70 . ¢, M. Cordes

COROLLARY. Let F be a field with m =4, B = F?, and 8 # g < co.
Then anisolropie ternary forms over ¥ are defermined by their value sets.

Proof. Tt guffices to show that D({1,a, b)) = D({1, ¢, &) implies
{a, by == {e, &» for anisotropic (1, a, b>, {1, ¢, d>. By a cardinality ar-
gument on the value sets mod #*? and by Theorem 8, it is clear that it is
impossible for exactly one of [—a, —b), [—¢, —d] to be @,.

I [—a, —b] = [—~¢, —d] = @, then by Theorem 8, —abB,U —abB,
= —cdB,V —edB,. Thus abed ¢ B,nB, = F*, But then Corollary 2.9
[9, P.60]shows { —a, —b) == {—¢, —@>. L[ —a, —b] =[—e¢, —d] =@Q,,
i = 1 or 2, then Theorem 8 yields abB, = ¢dB;, {i, j} = {1, 2}. But the
quaternion algebra equality also implies —a, —b, —¢, —d € B;. Thus
abed € B,nB, = F* and again {—a, —b> o2 {—¢, ~d). Finally assume,
[—a, —b] = @, and [ —¢, —d] == §;. Then from Theorem 8, abB, = ¢dB;.
But this cannot happen sinece B, = B,. =
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Partitions into distinct small primes
by
J. RopeLL” (Victoria, B. C., Canada)

Introduction. Throughout, p, will denote the #nth prime. In Theorem 1
o 3 ) .
we find estimates for > p, (sce (3)), but because of the applieation of
Jo==l
Theorem 3 later, it will be more convenient to weork with the sum y(n)

n
= 3+ 3 p; instead.
k=4

THEOREM 1.
{1) y(n) << in*{logn +loglogn) for n = 4.
Given 0 << a<< ], there ewists an infeger N(a) such that

(2) . 2nt(logn 4 aloglogn) << 4 (n)
for > N(a), and N (0) = 5. Moreover, (2) is true if

log2
—1 _
2 og [1 logn]

<1~

loglogn
so that given 0 < e<<1, we can take a =1 —s in (2), provided n > ny(e)
= N{1—e)
n
(3) Zpk< $n2{logn +loglogn) for n =6,

k=1
and lower bounds jov' this sum are given by tkose for y(n).
COROLLARY. Z P~ 03 logn-}—loglogﬂ)

We shall see later that N (.1) = b and N (.156) = 140 (see Rem:nk 1
following the proof of (2)). The inequalities (1) and (2) are used in proving

THEOREM 2. Leét &> 0 and write y(n) =y. Then

VayViogV2y - (3 —e)loglog¥2y < p, < Va2yViogV2y +(} - #)loglogy 2y

* Research partially supported by NSERC Grant A-5208.
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provided n 18 sufficiently large. The right-hand inequality holds for
n = max {20, ny(8)}, the left for n = ny(s)
ity (e} will be defined when the left inequality is proved.

COROLLARY. p, ~ I/@ l/log l/?a_y —I—lloglogl/;:/

TemorEM 3. Let n 2= 4. Then every integer in the alosed interval [7, y(n)]
can be partitioned into distinet primes < p,.

Through an sdaptation of the proof of the right-hand inequality in
Theorem 2, and the application of Theorem 3, we obtain lastly Theorem 4.
The proof could be done independently of that of Theorem 2, but it is
simpler to proceed a8 we have done.

THEOREM 4. Let 0< e <1, n > max{20, n, s) +1}, and y(n —1) <y

y(n). Then y can be partitioned into distinet primes p sabisfying

p< VoyVlogV2y + (34 &)loglog V2y .

‘We remark on the posgibility of dropping the ¢, and the impossibility
of redueing the , after introdueing the notation

(4) Uy, ¢) = !/2-yl/logl/2;y v{-cloglpgl/i:‘:?"/_,

which we shall use in the sequel. We have computed ¥ (#) and some related

functions, including Uy (n), ¢} for several values of ¢, for 4 < n < 100000.

Some of the resnlfs of these computations are mentioned here, in the

infroduetion, and others appear later, in Remarks 1, 2, and 3; partial

print-outs of the computations are available from the author.
COROLLARY TO THROREM 4. Given a posilive integer k, there is am

integer n, = n{k) such that every integer y > n, can be pazm‘zmo%ed gnto k
or more distinct primes.

Proof. The number of distinet primes used in repregenting y in the
theorem exeeeds g J/U( ¥, §-+e), Hence for given % we need mercly take n,
such that m, { Un,, ++2) = k.

The inequality in Theorem 4, without the ¢, weould follow from
(5) 2, < Uly(n—1), });
of. {32) and the ensuing remarks. Our ecomputations vield (5) for 105 < »
< 100000, with the differenee between the two sides tending to increase;
see Remark 3 at the end of the paper. To see that the 1 in Theorem 4
cannot be redueed, observe that for » =5, a prime at least as large as
Py is needed in any partition of ¥ (») into distinet primes, becaunse the only
primes < p, not appearing in the sum defining y(n) are 2 and b, which
are 0o small to be used in place of p,. By Theorem 2, p, > U{y(n), 1 —¢}-

First efforts to find an upper estimate for p,, in terms of y¥{n) involved
some rough work which led to the conjecture:

(52) . Pn<< Uly{n), 4)

icm
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for all suificiently large n. The atbernpt to prove this has led to Theorems 1,
2, and 4. Our computations show that for % < 100000,

Pa< Uly(n), 6] with ¢ =.5, 6, .7

for w>49,11, 6 respectwelv H

with ¢ = 3/2, we can prove this inequality for all # > 6 (see (28) in Re-
mark 2, following the proof of Theorem 2). On the other hand we find
that for = < 100000 o :

Uly(n),¢)<p, withe=0, .3

for n3> 31, 37374 respectively.

For more on the case ¢ = 0, 3ee {29) in Remark 2, and also Table 2 fol-
lowing it, where some sample values of Uly{n), ¢) for ¢ =0 and ¢ = .5
are listed. ]

Our work with these estimates for p, consistently indicated that
the lower estimates are the more difficult fit. More precisely, in Theorern 2
it looks as though n, (s) will be very much larger than ng(e). For example,
7, () seems likely to exceed 10'" (Remark 2), whileny{}) = N(3)<< 3 x10™
(Remark 1). In the numerical work we find that

{6) Uly(n), 3) < p,

fails for many # < 37373, and that p, —U(y(n), - 3) < 1700 for » < 100000,
whereas the difference between the two sides of (Ba) increases from
1010.4... when n = 5000 fo 22873.0... when # = 100000 (see Table 2).
In spite of all this, we know that (6) is true for nearly all #, and we-do
not know this about (5a).. -
Regarding Theorem 3, Richert [1] proved in 1850 that every infeger
> 7 can be partitioned into distinet primes. Neither in his proof nor in
any other proof of this or of similar results have we seen an examination
of the gize of the primes that can be used in the partitions. By proving
the somewhat more preeise result (Theorem 3) we can see how small these
primes ean be chosen {Theorem 4). This consequence of such a simple
partition theorem (the proof of Theorem 3 is as simple as Richert’s proof,
excepb that we keep track of the sums invelved) has been overlooked
heretofore, probably beeause the emphagis in additive prime number
problems has been on seeing how few primes are needed in a partition
rather than on how small they can be. _
One can prove results similar to Theorem 3 using similar arguments

For example, every infeger in [10 b+ Z‘pk] {m > 7) can be partitioned

into distinct odd primes < p, (ef. S1e1’pmsk1 8], p- 144, Theorem 12;
Theorem 11 is the above-mentioned result of Richert):
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We prove Theorem 3 first; the proofs of the other theoremms are of
a different nature.

Proof of Theorem 3. First observe that every even integer in
the interval [ —14,14] can be expressed in the form

£243 L5 4£T411

for an appropriate choice of signs. Adding +13 fo these numbers gives
every odd in [—27,27], and then 417 gives every even in [ —44, 44],
and so on. To see that this indeed continues, define, for = > §,

T, = —8+3—5+7+11+...4p,,

and agsume for some such # that every integer of the same parity as
T,in [—T,, T,] is expressible in the form

(1) +24+3454.. +E P

Then, by Bertrand’s postulate, adding +p,., gives every mteger of the

same parity as T, ,, in [T, ., T, ] ‘
The details here are that the intervals

[T, ~Par1s T, n~Pni1] and [-T, +Prpr> Ty +Prtrl

will overlap for each # > 5 if
(8) ' Tp> Duia

for n2> 5. Now, T, = 14> p, =13, and if (8) holds for a certain n,
then

Topr =Tt pu = 2nyry

and this exceeds p,,, because of Bertrand’s postulate.

We conelude that, given « > 5, every integer of the same parity
as T, in the interval [ —T,, T,] can be expressed in the form (7} for an
appropria.te choice of signs. Now, if we add to these numbers the sum

kz'lpk, which also has the parity of T,, we obtain all the evens in
[22+5), 23+ T+11+...+p,)],

each represented as a sum of primes. < Py, and with each prime in any

representation appearing exactly twice. Hence each integer in [7 y 3 +kj:; Pl

can be partitioned into distinet primes < p,. While the angument given
is valid only for « > 5, the final result holds for n'= 4 also.

Proof of Theorem 1; The lower estimate (2). We shall require
the following lemma for both of (1) and (2).

icm
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LuMyMA. For n = 4,
iy % > n?
Y loglog—‘; < f zloglogadsy < 5 loglogn.
< 4
Proof. The right-hand inequality iz clear for » == 4, and by com-

paring derivatives one can see that kn*loglogn increases faster than the

integral does for » = 4.
The left-hand inequality is obvious for » = 4 and 5, and will follow
for all larger » once we have shown that \

1 f J

for » = 5. This is equivalent to

1 (1og2)
21 0 <8 1 Jog2 Z logn
o —
%875 " logn
which for 5 <2 <12 can be proved by chreet computation and for » = 13
i& a consequence of the stronger inequality
logn
e logr 4.
log(nf2) =~
. ) ) logn . _ d.. .
This bolds firstly for # = 13, and since Tog(n/2) is | a . decreasing

function, it helds for all larger . _

To proceed with (2), we have from Rosser and Schoenfeld {2},
Theorem 3) .
for k= 2.

Py > k[logi{klogk) —;
Hence
@  Yp> Y-t a1

T k=4 ko=t
where f(z) = mlog(zloga). By the Eunler-Maclaurin summation formula,

:l

10) - f f@) o+ 3 {f () +f )} + f @ —[o]—Df (x)do

|I
-

2 : .
= %— (logn—3)+ —?;—I()g(nlogn) + f wloglogmde —
. “ i

—6log4+-2loglog4 44 +R;
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here,
]
(11) . R=[(a—[z]-Bf (@)dx >0
4
gince f'(x) = logx +loglogz +1-+1/logw is increasing. From (9), (10), (11),

and the lemma,

Epk > b—logfra+—u10glogw~ -—n2+ — logn+ — loglogn ;’gn—i«a

fimd
For n = 4, the sum of the last four terms here iz positive, and
ﬂ._1 . 2 2
" ” n
{12) Yy () =3+ZP1¢> ?log’ﬂ—l—?‘lof_e;lo,g,r—;E —n2,
k=1

One can. obtain (2) for the case a = 0 by obscrving that

72 7 )
(13) ?loglogg >nt  for #> 2" = 3236.3...,
whence by (12)
(14) () > ntlogn

for n 2 3237; by direct computation we have found that (14) holds for
bn< 3931, and so N(0) =5.

To prove (2) for 0 << a<C 1 we make somewhat better use of (12).
Note that the inequality

n? 7 n?
Y loglog - —n? > Y loglogn

is equivalent to
loglog(n/2) —

- 2
(18} &< =1—

2 —~log[l —log2/logn]
- loglogn ’

loglogn

T_herefore, given a< 1, it follows from (12) that (2) holds for all suffi-
ciently large n, and 5o ¥ (a) exists. The statement involving & in Theorem 1
alse follows.

Remark 1. Some values of N{(«). Tet

Y (n) éénzlogﬂ

A =
() intloglogn

7
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and let B(n) denote the right side of (15).-The proof of (2) depended
on the implication
(16) a<< B(n)
ferl)
17 a< An),
the latter inequality being equivalent to (2). We thence apply our com-
putations of y(n) and 4 (n) to finding N (a) for ¢ = .1 and for a == .156.

Regarding N{.1), we first find that B(22000)> .1. Since B(n) in-
creases with », a == .1 satisfies (16) for all » > 22000, and since by our
computations

A(n) = A(30) = .1006... for 5 < n< 22000,
it will satisfy (17) for « > 5. Thus we can take
N(1) =5.
The largest value we can find is
N(.156) = 140:

and A(n)> .56 for 140 <0< 100000.

B(100000) = .15607..

These are optimal values of b (@), since A(4) is negative and A(139)
< .156.

Speculating further, we find from the computations that A(n) is
increaging for 2699 < n < 100000, with 4(100000) = .384..., and so
perhaps N (.384) < 100000. To go further yet, we find that B(3 le”‘)

= .5008..., and here aboui all we can say is that

N{(.5)< 3 x10%.-

However, if the relation between A(n) and B(n) should continue as the
earlier figures would indicate, A (n} would be .5 for a much smalier =.

The upper estimates (1) and (3). Here we start from the in-
equality
(18) P k[log(klogk) —4] Tfor k=20
(Rosser and Schoenfeld, ibid.). Although this inequality is false for most &
between 4 and 20, it turns out that the upper estimate we find for

D f(k)

k=4

2(m) = 3+ ik[leg(klogmm%]: S fnt6

yields the desired one for y(mw).
Regarding an upper estimate for the quantity R of (10) and (11},
we first observe that

’ 3
H(z) = f'(#) ~loge = loglogz+1+1/logw < jlogw
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for >4, sincé H(4) = 2.04..
faster than H (2}, Therefore

<< 2.07... =ilog4 and tloga increases

k1 k(]
R<i[ lo—[a]—}logwde < i [ logzda = 3 (nlogn —n)—5{logd —1).
4 4

Hence. from (10) and. the lemma we find that for » > 27,

2{n) << %n* {logn +loglogn) — in® - Inlogn -} nloglogfn — —n -
S jmﬂlog4+9log10g4—{—15
< 3ni{logn+loglogn)

(in fact these inequalities hold for smaller =, but n=

argument).
One can now see

27 suffices for our
y(n) < int(logn+loglogn) for n=4

firstly by direet caleulation for 4 << n <26 (see Table 1), and then by

showing
yi{n)<<z(n) for mz=27.
To see the latter, note that
¥(27) = 1257 < 1260.8.. = +(27)

and that y(n) grows more slowly than z(n) for n =
This proves (1). '
Eegarding (3), we see from Table 1 that

27 hecaunse of (18)

n
(19) Epk< in*(lognJ-loglogn)
for 6 < n < 27, and that

o8
D', =181 < 1373.8... = 2(28),

Tok=1
whence (19) holds for all % == 6. Th.l.s completes the proof of Theorem 1.

Proof of Theorem 2. We first adopt a convenient notation for
some of the lengthy expressions that are involved in the seguel. To illus-
trate the notation we use the first inequalities that are to be applied

in the argument, namely the previously quoted result of Rosser and
Schoenfeld,

(20} @{log(nlogn) =3 < p, < nllog(nlogn) — ﬁ-] ..
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Table X
n
n y (n) LE P 1ntlog(niogn) £{n)
=1

4 10 17 13.7

5 21 28 26.0

& . 34 41 42.7

7 51 58 63.9

8 70 77 89.9 .

9 93 © 100 1203 .
16 122 129 156.8 '

11 153 160 ! 187.9

12 190 197 ! %44

13 231 . 238 i 296.3 |

14 274 281 353.9 f

15, . 321 328 416.7

16 374 381 485.4
17 433 440 559.8

18 494 . 501 640.1
19 561 568 796.3
- 20 632 639 818.5

21 705 712 916.8°

22 784 791 1021.1

23 1 867 874 1131.6

24 956 983 1248.2

25 1053 1060 1371.2 .
26 1154 1161 1500.4 1153.1
a7 12567 1264 1636.0 1260.8
ag ' 1371 1373.8

The numbers in the last two columns are truncated at one decimal place.

With such an expression we shall use {20LI) to denote the left inequality
and (20RT) to denote the right, while (20L), (200), and (20R) shall denote
the three expressions on the left, cebtre, and right respectively. Thus
(200) = p,, (20LI} holds for > 2, and {20RT) holda for u = 20.

From Theorem 1 we have
(21) In2(logn + eloglogn) << y(n) < nt(logn +loglogn)

where (21L1) holds for o = N (e ) and (91RI) for » = 4. We have to prove

that, given 2> 0,
(22) T{yin), §—¢) < pu< Uly(m), I-+¢)

for all sufficiently large n.
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Sinee 7(y, ¢) is an increasing fumnction, (21) is equivalent to

(23)  nYlogn--aloglogm x

x¥logn + tlog(logn+ aloglogn) - clog {logn + Yog{logn + aloglogn)}
< U‘?I (n), c)

< nVlog(nlogn)¥logn -+ Yloglog (nlogn) + elog {logn -+ tloglog(nlogn)}

in the sense that (21LI)<~(23LI) and (21BI)<-(23RI). Using the notation
{23L, ¢) for the left expression in (23}, and (23R, ¢} for the right, we want

to prove .

(24) Uly(n), ¢,) < (23R, e} < (20L) << p,, < (20R) << (231, ¢,)
< U(?l (%), 02)

with ¢; = § —e and e, = §+ 2. The two central inequalities are just (20),
while the outermost inequalities come from (23), thence from (21). There-
fore we hawve to prove only the two inequalities involving the expressions
from (20} and (23).
Regarding the right side of (24), we write ¢, = ¢ and make the fol-
lowing observations (which will serve again in the proof of Theorem 4):
(20R) < (23L, o)

b

logn +-Joglogn —} < Viegn+ aloglogn x

% Viogn + Hlog(logn + aloglogn) + clog {logn + 3log (logn + aloglogn)}

-t

2lognloglogn —logn -+ (loglogn — 1)2

< (e+ %+ a)lognloglogn 4 Llognlog [1 + alog]ogn]

logn

log (logn + aloglogmn)
2logn

+ olognlog [1 + ] +ale+ ) {loglogn)2+

aloglogn
logn

. ;loglog'nlog [1 i log (logn + aloglegﬂ)]

logl log|l
]+ac oglogn og[ + 2logn

<

(28)  (loglogn —3})2 < (¢ —214a)lognloglogn+logn -+
+a(e+ 1) (loglogn)* -+ ()

Partitions into distinet small primes &L

" where {(n) is the sum of the underlined expressions. It is clear that t(n)

= O{loglogn) and ¥{n) > 0 for # = 3, In order for (25) to hold for al
large #, it is necessary that ¢ —a. In fact, with ¢ =3—a, (25) holds
for all # > 3; this is the optimal value for ¢, given o, sinee for sharpness
in (24) we want ¢ = ¢, 0 be as small a8 possible.

Thus follows the right side of (24), with ¢, =—a, 50 that

(26) Pa< Uly(n),}—a} for n>max{20, ¥N{a)}

— that ig, for all » such that (20RI) and (21LI) hoth hold. By Theorem 1,
given 0 << £ < 1, we can take a = 1.—¢ here provided » = f,(c) = N (1 —¢)
(and # > 20), and se we have the right-hand inequality in (22) and in
Theorem 2.
Regarding the left side of (24), we find in a similar way that
(23R, ¢,) < (20L)
(27)  (e.—$)lognloglogn 4 3logn (¢ + $)(loglogn)®+s(n)
< (loglogy ng)i

where 0 < s(n) = (O (loglogn). In order for (27) to hold for all large =,
it is necessary that ¢; < 1, and indeed, given & > 0, it is clear that there
is a number =, (g) such that (27) will hold with ¢; = } —e for all # > #,(e).
Thus we have the left inequality in (22) and in Theorem 2 for # > n,(¢)-
{The first and third inequalities on the left side of {24) hold for » > 4
and »n 2= 2 respectively.)

Remark 2. {Take ¢; = }—e in (27).)

(a) The presence of the term 3logn in (27) requires that n,(c) be
very large. For example with & = .1, (27) requires

(3 —.1loglogn)logn -+.9 (loglogn)®+s(n) < (loglogn —3Y,

and this will be false for n gmaller than about expexp3o0.
(b) The inequality
(28) 2, < Uly(n), 3}
for n 3z 6 follows from the above argument: since N (0) =5, (26) yields
it Tor m 3= 20, while for 6 < n<C 20 it is proved by direct calculation.
The inequality

(29) Uly(n), 0) < py

follows from (27), and so holds for = > #,(3); all that (27) allows us to
say about n, (1) is that it likely exceeds expexp6 = 10'" — cf. the dis-
cusgion regarding & = .1 in (a). Our computations show that (29) bolds
for 31 < n < 100000; values of the two sides and their difference, for
selected n, are shown in Table 2.

6 — Acta Arithmetica XLI.1
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Preof of Theorem 4. This is similar to the proof of the right-hand
nequality in Theorem 2. We shall use the same special notation involving
statement numbers as before, and adapt it farther to our present purpose
by writing for example {231, ¢] {n —1) to denote (231, ¢} with  —1 in
place of n. Instead of the right-side of (24), we shall prove

(30) P << (n—1)[log{n —1)+loglog(n —1) — 1] << [23L, ¢](n —1)
< Uly(n-1), d.

The first inequality of (30) holds for # = 20: For n» = 20 it can be
seen to hold by direct computation, and for larger » it follows from (20RT)
and the inequality '

1 1 1
(31)  logn+loglogn — —< (1 — ;) [Iog(n —1)+loglog(n —1) — Z:I’

which holds for 2 2 21 (the leff side increases more slowly than the right,
and for # = 21, {31L} = 3.857... < (31R} = 3.659...).

Table 2
v | Oy, 0 pa—Tlym 0 p, | Tlyi), 1) —pf | U(ytny, 1)
31 118.0 8.9 127 0.8 127.8
5000 46937.5 1673.4 48611 1010.4 49621.4
10009 101382.1 3346.8 104729 2320.7 106949.7
20000 217732.0 7004.9 224737 4501.7 229238.7
30000 339680.9 10696.0 350377 687L.9 357248.9
40000 465270.4 14638.5 479909 9087,4 488076.4
50000 593535.3 18417.6 811953 11480.6 623433.6
80000 723965.8 22807.3 746773 133274 760100.4
TO000 856164.6 26212.3 882377 - 16193.6 898570.6
30000 980880.7 30489.2 1020379 18217.% 1038596.7
40000 1124973.8 34549.1 1159523 20486.0 1180009.0
160000 1261197.4 385110 1299709 22878.0 1322582.0

* Truncated at one decimal place

The last inequality in (30) i§ [23LI](n—1), which follows from
[21LI](n—1) and so holds for #—1.> N(a). Hence, once the central
inequality in (30) is proved, with ¢ =  —a and for # => 20, we shall have
(32) Pa<Uly(n—1),5—a}) for > max{20, N(a)+1}
(cf. (26)). Given this result, then for ¥ an infeger satistying y(n —1) < v,
where » 2 max {20, N(a)+1}, we shall have

 p< Uy, i-a);

if further y < y(n), then by Theorem 3 y can be partitioned into distinet
primes < p,. Putting o = 1—¢, we can then conclude that ¥ can be
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partitioned into distinet primes p with

(33) p< Uy, }+e),

and Theorem 4 will have been proved.
In proving the central inequality in (30), we use the same argument
as that used in showing

(20R) < (23L, ¢) < (25)

in the proof of Theorem 2, except with (n—1) in place of #, and with }
in place of the § in (20R). We find that the central inequality is equiv-
alent to

(34)  ({loglog(n—1)— )2 _
< (e—3+ a)log(n —1)loglog(n —1) + 3log(n —1) +
+a(e+ 1) [loglog(n —1) -+ #(n —1),
where ¢ is the funetion in (25): ¢(n—1) = O(loglogn) and t(n--1)> 0
for n > 4. With ¢ = {—a (cf. the discussion following (25)), (34) bolds
for n = 20 (indeed for = 2> 4); the proof of this last is as follows.
Bince %log(n—1) < (34R), and the functions tabulated . helow are

Inereasing, the values listed in the table show that {34) holds for 20 < n
< 645.

n |9 = (loglogr—1)— 1) | hm = progin—1) |

20 _ .68... 1.47... 1
71 ' 1.43... 2.12...
| 201 2.00... 2.64... J
| 645 2.61...

Beyond # = 645, g(n) increases more slowly than does k(n), since

g'(645) — .00077634... < .00077639... = h'(643)

and ¢'(») increases more slowly than does #'(n) for » > 645 (in fact for
n > Bb).
Theorem 4 now follows.

Remark 3. Replacing a by its supremum 1 in (32) would give
P, < U(y(n _1)5 %)I

which wounld imply the inequality in Theorem 4 without the & Our com-
putations reveal that for 105 < n < 100000,
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with differences 4> 0 that tend to increase with n. Some sample values
follow; the values of U in the table are truncated at one decimal place.

n P a Uly(n—d), §)
a000 48611 91 48616.6
10000 104720 188 104732.9
20000 224737 i 358 224744.7
30000 350377 528 350389.1
40000 479909 681 4788107
50000 611953 347 611955.9
60000 746773 969 746773.9
70000 BB2377 1163 882385.4
80000 1020379 1295 1020380.7
90000 1159523 1443 1159525.7
100000, 1299709 1598 12897225
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Gaps between primes, and the pair correlation of zeros
of the zeta-function

by
D. R. HesTE-BrOWK (Oxford)

1. Introduction. In studying the finer properties of the distribution
of the zeros of the Riemann Zeta-function, Montgomery [7] examined
the pair correlation funetion

@) = 3 Win—rle(Xri—n).

02y, 3T

Here W(u) = 4/(44u?), e(u) = exp(2wnin), and y runs over imaginary
parts Im(g) of the non-trivial zeros ¢ of {($) (counted according to multi-
plicity). Montgomery based his investigation on the agsumption of the
Riemann Hypothesis, and we shall follow him; for convenience we use
the abbreviation RH. It is clear that Fj(X) = ¥, (—X), that Fy(X)
< T'(logX)? and that F,(X)> 0 (this follows from Lemma 3 below).
Montgomery showed in addition that, on RH,

(1) Fp(X) = TX+ o 0™ (log T)*+O(T)+0(aX) +0(Ta*IogT),

for o = ™%, m = 1. Actua]ly he stated a slightly less precise result, but
it iz clear that his analysis leads to the above refinement. When 0 < 8
<'f<1—4, where, as later, X = (flogT)/2n, (1) reduces to Fp(X)
= TX+Q(T), uniformly in f. Moreover, Montgomery conjectured, in
general, that

7 .
{2) Fp(X) ~—— QogT)Min(1, B])

uniformly in 0<< < |f] < A. From (1) he deduced, on RH, several
important consequences for the distribution of the y’s, and he showed
that the conjecture (2} would lead to more powerful conclusions — for
example, that ‘almost all’ zeros would be simple.

Results connecting the distribution of the primes p, and the zeros.
of the Zeta-function have long been known. In particular von Koch [5]



