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§ 1. Introduetion

1. Consider the euclidean space R™ and m real irrational numbers
a, (g =1,...,m} such that a,, ..., a,, 1 are linearly independent with
respect to Z, that is for integers g., ..., f,., 7o the relaiion

(1'1) groi+ ... +gma'm.+gﬂ =0

only holds if all g, vanish. _

Denote generally for any real a by the symbol ||a| the distance of
¢ from the nearest integer. Further, consider a variable m-veetor, #, with
Integer components, 2 = (2, ..., 2,), which is assumed never to vanish
and pat

|4l 1= max[e,|.
M

Then we can use as the “measure of independence” of the a, any

continuous and strictly monotonically decreasing w(o}4 0 (¢ > 1) such that

_7."
(1.2) »(6) < min || e, a#” 1< ple< o), (o21).
r=1

2. By P(ka,) we denote generally for an integer % the point
Plka,) = (kay, ..., ka,,) mod 1.

We define a “proper interval” J in B™ as a cartesian product of m
linear segments, open in the direction of increasing coordinates,

(1.3a) a, <@, <b, (p=1,...,m).

Then the volume of oJ, |J|, is the produet of the lengths of these segments.
If an interval is considered mod 1, we take generally two points of R™ as
identioal if their corresponding coordinates differ by integers. Then nsunally
the points of J have to be taken with a convenient multiplicity. If all
points of J, taken mod 1, are simple, J can he congidered as a part of the
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unit cube, 0 <o, <1 (g =1,...,m) and is called simple. Then |J| ig
defined as cartesian product of m segments mod 1, 0 e, <o, <b, <1
or (0 < o < b,)U(a, < © < 1}. Denoting by 6, in the first case 0 and in
the second case 1, the length of the u-th edge of J is

(1.3) bﬂ_a"ﬂ—'_é#?

while the vohune of J becomes

e

EJl = H (bﬂ_a‘;&'l"é,u)‘

=1
We put generally
() 1= min (b,—a,+46,}.

1=

3. The essential point of EKronecker’s theory of irrationals is the
result that for any J and for at least one integer ¢:

(L4) P(ga) ed.

This result was sharpened by Weyl [7] whe proved that for a given & > 0
for any J with 7{J) = ¢ the integer ¢ = ¢; in (1.4) can be choosen < y(e),
with an ¥(z) independent of the special J with =(J) = &:

(1.5) Plgya)ed, ¢;<yle).

4. We will denofe by N {», J) the number of all P{ra) with 1<y < »
Iying mod 1 in J,

(1.6) N(m,J)::N(v: Pva)ed, lg_wéw).

Then it follows immediafiely from Weyl’s theorem (1'.5), that for any fixed
simple interval J mod 1 the relation holds

(1.7) Ne,J) =l +o{z) (2 - o).
5. We introduce, for = 1, 4.(x) by
(1.8) A@):= sup [N(y,)—y|J|,
l<y<z
where J runs through all simple intervals mod 1 in the unit cube in R™,

and denote by o = @{z) the inverse function of ¢ = w(e) in (1.2). We put
further '

1

(1.9) voi= PH(mADI,  ola) = ——r .
| %T( Yol )

iom
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6. It is easily seen that 4 (z) = o(%) (z — oo). Our aim is to improve
this estimate nsing the function &(y). Our essential result iz the

THEOREM 1. A (2}, as defined by (1.8), satisfies for m > 1 an inequality

(1.10) A(@) < ad(y)+paey), 1<y<w,e>1,>0

with eonstants a2 1 and § > 0 depending only on m.

This theorem is proved in the §§ 2-5 while the inequality (1.10) is
discussed in § 6 under different assumptions about z(y). In the case m = 1
an inequelity (1.10) holds even with « = 1. This case however has been
already discussed in [67.

7. Before attacking the problem of o(x) in (1.7) we have to obtain
o relationship between & and y(¢) in (1.5) and 4 (o) in (1.2). This relationship
follows in @ particularly simple and fundamental way from a special ease
of an important theorem due to Khintchine [4](1). We obtain from this
theorem for the constant y, from (1.9) the relation (See. 13, (2.10)):

1
=l
Yo¥ |l —
Yo&
8. It iz well Imown sinee Dirvichlet that p(y) == O(1/y™). I there
exists a g, 0 << ¢ << 1, such that

(1.11) y =

e
(1.12) vy = ?“Jff@“ (% = ¥o)
then we ghow that (Sec. 38}

(1.13) - Aly) = 0F'™).

This is in particular always the case if the a4, ..., g, are algebraic. However
the estimate of A (x) with the exponent 1 — p conld only be obtained nsing
Khintchine’s theorem, published 1949. In {5], 1930, we used a weaker
result than (1.13), due to Landau.

In the case m = 1 the fact that (1.13) follows from (1.12) has been
already proved by Hecke 1922, however with a method which apparently
cannot be.generalized to m > 1. 1930 we announced the regults correspond-

“ing to (1.12) and (1.13), however in the form A{x) = 0(2"), 0<a<1

(see [67).

9. More generally, assume k{y} as a positive constant or a continuous

() My attention was drawn kindly to this theorem by. J. W. 8. Cassels ([1],
PP. 97-09). '
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positive Tunction strictly increasing to oo, such that

¢

(Y= W (¥ = Yy), oeAD>0,const.

Then for a conveniently defined I(a):
(1.14) A(m) = Ofz'"l(z)Y.

This follows from Lemma 5, Sec. 43.

i tienl k! (1) = ~—————k(m) ) then we obfain even
' xk 0
If in particular zk'(z) ogkia) )

(1.15) Az} = O(2"°k(x)¥) (Theorem 2, See. 50).

10. Qur proof of (1.10) was given for m = 1, 1930, in Ostrowski [6].
Its essential point was our Lemma 3 of § 3 which we developed l.e. for
m = 1, but indicated that the whole discussion can be generalized to
am > 1. In the mean time, 1950, 8. Hartman [2] has developed in a very
careful way the corresponding generalization of the Lermma 3 to m > 1,
discussing also the limiting cases. As we need only & part of this argument,
we give in § 3 our criginal proof, which is a straightforward generaliz-
ation of that given for m = 1 in [b].

§ 2. Use of Khinichine’s lemma

11. We formulate first one part of Khintchine’s theorem in the
form in which it was given by Cassels [1], p. 99, but changing conveniently
the nofation. We will dencte generally for an n-vector, & = (&, ..., o,),
by |§|, the norm ||, : = max |z,|.

Leyma 1. Let m and n be natural inlegers with m-+n = 1, Consider
a real {mxm)malriz, A = (a,), g =1,...,m5;»=1,,..,%n, and the
Iinear forms

(2.1) M (8 = 2 e,  (h=1,...,m),

#=]1

(2.2) N0 = amz“ (v =1,...,n),

Ms

il
LB

H
where the x, and the 2, ave respectively the components of the n-veetor & and
the m~vectors . Oonsider two positive constants &, y and a real m-vector § 1with
components by, ..., b,.

Theny in order that there ewists an integral veotor & satisfying the rela-
tionms

(2.3) 1M (E)—bali<e (p=1,...,m), [fl.<y¥
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it is sufficient that for y 1= 207 J(I1)? the following relation holds Jor every
integer m-vector {:

(2.4) | 37 bz | < prosxfyma i, 20, o161,
=1 *

As a matter of fact the complete formulation of Khintchine’s theorem
contains also the necessary condition for (2.3), which we however do not
need.

12. For our purpose we must now qpema.h.ze the assumptions of
Khintehine's theorem.

Assume n =1, T =m+1 and observe that y,: 2"%/((m-+1)!)*
= 2y. The n-vector & becomes a scalar which we will denote by ¢, the
elements of the matrix 4 become a,, := a,, so that M,(&) becomes qa,

and the linear forms N,(Z) become N{ Z a,%,. The requirements
(2.3) of Khintchine’s theorem become

(2‘5) 1!9_’%-5,{;” <& ([-*'4 = 1,...,m), gl <y

It follows then from the condition (2.4) of Khintchine’s theorem that
(2.5) ean be certainly realized by a rational integer ¢ if for any m-vector
{ we have

o0 | o

13. The condition (2.8) is sharpened replacing the left side expression
by 1/2. As it is certainly satisfied if y,2!Z|. > 1, it suffices to consider
& with

(2.7) &l < 1y,.

Thence our condition becomes:

(2.8) 1< yoy N follows always from |Le < 1/(ye8).
Tt we now agsume that (1.1) holds and use the definition (1.2) of (1),

}Os - }Dy

and we can take ¥ in (2.5) as

< 2 max (I (Ol elllue)y  po = 2 [(mo+1) 1P

1

(2.9) y=yle):= Yol wl{(yee))
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Tring the inverse function to y, ¢, it follows as in (1.9)

(2.10) = —o(=) o= e)im —s
' e \rey)’ © yep(Lilvey))
LEMMA 2. For any y = 1/{y,y(1)) there exists an inleger q with
1
211 jgI< lga,~bll < e(y) = ————— (. =1,...,m).
@) <y, lae—b Yor(Li(voy)) e ™)
§3. A lemma

14. In what follows we will consider a sequence of points

(3.1) Piva) (v=1,...,m)

for a ﬁxed'iuteger % = 1. We define the symbol [¢—0] as [a] if @ iz not
integer and o—1 if @ is integer.

15. LeEMMA 3. Consider o simple interval J,mod 1 contained in the
unil eube, as characterized in Section 2, and assume the a, as in Section 1.
Then there ewist two intervals Jy and J) mod 1 in R™, obtained from J, by
porallel translations, such thal

(3.2) N, d) <nldy|, Nin,Jdy)znid.

16. Proof. Without loss of generality we can assume, that all a, lie
in the open interval {0, 1) and further, that J isnot identical with the unit
cube, but “begins” at the origin, that is that all ¢, in (1.3a) vanish. Denote
the length of the u-edge of J, by 4, where

0<d, <1 (g=1,..c,m), |Jol =dy...d, <1.

17. If we shift J, in the directions of the @, by the integers §us We
obtain & proper interval which will be denoted by Ja,...a,,- LThen the
original J, can be written as J, ,. Obviously J gz, 18 the cartesian
product of the segments ¢, ..., q,,

<dey1 (Qp+1)dy) (p =1, ey M),

18. We let'now, for positive integers @, ..., @,,, each s *un through
0’1.’ --+3@,—1. Then 2ll intervals obtained in this way form together
an interval J* with the edges Q,d, (# = 1, ..., m) and its volume is

Qi = [[(Qud), Q:=8...Q,.
pe=l
Put further
(3.3) Hopram = Nl Pva) e, . 5 v<a)
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and denote by N the sum of all No..o., o =0, 15 o0y @15 005 O
=011:"'?Qm)!

(3.4) Fi= D N
Fraee

19. Denote by f(») the ndmber of all points in J* which, considered
med 1, coincide with the fixed P(ra,) from (3.1). These points have the
coordinates

[g1+R(ray), ga+E{vas), ..., g+ Blva,)]
where

0< g1 <[@udi—RB(va))—0], ...y 0= g, < [Qnd, —E(ra,)~0].

Therefore we have

(3.5) f0) = [] (9.8, 41 ~R(va,)—0].

By sammation over » =1, ..., # we obtain the number of all points in
J* equal mod 1 to the points (3.1), that is N. Dividing by @ we obtain
finally

1 &y 1
(3.6) -Q—:;’Q [Q,4,+1—R(ra,)—0] -2, " Ny

20. If we let all @, increase to oo, the left side expression in (3.6)
tends to nd,|. Therefore the same holds in the right-hand expression
and we obtain

1
(3.7) _ —- Ny

P PR

21. Assume first that n|d,| i3 not infeger and les in (&, k4 1).
Then obviously, as scon as the left side expression in (3.7) lies in the open
interval (%, k-+-1), it is Impossible that all Ny, I (3.7) are > k1.
Neither can all these N, . be < k. Therefore there exist at least two
different J, . . say Jy,Jy, so that (3.2) is satisfied.

22. Assume now that n|J,| is an integer. If there exist two oy, . g »
say J, and J,', so that

N(M,J;)<%|J0{, N{n, J;’)>”[Jo]1

—nlly  (VQ, - ).

I

(3.2) is again satisfied. Otherwise for all gty TDE corresponding N, .
in (3.7} are equal to n}J,| and then we can take J, = J, = J,, and the
relations (3.2) are satisfied with the equalify sign.
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§ 4. An upper limit for N{n, J)—n|J|

23. Consider a simple interval Jmod 1l with the edges d,,...,d
and a posifive ¢ < 1/4. Assume first that

(4.1) 1-d,>2 (u=1,...,m).

m

Let J, be an interval econcentric to J with the edges d,+2e, ..., d,, +2s.
(See Fig. 1, for m = 2.)

~

Jo

Tig. 1

By (4.1) J, is also a simple interval and we have

(4.2) ol = [ (@,+20), 1] = [l 4.
p=1 p=1

24. By the first inequality (3.2) there exists an interval J, congruent
with J, such that

(4.3) Nin, J)) < nld.

Consider a eube, €, with the edges parallel to the axes and of the
length £, placed so that it has with J only one point of the boundary in
common, the vertex B = (¢, ..., ¢,), and lies completely in J, (see the
hatched sqnare ¢ in Fig. 1).

25. Consider the vertex of J, corresponding to B and the corre-
sponding vertex of Jy, B’ = (e[, ..., ¢,). Then by what has been proved
In Bection 13 about the relation (1.5) it follows that for a convenient

e . 1 ‘
positive Integer g < y(e) = 1 /[yo P (;;)] and convenient integers ¢,, ..., 4
the relations held '
(4.4) ,—6, = B{ga,)+q,+ 0,6, 0<|6,]<l (p=1, ceay M),

It follows that it we apply the parallel translation first by the vector
qa and then by the integer vector (g,) to the interval J), this interval
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goes over into a congrnent intervall J, which has the property that the
vertex of J corresponding to B’ Lies in the hatched domain €. Obviously,

J is contarned in J.

26. Consider the translation from J, to J. To the points P(ra),
1< » < m, lylng in J; correspond the points congruent mod 1 to P{(» +¢) a}
that is to the points P(va), ¢+1 < v << n+¢. Their number is

N(n,Jo) = Nn+q,J)—N(g, J).
But the minuend here can be written as
Nin+gq,J) = N(n,J)+N(R(ra), R(ra) e J) (+l<r<ntg).

Here the last summand can be again written as N(g,J") if we denoto
by J* the interval obtained from J by the parallel translation with the
vector E(na). And obviously |J*| = [J,| = |J].

27. We obtain therefore from (4.3)
{(4.5) N(n,Jy) = N(n, J)—N(g, J)+N{g, J") <nldy|,
Nin, Jy<nldy|+N{g, ) —N(g,J").
Ag J e J, it follows further
- N, )< N(n, J) < nldol —Ng, T+ Nig, 7.
Since }J| = |J*|, we can write this in the form
N(ny ) < nldol—[N(g, I)—nT 1+ [F (g, J*) —n|J]].

The two last bracket terms on the right have moduli < A(g) and we
obtain further
Nin, J)—-nifo| < 24(g).

On the other hand it follows from (4.2):

’ m m
ol = 71< [ [ (@ut20)— [ ] &< (1+26)" -1 < 2™,
p=1 =1
a8 2: <1 and the development of Jy|—[J| in products of the d, has
positive coefficients.
Sinee ¢ < y(e) and A [{g) is not decreagsing we can finally write

{4.6) N(n,J)—nlJ| <24 (y(e)) + 2" ns,

28. (4.6) has been derived assuming the condition (4.1). If this condi-
tion is not satisfied, we can by halfing each edge of the unit cube decompose
the unit cube into the sum of 2™ cubes of the edge length 1/2. Correspond-
ingly J is decomposed into at the most 2™ intervals J® (» =1,2,...)
with the edge length < 1/2.
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For each of the intervals J® the condition (4.1) is satisfied so that
we can write

Nn, I —nid V] < 24y () + 27 me.
Summing over » it follows
(4.7) N(ﬂ, J)—:”,|J| < gm-f-lA(y (8)) +22m+1n€.

§5. A lower limit for N{(n, J)—n|J|

29, We consider again the simple interval J mod 1 of the Section 23

with the edges d;, ..., d,, but assume first that for a positive s < 1/4
the relations hold:

(5.1) d,>2 (u=1,..,m).

Let now J, be an interval concentric to J with the edges & —2¢, ...
voiy Gy —2e. J i3 again a simple interval with
Wal = [] (d.—22),

m
=[] ..
p=1 t=1

By the second inequality in (3.2) there exists an interval J; congruent
with J, and such that

(5.3)

m

(5.2)

N(n, Jcti) = nldyl.

Qonsider a:‘cube, 0, with the edges parallel to the axes and of the length
¢ which has with J, only an edge ¥ = (e,, ..., ¢,,) in common (see the
hatched square in Tig. 2).

Jo

=

Tig. 2

80. Consider the vertex of J;, B = (e, ..., €,), ‘which corresponds
to E._Then, by what has been proved in Section 13 about the relation
(1.3), it follows that for & convenient positive integer g< () and con-

icm
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vénient integers q,, ..., 4, the relations hold:
e,—¢, = B(qa)-q,+0,¢,

We see that if we apply to the interval .J; the parallel translations
first by the veetor ga and then by the integer vector ¢* = (g,), this interval
goes over into & congruent interval J which has the property that the
vertex of J corresponding to Ej lies in the hatched domain €. Obviously
J contains J (see Fig. 2 for m = 2).

0<0,<1 (g=1,...,m).

31. By parallel tranglation from J; to J, 1o the points P(ra), 1 < » < ,
lying in J; correspond points congruent mod 1 to P((v+ ¢)a) that is to the
Plva), g+1<r<n+4q.

Thejr number is
Nin,dy) = N(n+q,/)—N(g,J).
But the minuend can be written as ‘
Nin+q,J) = Nin, J)+N(R(a) e J, n+1<r < ntg).

Here the last summand can be again written as N{g, J%) if we denote
by J* the interval obtained from J by the parallel translation with the
vector R(na). And obviously |J¥| = [Jo| = ||

We obtain therefore

N('n: J(;) = N(”? j)—N(g, j)+'N(QJ J*)2
Nn,J) = N, J)+[¥(g, ))—0J|1-[¥(g,d)—alJ]].

But here N(n, J) is < N{n,J) while N(n, J,) is, by (5.3), = n|J,|-

Ag both bracket expressions are = A (g) we obtain

(3.4) N(w, J) =0yl —24(q).

32. On the other hand, similarly as in Section 27,

L)

m
il = Wl =[] @,—20)> [[ a,—262" = [J|=2""e.

Ji=1 p#=1
Introdueing this into (5.4) we obtain finally

(5.5) N, J)—nld] > —(24(g)+2"ne).

33. If we now drop the restriction (5.1) and assume that at least one of
the d, is < 2¢, obviously |J| < 2¢. But then the relation {5.5) holds again
and is therefore now proved independently of the restriction (5.1).

Combining (4.7) and (5.5) it follows

N (n, J)—nlJ|| < 2™ Ay (o)) + 27" e
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Refering now to the definition (1.8) of 4 (z) it follows now since obviously
A(x) = A([2]), while y(£) in (2.10) is continuous,
{5.6°) Alp) <A@ 2 ae(y) @y 1),

This functional inequality the derivation of which is the essential
point of our method, is a gpecial case of the following inequality
{5.6) Az} < ad(y)+foely) (e=1,8>0,0=y>=1),
where o and f are given consbants.

§ 6. Discussion of the fundamental inequality

34. We are going first to treat the general inequality (5.6). We assume
generally about e(y) that it is positive and monotonically decreasing to
0 with § — co while A (x) is assumed to be positive and monotonically
increaging for « > 1.

LEvMA 4. Assume that for four comsiants g, ¢', I and @, With

{6.1) g>1, 0<g' <gla, L>0, =1
the following relations are satisfied

{6.2) @) <g’elge)  (m<a),

{6.3) s@y=L (A<oga,),

Under these conditions
(6.4) A(@) = Ofws(@)) (w1} oo)
and more precisely

(65) A@@)< Dus(a)  (3>1),

where D is defined by

(6.6) D := max (fi—(@,ﬂﬁ,—).
L g—g'a

35. Proof. If we tirst assume that 1 < < %, it follows by (6.3) and
{6.6) as A(m) is increasing,

A(w) < A (2,) < DL < Doe(z)
and we see that (6.5) holds for 1 < o < @y

It is therefore sufficient to prove that, if (6.5} holds for an 2> 1
It also holds for go. But replacing in (5.6) @ with gz and y with = it follows

4(90) < ad (o) + fgmela) = (a4 y)se) < “’? (aD+ B} (g2) (g0)
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and here tho factor-~ (aD+fg) is <D as follows immediately from
g

99'p

e L
g—ga

The inequality (6.5) is completely proved.

36. Oonsider now instead of the assmmptions mede in Section 34
the assumptions

(6.7 a>1, s@) =@, 0<i@<l, Al<e (@=1.

Then choosing

{6.8) logz := Vlogalogm
put
| Jogz | _ l/14:)gm
{6.9) 7= Toga roga |’
It follows
1™ <z,
1
{6.10) a® < 61°gu1::: = oV logelogs — g,

37. Put in (5.6) ¥ = =/z. We obtain, by (6.7),
A(®) < ad(vf)+ fz.
Writing this inequality for @/¢* instead of # and multiplying it with o,

o’ A (f_) <atA (w—ﬁr) + B
- #

Summing over » = 0, 1,...,n—1 it follows

n—1

Amsﬂqg%&ZFﬂ

ye={
We use now (6.10) and obtain

(6.11) AM@@P+;§J:MMEWQ.

The reader may be reminded that in the case o= 1, from e(x) = O(L/=)

follows
A(m) = O(loge)

23 i3 ghown in [6].
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38. Replace now the conditions of Section 34 by the conditions

3
B
(812) a>1, sr)<—5 (2=a,0>e),

8>1, x> 0.
o

Denote 1/§ by = and put in (5.6) 4 = 2°. As by (6.12) ze(s®) < »
it follows

(6.13) A@) < ad (8°Y -2 (w2 m,).
Replacing here # by #° and multiplying by «” we obtain

CAE) < EP AT F e (0 v < 1),
Adding over v = 0,1, ..., »—1 it follows

n—1

A (@) < a*A(z,) + fix S’ o < oty fx o= < o my+ P
£ —1 *Ta-1)
as soon as & < oy, that iz, as soOn a8
1
logs < "logx,, nlogdz=log 057 .
logz,

39. The last condition is satisfied as soon as nlogd > logloga,
. loglogm’ " [loglog:v 11
log § log

For this value of » it follows

log a
loga® = nloge < loga(1+ lolg }Oim) == log [(logm")m],
0g
or putting
(6.14) IS LN P

T logd !
a™ << 8 (logw)* = a(logm).
Therefore, finally,
Bx

loga
— 10 zIHe = b .
1) (logzye, log 8

(6.15) Ay < (mﬂ+

o—

§7. A(z) in dependence on ()

40. Returning now to the fanctional inequality (5.6) derived under

tl(le) conditions specified in Section 1 we have to mse the value (1.9) of
&(x),

(7.1) o(@) — —

( : )
Y@
Yol
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Thence, solving with respect to ¢ and using the inverse function v,

12) (1 )__ 1 1 ( 1 )
(. ? Yol yﬂa(m)’ Yol =Y yos(®) |

However the cages (6.7) and (6.12) can be discarded. Indeed under
the assumption (6.7) it follows from (7.2)

( 1 ) 1 L2 ( x ) - 1
@ = et

Yol Yor(2) Yo ’ Yo Yo¥
so that finally %(») > 1/y,» But this is only possible for m =1,y =1

and in thig case (@) is always < 1/z.
In the case of the condition (6.12) we obtain from (7.2)

ERREANE
v Yol 70"’ ¥ Yo' Vow,
and putting ¥ 1= 2®{{ye#), & = u(yex’y)? it follows
- 1
vor(yay )"

which iz impossible for a sufficiently large y, since 1/§ < 1.
We have therefore only to consider the case of Section 34..

41. The assumptions {6.1), (6.2) and (6.3) in Seetion 34 can be con-
siderably simplified. Putting ¢’ > 1,

logg’ (l(m) )E
1 =i |—
logyg <1, @ %

(7.3) 0<pg:=

the relation (6.2) becomes

e e 1 o
g(w) < g% (gx), (ﬁm_)) < gg(l(gm)) =( (im)) ’

2 ga

(® = ).

(7.4) L) < 1(go)
The relations (6.1) and (6.3} become now
(78) g>1,0<po<l, ¢ ?>a, L>0, e{z) > L (L< o<z

The inequality (7.4) is in any case satistied if I(z) is assumed as non
decreasing. In this particular case (6.2) holds for any sufficiently large
g > 1 and, for a fixed g, (6.2) holds for all g’ = ¢°* from a g > 1 on. From
now on we regtrict ourselves to the case (7.3) with ¢ congtant, 0 < ¢ < 1.

The simplest case is of course [{#) = ¢ = constant,

(7.6) s(@) < (ejoy, 0<eo<l, r:=1/c.
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By (7.2} it follows

(1.7) @ (—}-) > i"‘;, plu) = :
Yol Yol yoltyo®)®
For the inverse function of y = ¢ () it follows now
(78) O e s
Yo I ¥ol
Ioversely from (7.8) follows (7.7). From (6.5) we obtain now
(7.9) A(x) = 0"y,

42, The formule (7.9) holds in parbicular if the a, in (1.1) are il
algebraie. To prove this denote by a some primitive element of the field
Ray, ..., a,) so that

a, =h a) (p=1,...,m)

where the A, are polynomials with rational coefficients. Then, denoting
by g, %1, ..., %, independent indeterminates, put

Pz) == 2 by () + .

Let n+1 be the degree of a with respect to R. Denoting by o
(v =0,1,...,m),a® = o, the complete set of the conjugates of a,
form the expression

Tlttgy -3 ) = [ [ P(a)

»={

which is a polynomial with rational coefficients with common denomi-
nator N. If we put for the u, rational integers g, with 9 : = max 19, we
have for a fixed natural N:

NT{go, ..., gn) =G # 0,

with a rational integer @, so that (NT(gy,...,9,) =1
On the other hand

T Gos -1 ) = T{gay oy 0/ [ Y guu(0) 04

=1

is of dimension n and therefore T*(g,, .

IZ gl (a)+g,] >

a=1

v ) = O(y"). Tt follows

>0

n’
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with a constant ¢. We obtain from (1.2)

p(y) > Opy"
which is the relation (7.8) with r = and thence (7.9) with g = 1/n.

43. We can assume now I(z) as strictly monotonieally inereasing.
The essential difficulty in applying (6.5) consists in the necessity to obtain
sufficiently good approximation of the inverse funetions g{x) and p(x)
To do this we use the

LEppis 5. Assume L(z) for an ¢ = », > 1 a positive strictly monotonically
tnoreasing function of o suah that @ [l(w} also strictly monotonically increases.
Let 0 < g <1 and put ¢ :=1/o. Then necsssary and sufficient for ithe in-
equality

(7.10) &(w) =

1 L(m)
yep (Li7e0)] <ol
is that (@) satisfies the inequality

h)
7o(DyY ek ((Dy)")’
for a convenient constant 4, > 0, where with

)E (@ = )

(7.11) v(y) = Di=y0 (y=9)

(7.12) zi=afl(z), z22[L{Ty),
k(z) i3 defined by
(7.13) k@) :=Uo), o =zkiz).
44. Proof. Using £(x) from (7.10) it follows
1 z \°
(4 ool (5l /7 =0

Bince 5 = @/l(») is strictly monotonically increasing, the same holds
for k{2) defined by (7.13) and it follows from (7.13) and (7.14) that

1 Ty &y ¢ e
A1) sy, s, y>(z(m0))/1>a.yo.

Applying to both sides of (7.14) the function 9 we obtain
P(¥) = 1/(y.z)
and since by (7.13) and (7.16) # = (Dy)"*k((Dy)""), (7.11) follows.

45. On the other hand, assuming (7.11) fory > 9, with (Dy e x
XE{(Dy,)?) > 1 and defining # by (7.15) we can rewrite (7.11) as

(7.16) Py) = = (Dy)? =: 2.

Yok (2) '



®
180 A, M. Ostrowski Im“

Put then in (7.16)

{1.17) wr=zk(e), @=zk(z) =t@y>1

and apply on both sides of (7.16) the function p. We obtain
(7.18) 3 < @(1](702)) -

Defining now i{») by (7.13) we obtain from (7.12) and (7.15)

o= o

¢(;¥)>(ﬁ;rfp

and the formula (7.10) follows.

46. Applying Lemma b and starting from an inequality of the type
of (7.11), it is important to find convenient functions k(y). The following
lemma allows this in a greater number of cases.

{7.18) becomes now

LA 6. Assume for £ 2wy 2= 68, with o — oo, k(x) strictly increasing,

(7.19) e< ki@t (2hoo),
{7.20) ok’ (1) = o(k(w) logk(z)),
and define Z(x) by:

(7.21) #h(s) = », 2 =2Z(w)}oo.

Then for an arbitrary smell & > 0 with © — oo:

& &
(W)
(7.23) k(@) = O(eTes),
&
(7.24) Z@) = W(l +o(1)).

47. Proof. From k(x,) > e it follows by (7.21) Z(x,) < 2y, Z{a) < @2

B(z) < k(z) (2= a2,
and, from

{7.2D) &z = alk(z),
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we obtain
x »
(7.26) Z(x) > —— k(=) > k(——— .
O

From (7.25) and (7.26} we obtain further

(7.27) Z{#) < ——n
k(w/k ()
and (7.22) iz proved.
krw
" 48. By (7.20) wo obtain, for an &> 0,

m((logk(m))z)' <& (r>m),
(logk@P) < &2 (2> o),
(logk(w)* < s*loga + (logh(wy))? - etlogm,,

logk(m) < Vetloge ¢ < e¥Ioga + Ve
for a constant ¢, and (7.23) follows.
"49. Finally uwsing (7.20) we obtain
T x
® k(y) dy
E(w)—k (——) = f B =o( f —)
k{z) Wiy logk(y) v

. 2/k(z) . @fkfz)

But obviously, in virtue of

o Bl@) | |
logk(z)) =¥ _
(log k() ( o k(w)) 7 (m)(loglk( #)—1) >0,
we can take in the last integral the factor 1 k(;() ) out of the integral
oglm) - ' '

and. obtain

YA k() 3 dy\ [ k{x) B '
MMHM%4WW$J%%MMWM”WW

It follows
k(m)/lr. (%%)_) 140(1)

and (7.24) follows from (7.22). Lemma 6 is proved.

50. We can now formulate in a particularly simple and important
cage '

THROREM 2. dssume k(w) a conslant or sirictly increasing funet@on
satisfying the conditions (7.19) ond (7.20). Assume (7.11) for a convenient

6 — Acta Arithmetica XLI, 2
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O>1 and a p with 0 < ¢ < 1. Then

(7.28) o) = 0(( f)) ),
(7.29) Alm) = 0(2Ke(w)).

Proof. Defining #z by (7.21) it follows from I{x) :=

@) k) 1 hk(»)
w ke 2 @ (L+o(m);

I(@) = E(x)(L+0(1))
and therefore, by (6.4) and (7.10), (7.28) and (7.29).

k(2) and (7.24):

51. Consider, for instance, the monotomca,]ly increasing expresgions
of the ftype

k(®) := clogiwlogi?e ... logire - (& > ),

where generally the y-times iterated logarithm of « is denoted by log,o
and the first non vanishing term in the sequence ay, a, ..., a, i8 positive.
Then we have for the logarithmic derivative of k(=s):

% _
(@) _ y a, _ o( 1 )
E(x) & zslog,o ... log,_ = zlogxw

Since logk{z) = O(log,») it follows

ol () log B (2) [l (@) = o( ligg‘f ) = o(1)

and the conditions of Lemma 6 are satisfied. It follows

(7.30) Aw) = 0(:;;)
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