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The equation ax™-+by™ = cx*+ dy"
by

T. N. SporeEY (Bombay, India)

1. For non-zero integers o, b, k and non-negative integers m, @, ¥
with max(z, ) > 1, Tijdeman [12] proved that the equation

(1) ax™ + by™ =k

implies that m is bounded by an effectively computable number depending
only on &, b and % In §3, we shall generalize this as follows:

THEOREM 1. Let a £ 0, b 5 0, ¢ and d be indegers. Suppose that @, 4
are distinct positive integers and m, 2 with n < m are non-negative integers.
Then there exists an effectively computable number N >0 depending only
or ; b, ¢ and d such that the equalion

(2) o ax™ -4 by™ = ex™ - dy™
with
(3) ax™ £ e

implies that m << N.

If (1) holds for m = m, and for m = #,, then (2)is valid with ¢ = a,
d = b, m =m,, m = m,. Theorem 1, therefore, implies the following
regult. ' : :

CorornaAry, Lel @ 52 0, b 5= 0 and & be integers. Suppose that » and ¥y
arve distinct positive integers. Then there exisis an effectively eomputable
number Ny > 0 depending only on a and b such that the eguation (1} has
at most one solution in non-negative integers m with m>= N,.

The interest of the corollary lies in the fact that N, is independent
not only of z and y but also of k. Compare this with the theorem of Tijde-
man [12] mentioned above. Compare also with Eubota {3} See also
Parnami and Shorey [3].

Combining Theorem 1 and Theorem B (see §2) of Schinzel [9], we
have: - '
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THROREM 2. Let a, b, ¢ and 4 be fived integers. Then the equation (2)
has only finitely many solulions in integers ¢ >0, y>0, m>2, o= 0
with @& 3£y, n<m, ax™ 3 ex" such that the binary form aX™ XY™ s
irreducible over the rationals.

In case aX™+bY™ is reducibie over the rationals, we can combine
Theorem 1 with Theorem O (see §2) due to Roth [8]. This gives im-
mediately the following result.

TaroreM 3. Leta 5= 0, b 5= 0, ¢ and d be fived integers. Then the equation
(2} has only finitely many soltions in dntegers £ >0, y > ¢, m>2, 520
with 2 %14, n< m—2, ar™ == cx” and ax™+by™ = 0.

In Theorems 2 and 3, we obtain effective bounds only for m and #.
If 2 and y are composed of fixed primes, it is possible to give effective
bounds for @ and y too. Let P > 2 and denote by § the set of all positive
integers composed of primes not exceeding P. In §4, we shall prove:

THROREM 4. Lel ¢ #= 0, b £ 0, ¢ and d be integers. Then all the sol-
utions of (2), in integers =, y, m,n with v e S, yef, 2 ¢y, n =0, n < m,
ar® Z£ ex™ and az™ - by™ + 0, satisfy

max(e, y, m, n) N,

for a ceriain effectively computable number N, >0 depending only on
a,b,e,d and P. .

We ghall use Theorem 1 for the proof of Theorem 3. For related
work in the direction of Theorem 4, see Pillai [6], Mahler {4] and Tijde-
man [14]. The equation (2} with ab = 0 is considered in Remarks (ii)
and (i),

I express my thanks tc Professor R. Tijdeman for his valuable com-
menty and for suggesting me Improvements on an earlier draft of this
paper.

2. In this section, we state the results that we use from other sources.
The notations of this section are independent of the notations of the
remaining paper. The proofs of Theoremsel and 3 depend, on the fol-
lowing result of Baker {2] on linear forms in logarithms.

Let ay, ..., a, be non-zero rational numbers of heights not excecding
Ay, ..., A, respectively, where we assume that A;23 for 1<{jgn.
(The height of a rational mumber m/n with (m,#n) =1 is defined as
max(im|, [n|).) Write

n—1
& =H logd; and Q= Qlogd,.
=1

TeEoREM A. There emist effectively compuiable absolute consiants ¢, > 0
and ¢, > 0 such that the inequalities

0 < faft... &r—1| < cxp(— (o, n)2" Qlog 2'log B)

icm

The equation az™ 4 by™ = ca® 4 dy" 2b7

have no solution in rational integers by, ..
B (=92).

We shall apply Theorem A with #, 4,, ..., 4, _, fived. The theorem
is best possible in its dependance on A4, and this is crucial for the proof
of Theorem 1. Now we state a result of Schinzel [#] that we have applied
in §1 to derive Theorem 2 from Theorem 1.

TerorEM B. Lot f(w,y) be an drreducible binary form (fized) with
integer coefficients of degree m > 2. Suppose that Plx, ) is a polynomial
(fizmed) with integer cocfficients of total degree m. Assumethal n < m. Then
the equation '

.4 b, with absolute values af most

fle, 4y = Pla, )
has only finitely many solufions in integers x and ¥.

We remark that the method of proof of Theorem B is not effective.
Now we state a result of Roth that we have already applied in §1 to
derive Theorem 3 from Theorem 1.

TaroreM C. Suppose that Flz, y) is a binary form (fized) of degree
d 2= 3 with vational coefficients and without multiple factors. Then for given
¥ < d—2 there are only finilely many integers m, y with

0 < |F(z, y)| < (max(le|, y)"

We remark that the method of proof of Theorem O iz not effective.
Theorem € is an immediate conseguence of Roth’s theorem 8] on the
approximations of algebraic numbers by rationals. The formulation of
thig theorem is talken from Schmidf ([11], p. 120).

3. In this section, we shell give a proof of Theorem 1. We remark
that we shall use Theorem A thrice for the proof of Theorem 1. Denote
by %, Ua, ... effectively computable positive numbers depending only
on a,b,¢ and 4. Let =,y, m,n be as in Theorem 1 and snppose that
they satisfy (2) and (3). Tt is no loss of generality to assume that © > y.
We can assurne that m > u, with «, sufficiently large. Then we have:

Lemra 1. ao™+ By™ < 0.

Proof. Suppose that

{4) az™ -+ by™ = 0.

If u, is large enough, we find that y > 2. Further » and y are composed
of same primes. Since & > ¥, there exists a prime p dividing # and y such
that

{5) ord, (@} > ord,{y).
Now it follows from (5) and (4) that

m < miord, (z) —ord, (¥)) = ord,(b) —ord,(a),
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which is not possible if u, is sufficiently large. This completes the proof
of Lemma 1.

LEMMA 2. wm—n < uglogm.

Proof. We have

(6} lexr® - Ayt < uya®
and
(?} (Mm_bymi = Ea'! P s/t log "

The ineguality (7} follows from Lemma 1 and Theorem A with » =2,
B =m, 4, = 3max(ja|, ) and 4, = 3z. Now the lemma follows im-
mediately by combining (2), (7}, {6) and »>1.

In view of Lemma 2, it is sufficient to show that
(8) n < uz{logm)s.
Kew we proceed to prove (8). We can assume that » exceeds a sufficiently
large mumber u,. Then we have:

Iewnia 8. o—y < /3.

Proof. From {2), we obtain

(m)" d—bym "
— - '~<. %
Y az™ " —e¢

Now the lemma follows immediately.
Denote by r the greatest common divisor of x and 3. Put 8 = (logm)™>.
Then we prove:

Ieava 4, r<<ote

Proof. Assume that r >2'~% Then, by Lemma 3, we find that
2® > 3, Thus

(9) logz > 671,

T

Now apply I.emma 1 and Theorem A with n =2, B =m, 4,

= 3max(|ai, b)) and 4, = 2° > max(i, _y_) to obtain
T T

(10 laa™ 4+ by™! >
Now combining (2), (10), (6), (9) and # < m, we find that
l€<m—n=<

ia'i wm~-u30 Tog m

u, 0logm,

which is not possible if %, is large enough. This completes the ploof of
Lemma 4.

Proof of inequality (8). Re-writing (2), we have -
ZHag™ " —¢) = Yy (d—by™ ™).
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The equation ax™ - by™ = ea® L dyt

Observe that (zjr}” divides d—by™ * 20 and so

(11) (@fr)* < [ —by™ " < g™
By Lemma 4,
(12) {m/r)* 2 o™,

By (12), (11) and Lemma 2, we obtain {8). As observed earlier, the proof
of Theorem 1 is now complete.

4. Proof of Theorem 4. Let «, y, m, % be as in Theorem 4. Suppose
that they safisfy (2). By Theorem 1, we conelude that m < N. It is no
loss of generality to assume that y is less than = {>> 2), Denote by 2y, vs, o5
effectively computable positive constants depending only on &, b, ¢, d
and I*. WWrite

z=pH..pp and y=2ph. . ph
where p;, ..., p, are primes < P and @,, ..., a,, b,,..., b, are non-negative
integers < 2logr. Apply Theorem A withn = 3 +1 < P+1, 4, = 4, = ...

L= A, = 2P, A, , =3max(ja], b}) and B = 2mlogz < 2Nlogx to
conelude that

(13) ™+ by™| 3> Ja]a™ (loga) ™.

Combining (2), {13) and (6), we find that
o< a™ " g (loga)e,

which implies that # < v. This completes the proof of Theorem 4.

Bemarks. (i) Let o and b be non-zero fixed infegers. Then the
ineguality

0 < !mm+by’”i < (ll'la.-X.(:I’.,' y))m—(logml-‘——l

has only finitely many solutions in positive integers #, ¥, m with max(x, y)
> 1 and m > 2. This follows from (7) and Theorem C.

(i) 8o far we have considered equation (2) with eb £ 0. The case
a =0b =0 ig trivial. Without losg of generality, we may assume that
a =0 and b s 0. Suppese that b, ¢ and d are non-zero fixed mtegers
Then we eclazim that the equa.tmn
(14) - ) bym . n ! dJTI
has only finitely many solutions in integers & > 1, y > 1 n > 1, W with
yie, m—n=2 and a{m—a) > 6.

Re-writing (14), we have

Y (Y™t —d) =ex .
Since y* | cx™ and ¥ 1 ®, we find that » is bounded. Further there exist
non-zero integers w and 2, such that |w| bounded and
(15) " —d = wal.
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Now in view of the work of Schinzel and Tijdeman [10] and Baker [1]
on the equation (15), the assertion follows immediately.

(iii) It is easy to see that the equation (14} has only finitely many
selutions in inbegers # > 1, ¥y > 1, n>1, m with « £ 4, ylo, m—n>= 2
and n{m—n) > 6 if and only if the conjecture of Pillai [7] that (1) has
only finitely many solutions in integers m > 1, #» > 1, o> 1, ¥ > 1 with
may 2= 6 is correct. This conjecture of Pillai is still open. k6 = ¢ =d = 1,
Tijdeman [13] proved that (14) has only finitely many solutions in in-
tegers o> 1, y>1, n>1, m with # %y and m—n = 2.
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An application of a formula of Western to the evaluation
of certain Jacobsthal sums

by

R. H. Hupsow (Columbia, 8. C.) and K. S. WrtLiaus* (Ottawa, Ontario)

¥. Introduction and svmmary. Let k= 2 be a positive infeger and
let p be a prime such that p = 1 (mod 2%). The Jaecobsthal sum & (D)

is defined by

e +D
(1) 2um) = 3 (2,

where I} is an infeger not divisible by p and (5) is the Legendre symbol.

When %k = 2, Jacobsthal ([5], pp. 240-241) evaluated @,{D) when D
is & quadratic residue (mod p) but left a sign ambiguity in its evaluation
when DI iz a guadratic non-residue (mod p). Recently, the authors [3]
have shown how to remove thig ambiguity by using the law of quartie
reciprocity in a form given by Gosset [2]. When & =3, von Schrutka
([9], p. 258) evaluated @,(D} when D is a cubic residue (mod p) but left
an ambiguity in its evaluation when D iz a cubic non-residue (mod p),
and the authors [3] have shown how to remove this ambiguiby by using
a form of the law of cubie reciprocity given by Emma Lehmer [6].
When L =4, Whiteman [12], [13] has shown that

—4 (1),
+A(—1)9 M,

if D is an octic residue (mod p),
it D is a quartic but not

an octic residue (mod p),

0, it D is a quadratic but not

& quartic residue (mod p),

it I} is & quadratie non-regidue
(mod p),

(mod 8), ¢ =1 (mod 4).

(1.2)  2,4D)

l

14,

where p = o2+ 248 =

* Research supported by Natural Sciences and Engineering Research Couneil
(Canada grant A-7233.

4 — Acta Arithmetica XLIL.3



