(n)e 3"“} —

__( __'3)—(’—1){ (21’ 1) + T 0oy (,n) 6—27&5}

}'c Bk B2v—2k y—kﬁk
(2)! (20 —2F)!

— ~22(v—1) y
e
&k=0

= ¥ &, and B, are Ber-
dln
nouli numbers defined by ZB g% n! = p/(®—1). G. H. Hardy (3] gave

n=0
two proofs of (1). B. Grosswald [2] proved a more general formula which
contains both (1) and (2). Many variants of Bamamujan’s formulae are
known. The historical survey of the formula and ity generalization are
explained in [1].

Recently the author [4] presented as an analogue of (1) a formula
for the values of £(s) at half integers. Tn this paper we shall extend further
the Ramanujan’s formulae (1} and (2) to rational numbers. Our method
of the proof ig similar to that used in [2]. :

where {{e) is the Riemann zet:m function, o,(n)



