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Matrix field extensions
by

Jaco T. B. BeArp, Jr.,* (Cockeville, Tenn.) and
RosERT M. McCoxXEL {Knoxville, Tenn.}

1. Introducition and notation. Let B dencte either the ring Zm of
integers modulo m, or the Galois field GF(g), ¢ = p% d=1, and let (R),
denote the ring of all n X # matriees over B under the nsnal matrix addition
and multiplication. Subrings M of (R), which are fields are called subfields
of (R),, and have been characterized in [1], [2], [6], and enumerated
in [37, [6]. The set %, of all subfields of (£), is non-empty exceph when
R = Zm and no prime divides m exactly onece. Additional results in 1],
[217, [3], [6] establish that, under set inclusion, the partially . ordered
set 4, is the union of algebraieally disjoint complete inf semi-lattices ([3];
Theorem 29) such that if M e %, and M has identity I, then M is con-
tained in the unique semi-lattice whose minimum element hag identity 1.
When R = Zm or B = GF(p), it has been ghown [3], [6] that the simi-
larity classes of #, (under the action of conjugation by the group @ of
non-singnlar matrices in {R),) are precisely the sets of subfields of {R),
having common rank and order. In the case E = G {ph, d>1, our
attention focuses on the set £, of all subfields 3 of (&), such that the
canonical projection of a normal form of M ([4], . 332) contains the set
8, (k) of r x r scalar matrices over R for » = rank M. Recall that & matrix
field M’ of (R), is a normal form of M provided I is gimilar over R to
M’ and each matrix in M’ hes the form 1%sum (d; n—r, 0} =
diag [0,,_,, A], where » = rank M and 0,,_., denotes the zero matrix of order
n—r. In this case we write M’ = 1°%sum (M",n—r, 0) and the matrix
field M of (R), is the canonieal projection of M'. Again, the gimilarity

classes of &, are sets of subfields of (R), having common rank and order,
and we note %, = 5? when ¢ = 1. ()m enrrent. results permit the enn-

meration of maximal chains in £, (4, if @ > 1) which are rooted at an
arbitrarily given element M €4, by usmo' the mamber E(g, %, 1, m, 1),

* This anthor was partially supported by a Summer Research Stipend from
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coleulated in Section 2, of distinet cxtension flelds M’ in (R), having
order g™ of an arbitrary matrix field M having order gf and rank ». The
analogous nunther E(M, g, n, I, m, ) in the cage d > 1 and H &, —53;
is discussed Dbriefly in Scetion 5. While determining F(g, n, 1, m, #) and
considering B (M, ¢, %, 1, m, r), we observe a simplification for the explicit
expression given in [3] for the number N (g, n, m, ) of distinet subfields
of (GF(q)), of order p™ and rauk » (Section 4). Other results (Section 3)
include a constructive matrix representation for the Galois group of M*
over M and the enumeration of all non-singular matrices P and similarity
transformations ¢, which induce M-anfomorphisms of M’'. In Section 6
we gharpen a previous result ([4], Theorem 10) and obtain the number
of restricted solutions (g(m),B) 4 of the equation A4 =g(B) for ¢{m)
e GF[q, #] and 4, B € {GF(q),.

Owr language and notation is that of [11-[4], [6]. Briefly, if M e &,
and M has mulbiplicative identity f, then rank I is defined as rank I,
and we recall that the rank of each non-zero matrix in M is that of I.
The set of all # x= scalar matrices ol , a e R, with I, the identity of
{B),, is denoted by &,(R). The ring extension of §,(R) in (R), obtained
by adjoining A e (K}, is denoted by 8, (E)[4], and we recall that (R), is
algebraic over R. Finally, for each non-singular matrix P e(R),, the
similarity transformation gp on (R), is defined by: pp(d) = PAP™! for
all 4 e(R),. : :

We emphasize that the identity I of a subfield M of (R), need not
be the identity I, of {R),. (See [12] for an example of a ring B such that
(R}, containg a subfield and (R), has no identity.)

2, The number H(q,n,1, m,r). Let F = GF(g), ¢ = p% d=1, and
let #, denote the set of all subfields of the algebra (F),. Let &, denote
the et of all subfields M of (¥, such that 8,(F) < M or, in case rank
M =1 <n, M containg a subfield which is similar over F to the subfield
1°-sum (8,(F); n—7, 0). As shown in [1], [2], for M e%,, M has order
¢ for some ! dividing the rank » of M. Certainly any field extension
N e, of Me#, satisties M’ eF, and has order ¢™ where Im.
Thus the number £(g, n,1, m,r) of field extensions M’ of such an M
in (F), having order ¢™ is positive if and only if Ijm and mr. (To see
the sufficiency of the condition Um and mlr, sec the proof technique
used in [1], Theorem 9 or [5], Section 5.) Tf M,, M, E'g;_n have the same
order and rank, then 3, and M, are similar over # ([3], Scctions 4-6).
It will follow, from two observations, that E{q, », 1, m,r) is independent
of the field M and, instead, is a function of only ¢, , I, m, r a8 displayed.
First, no two distinet fields 3, M, e &, of the same order have a common
extension field M e %, otherwise M’ would not contain a unique subfield
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of order |3, = |M,]. Second, for M,, M, e#, of equal rank and order,
let M,, M, have H, = E(g,n,1,m,7), B, = E,(q,n,1,m,r) distinct
field extensions in &, of order ¢ respectively. Let P e (), be any matrix,
as guaranteed above, such that PM,P~* = M,. If 3 and M’ 1’ are_eo;un’c;ed
by E,, then PM; P~ and PM, P~ are counted by E,. Since the similarity
transformation gp on (F), induces a bijection on &, which maps %, to
itself, then B, # X, is impossible. This argument that Elg,n, 1, m,r
is independent of the field 3 e &, of order ¢ and rank r has established

Nig,n,m,7

(2.1) Blg,n,l,m,r) = Mg, n,1,7) '

where N (g, n,m,¥) is the number of matrix fields M e.;ﬂ of order ¢"
and rank r. From [3], Theorem 18, and (2.1) we conclude

g(d, n)
mg(d, n—r)g(dm, rfm) Ig(dl, vI) )
gy bmam) = 9@, m) = “mg(am, rm)

lg(d, n—rig{dl,r[T)

TugoreM 1. Lei F = GR(g), ¢ = p% d=1. Let M be a subficld of
(B, of order ¢ and rank v such that M cordains S, (F) or a subficld s@,-m?lar
over F to 1°-sum (8,(F); n—r, 0). The number E{g, n, 1, m,7) of distinct
ewtension fields of M in (F), of order ¢" is given by

Ig(dL, D)
(2.2) Blg,mylym,r) = g (dm, ¥ jm)

$-1

whenever 1im|r, where g(s, 1) = J] (" — %) is the number of non-singular
j}

matrices of order t over Gr]i‘(p"'):1 Otherwise, (g, n, b, my7r) = 0.

Tight bounds on H(g,n,l,m,r} can be obtained iropl {2.2) by
straightforward manipulations of g{al, +/1)/g(dm, ¥ fm). Lef.:tmg [#] and
{«} denote respectively the greatest and least infeger functions of %, one
has

1 . (qr _1)1'[?. 1 2 —l)]. .
(2.3) {;{ qﬂm—»mﬂm} < E(q, Ty by Wy 7Y S [W _1_;&__ q m—)j2im |

In the case of an arbitrary modulus m, >1, let
(2.4) My = MMy +.0 My

where m; = pi, a(d) > 0, and the primes p; are distinct. Following [61,
we consider the matrix ring (Zm,), over the integers modulo my 48

(2.5) (), = (Z10), @ (),
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The subfields of (Zm,), are precisely those subrings M of (Zm,), such
that M i3 a subfield of an ideal (Zp), of (Zm,), for some prime pfm,
(161, Theorem 7). Thus for every subfield M of (Zm,),, there exists a prime
plmy such that §,(Zp} s M or, when rank M =r < n, M contains
a snbfield similar over Zm, to 1°-sum (S,(Zp); n—r, 0). Moreover, any
two subfields of {Zm,), having the same order and rank are similar over
Zimg {[6], Theorem 17). Thus the techniques used previcusly in this seetion
remain valid. The number N(p,n, m, ) of distinct subfields of (Zm,),
having  order p™ and rank r is posmve it and only if p||m, and mir,
and takes the value ([6], Theorem 10)

1 g1, n)

2.6) Nip, s, m, ) = — )
( s M 1) = T gy v

The appropriate analog of (2.1) yields

TeEOREM 2, Let m, > 1 htwe Juctorization (2.4) and let M be ¢ sub-
field of (Zmy),, havmg order p* and vemk v. Then p|m,. The number
B(p,n,l,m,r) of distinet ewtension fields of M in (Zm,), having order

k173

™ is given by
gl
(2.7) B(p,n,l,m,r) — 0T
: mg(m, r{m)
. =1
whenever Lim|r, where g(s,t) = [] (9% —9%Y) is the number of non-singular
j=0

matrices of order t over GF(p"). Otherwise, H{p,n,l, m,r) = 0.

3. Matrix Galois groups. Again, let T = GF(g), #,
in Beetion 2, and let &, (m,r) (F,(m,r)) devote the set of all matrix
fields in &, (%) having order 4™ and rank r. Then &, is stable under
the action of & on (F), s0 that & acts of é’Fn, and the sets Fo(m, ) are
the Slmﬂdl'ltj,’ {conjugacy) classes of the action, with @ acting transitively
on each:??-‘ J(m, 7). Let M eF, a{m, 7} and let N (M)} denote the normalizer
of M in G: Ng(M)=4{PeG: PUP' = M}. Then the cardinality

IF (1, 7)] of F a(m, 1) is given by ]J‘ (m, 1) = [G: Ng(I)], so that from

ny and J' be as

Nig,n,m, 7) = |.?'n(m,r); we have
gl{d, n) _ gi{d, n)
mg(d, n—r)g(dm, rjm)  |Ng(M)’
(3.1) W) = mg(d, n—r)g(dm, »[m).

Let Ogp(3) denote the centralizer of M in @:
Oo(M) = {Pe@: PAP™ = 4 for all 4 & M;.

icm
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The argument which established ([31, (3.3), (6.1)) now yields
(3.2) Cg(AD)| = g(d, n—1)g(dm, rjm).

In keeping with the standard terminology, we say that the similarity
transformation ¢p on (F), induces an auntomorphism of M if and only
it P e Ng( M), and pp is an M-antomoerphism of (F),, if and only if P e (g( ).
F Les#,(l,r) and L is a sublield of A, let G(M (L) denote the Galois
group of M over L. In partieular, for A &, {(m, ), let M eF (1,r)
denotic the subfield of M having order g.

TaEoREM 3. Let B = GF(q), q =2% d=1, and let M eF, (m, ).
Then G(I[M,) o2 Ng{M)[Cyx(M). BMoreover, for each I -automorphism
aeG(M[M,) of M, there exist g(d,n—r)g(dm, rjm) distinet non-singular
matrices P e (F), such that gply = a, where g(s, 0) = 1 and g(s, 1) s the
number of non-singular matri wes of order t over GF (p®). The nwmber of distine
M automorphisms gp of (F), such that gplyy is an arbitrary fived M, ~aito-
m-o-rphism of B 13 g(d,ﬂ—*f g(dm, vm)[g{d, 1).

Proof. We claim that y(P) = gpl;, for each P e Ng(M} defines
an endomorphism y: Ng{M)}—6 (3 /3,). The only concern i that ¢p must
fix 3, element-wise, as it clearly does in the case r = % since M, = 8, (F).
Thus suppose 7<%, and let PIMP“ =M =1 -qum(M”, #—7r, 0)
where M € #,(m,r), so that M, = 1°-sum(8,(F); n-—7,0). For the
time Deing, let @ e Ng(M’') be arbitrary. Then {e NG(M ). Let
diag[0,_,, aI,], diagl0,_,, bI,]e M, such that Qdiagl0,_,, «l1@™
= ding [0, _,, bI,]. For the appropriate partition of § we then have

o oo o] =il Lo )

[g Zg] - [293 g@;]'

Thus @, = ¢, = 0, and @;, ¢, have full rank. Hence a = b, and
@ fixes M element-wise. Now take @ = P, PPy !, Then § € Ng(M’) since
PN M )P‘ = Ng(P MPrY). On writing P = Py YP,PPTHYP,, it is
evident that ¢y fixes I, element-wise, and the elaim is established. More-
over, kery = Og(M), thus Ng(M)/Cx{M) is embeddable in G(H[3).
Since 1¥4(3)/Cq(M)| =2 m by (3.1) and (3.2}, and 16( MM = m, then
G(MM ) = Ng(M)/Cx(M). The penultimate claim of the theorem
follows from ({3.2). The final result follows from the former since ajoa)
~ Ton {(F),) and [C(6)] = ¢—1 = g(d, ).

Ag an illugtration of Theorem 3, consider Af e o (9, n) so that M
is a largest maximal subfield of (F),. Then I, =8, (F) and, for each
a € G( A |3 ,), there exist ¢° —1 distinet ﬂon—singula.r matrices P & (), such
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that the restrictions of pp to M are M -automorphisms of M, determining
1+4g-+... 4 ¢"* distinct similarity transformations of (F), whose restric-
tions to M are a.

The Galoiz group G(M/M,) can be embedded in {(F), as follows.

Let M eE’n(-:rz, 7). By [2], Theorems 6, 8, 9, we can find a matrix P, € (F),
such that

(3.3 PMPT = 1°sum (k-sum(8,, () [0); n—r, 0,
where # = km, and such that ¢ is the companion matrix of a poiynomial

fl@) e F[z] which is primitive of the second kind ([3], proof of Theorem 2,
[5], [7], [8], [@], [t3]). Let 4 e B such thab

(3.4) P AP = 1°%sum{k-sum(€); n—r, 0} = 0y,
Henee Og{P, MP7) is the set of all diagonal block matrices diag|B,, B,

€ (F), such that B, £ (8,,(¥) [0 is non-singular and B, & (F),_, is non-
singular. Moreover, the argument used to obtain (3.2) establishes

(3.5) O(M) = Py 'Cq(PL.MP ) Py
Bince 0% is a root of f(e) and f(z) is prime in F[z], it follows that ¢ is
similar over I to (9 and hence 0, ag defined in (3.4), is similar over

to Cf. Compute 0% and P & (¥),, so that POP™' = (7. Let P, = diag|l,
k-sam (P)], so that ' '

—i?

PP =08 and P, e Cu(P M PTY.
Then P,P, AP7P;" = (%, so that from (3.3) and (3.4} we have
(3.6) (PTP,Py) A(PT'P,Py) ! = PUIOTP, = AL
Take @ = PP, Py, so that from (3.6) we have
Q4G = A7 '
PAQT = QQAQNQ™T = Q4% = (QAQ7) = (477 = AT,
and by induction,
QAQT = A7,

Since f(z) is primitive of the second kind, A% —;Aq", 0<i<<jgm—1.
Eence the coset Q04 ( ) is & cyclic generator of Ng(M)/Cg(2), and the
similarity transformations ¢gs on (¥),, 0 <j<<m—1, indnce all of the
gq-automorphisms of M. _

Let Le#,(l,r) with L an intermediate tield between M, and M,
and vepresent G(M[M,) as G(M/M,) = {@": 0<j<m—1}. Then

CEAID) = (@R 0K m—1)l,  G(LJM,) = @0 <j <11}

0<ljig<m—1,
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follow from basic Galois theory and the representation chosen for
G(M A

Rather than belabor the peoint, we merely observe that the obvious
ansdogs of the results of this section hold for (Zm,), and follow from (2.5)
and [6], Theorem 7.

4. The number N(q,#n,m,+). As in [3], let N(g,#,m,r) denote
the number of subficlds of {F), of order p™ and rank r, F = GF(q),
g = p%, @> 1. The expressions given in [3], (7.7), (8.2), for N (g, n,m, 1)
can be simplified considerably, nsing the techniques of [27, Theorsm &,
and [3], Section 8, with one additional observation. Let I eF, (m,r),
so that M is similar over F to the matrix field M’ = 1°%sum (S, (F,) [4];
n—r,0). Note that 3’ contains the matrix 4’ = L-sum(4; #—7, 0).
Then .4’ has minimal polynomial f{x} = »g(3) over F, — GF(p) where
(z, g(w)) =1, g(o) € F,[x] is prime of degree m. Now use the additional
information that fix) factors in Flx] as

(£.1) flm) = aPy(2) ... Py{2) = Py(@)Py{z) ... P{z)

where the primes P;(z) e F[#] ave distinet, s = (m, d), and for ¢ >0
P,(2) has degree m /s ([10], p. 33). Following Hodges {11}, 4 (and hence M)
uniquely determines a partition = x{n) of # (independent of 4, 3, and
the particular prime g(z) e F,[x] of degree m) of the form

LA R

z Hi
(4.2) w(n)in = k- Z ke,
i=1

8

where oI —A has %, elementary divisors P;{x). The expressions a(x) and
b(w) defined by Hodges ([11], p. 292) and used in [3], Sections 7, 3, are
geen to have the value zero. Thus Theoren 20 and Theorem 25 of [3]
simplity to the following resulf.

THEOREM 4. Let F = GF(g), ¢ =% d=1, and le Nlig,n,m,7)
be the number of distinet subficlds of (F),, having order p™ and ronk r< n.
Then N{g,n, m,r) = 0 if no prime polynomial g(z) # & of degree m in
F,[x] is r-admissible for F. Whenever F,[z] eontains a prime polynomial
g(x) 7= o of degree m which is r-admissible for F,

1 . _
{4.3) Nig,n,n,1) :;}Tg(d, %) 2 Hg(dm, k)L

where xq(x) has fectorizalion (41); the swmmation is over all partitions
of n obtained by taking ke = n—r in (£2) and b a non-pegative integer
for i>0; g(s,0) =1 and g{s, 1) is the number of non-ginguldr matrices
of erder t over GF(p®).
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The number N(g, #} of distinct subtields given by [3], Theorem 26,
i3 then
n rd

(4:4) Nig,n) = D) M N(g,n,m,7),

t=1 f=1
where N (q, %, m, v} i8 given in (4.3).

5. Remarks on E(M,q,n,l,m,s). Let M, M, e F,. (I, 7). The
argument used in Section 2 establishes that if 3 is similar over 7 io
ALy, then M, and 3, have the same number of extension fields in (), of
order p™. Though M, and M, have the same partition = of » ag given
in (4.2) whenever M, is similar to M, over I, I, can have dis-similar
extension fields in (F), having the same order, call them I} and M ¢ {e.g.
gee [3], Bxample 1). In gemeral, the partitions =" and =" deterinined by
M and M, apparently can beé equal or different, and certainly = # =, o'’.
Tt is casily seen that if two similar fields 37, , M, have dis-similar extension
fields M, = A, and M; > M, in (F), of the same order, then M, (and
dually M,) has dig-similar extension fields in (I, of the same order.
Thus the enumeration technique of {3], [11], and Section 4, based on
the partifions = of #, does not permit the explicit caleulation of the number
E(H,q,n,1,m,r} of field cxtensions of order ™ in (F), of a subfield
A of (B}, having order p* and rank 7, nor would an enumeration technique
baged on the similarity classes of 7, .

6. A related result. Let F = GI(g), ¢ =p% d=1, and suppose
A e (F), has characteristic polynomial J*() and wminimal polynomial ()
which is prime in F{x]. In {4], Theorem 10, it was stated (without proof)
that for each integer m | k and each prime h{w) € Flx] of degree mn/k,
there exist at leass mn/l matrices B, e (F), having characteristic poly-
nomial Z¥™ (z), minimal polynomial k(#), and satisfying A4 = g;(B;) for
unigne g,(#) e Flo] of degrees Ty << (b, We show that the mumber of
matrices B; satizfving the conditions is precisely E(q, =, n[k, mnk, n)mn (k.

Let A satisfy the bypothesis so that M = &,(F)[4] e, (n/k, n).
Suppcn‘se m | k and h{x) e Fz] is prime of degree mn/k. Using the con-
struction tech.‘niquﬁ in the proof of [1], Theorem 9, [5], Seetion 5, let
W' = 8, (F)[B] eF, (mn/k,n) be an extension of M. Then M’ contains
mnfk distinet roots B; e (F), of h{z), each having characteristic poly-
nomial ?z"f"‘(m), and minimal polynomial #(z) over F, Clearly, for cach i
t]}ere exists & unique g;(») € F[z] of degree r; < mn /E such that g,(B,) = A.
Since the same is true of each extension M’ of A in (I'),, baving order
g™ and each such 3 les in ./En(c«)m {k, ), and since any matrix B; e (F)
satisfying the conditions Iies in such an extension I of M ; We a,rc; clonef

L2
3]
pk
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