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Congruences for representations of primes by
binary quadratic forms
by

Ricairp H. HupsoN (Columbia, 8. C.) and
KENwETH 8. Winliavs® (Ottawa, Ontario)

1. Introduction. Let p be a prime congraent to 1 modulo 8 so that
there are integers w,, ¥, ¥, ¥y, with @, =2, =1 (med 2) and y, =y,
= 0 (mod 2), such that

(1) p =24yl = al 2.
Glearly ¥; = 0 (mod 4) and we can choose the signs of 2, and z, s0 that
(1.2} @y =2, =1 (mod 4).
From (1.1) and (1.2) we gee fhat
@, = 1 —(p —1)-+2y, (1wod 16),
@y = $(p+1) 2y, (mod 8}.

Criteria for 2 to be a quartic residue of p go back to Gauss [14] and Dirichlet
{127, [138], see also [1], [32]. Appealing to (1.3) these criteria can be given as

(1.8)

2 l(xl__l._l.;l} '
{1.4) (;) = (14 T = (1) = (_1)(9:2—1)14 = (—1)P-Dietume,
. .

From (1.4) we obtain the congruences

{1.5) @y — o+ 3 {p +1) = 0 {mod 18),
and
(1.6) Y1 +29.— $(p —1) = 0 (mod 8),

relating the parameters in the two representations of p in (1.1).
In this paper we extend these ideas to obtain congruences involving
the paramefers in two or more primifive representations of certain

* Regearch supported by grant no. A-7233 of the Natfural Sciences and Exn-
gineering Research Council Canada. . .
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multiples of a prime p = 1 {mod 4) by positive binary quadratic forms. In

(zm)
and {—1| ,
YN

: m
where m is an odd positive squavefree integer such that (—) = +1

r
2m
with p = 1 (mod 8) for the symbol (?) , in terms of the representation
4
of a multiple of p by the principal form of discriminant —4m or —8m

respectively, This theorem includes and exfends results of Brown ([5],
Theorem 2; [7], Theorem 3; [3], Theorem 1); Lehmer ([23], Theorem 1)
and Kaplan ([18], §13).

In §3, we apply {1.4) and Theorem 1 fo the identity

)2 -(2)

where m 13 an odd positive squarefree integer such that (ﬁ) = 41
»

ki
Theorem 1 in §2, we evaluate the Diriehlet sym:bols (——)

%

and p is a prime eongruent o I modulo 8, to obtain congruences relating
the parameters in the representations of p given in Theorem 1, see The-
orem 2.

In §4, we apply Theorem 1 (a) to the identity

(m) (n) (mn)
PlA\P/s 21
where m and » are relatively prime odd positive squarefree integers such

that (%) =(%) =41 and p is a prime comgrunent to 1 modulo 4,

to obtain congruences relating the parameters in primitive representa-
tions of certain multiples of p by the principal forms of digseriminants
—4m, —4n and —4mn (see Theorem 3).

Rewults similar to those of Theorems 2 and 3 may be deduced by
applying Theorem 1 to the identities

¥

AL GG

Details are left to the reader.
Finally, in § 5 we apply the law of quartie reciprocity in eonjunction
witih Theorem 1, to obtain some further congruences (see Theorem 4).

2m

2. Evaluation of (_T_";) and (»~p—) . Throughont the regt of this
4 . :

4 .
paper p denotes a prime congruent to 1 medulo 4 and m denotes an odd
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positive squarefree integer > 1, all of whose prime factors are quadratic
regidues of ». Appealing to Legendre’s theorem ([26], p. 191), we deduce
that there exigt non-zero integers k,,, &, and ¥, such that

(2'1) . kalnp = 5[‘;7",11'—'71?»1/;"‘“,

and, it p =1 (mod B), there exist non-zero integers ky,, &, and y,,
such that

(2.2) k?amp - mgm + 27”’?!3?11 .

Throughout the paper %, and k, will be assumed positive. Without
loss of generaliby we may take

(2.3) (%) Ym) =1,
from which it follows that '
(24)  {(Ty P) = Wins B) = iy @) = iy U = (Big, ) = L.

Similarly, we can agsume that

(2-5) ("Bzm; ?J’:‘.m) = 1:
which gnarantees that
(2.6) (@opss p) = Yoy P} = (ksz Do) = (kﬂm: y2m) = (kzmﬁ 21’)1) = 1.

We note that (2.1) gives: -
(2.7 k= 0(mod &)=z, =y, =1 (mod 2}, m =7 (mod 8),
(2.8) FE, =2 (mod 4} =z, =y, =1 (moed 2), m = 3 (mod 8),
k, =1(mod 2), p =1 (mod 8) =, =1 (mod 2), y,, = 0 (mod 4)
or
&y, = 0 (mod 2), ¥, =1 (mod 2),
m =1 (mod 4),
(2.9) k, =1{mod2), p =5 (mod 8)=>w,, == 1 (mod 2), ¥, = 2 (mod 4)
or
i&,, = 0 (mod 2}, ¥,, = 1 (mod 2},
m = 1 (mod 4).
Moreover we have
k, =1{mod?2), a,=0(mod?2),
(2.10) p Z mw (mod 8) = mz, = 2 (mod 4).
Further (2.2) gives
Ey,m = 0 (mod 2).

(2.11)  ky, = 1 (mod 2), &y, =1 (mod 2),



@

814 R. H. Hudson and K. 8. Williams |m“
For particular values of m, the corresponding values of k,, and ky,, can

be found by appealing to tables of the class structure of complex quadratic

fields as given, for example; in {9], pp. 262-270 and [31]. T %,, = 1 (resp.

¥y, =1) the integers @, and y,, (resp. #,,, and y,,) are wnique up to sign

(see for example [30], Theorem 101, p. 188). ¥ %, > 1 or #y;, > 1, thig

is not necessarily the ease as the following examples show:

9:13 = 10241712 == T24-17-22
49:73 = 5754 82-2% = 2551 8262,
It should also be noted that for a given prime p there may be more than
one k,, such that &, p is represented primitively by 22+ my?; for example,

81p is represented by »*-+113y* if and only if 169p is represented by
#*+113y> It follows from 2 theorem of Holzer [16], see also Mordell [27]

that k, and k,,, can always be chosen to satisfy 0 < %, < Ym and 0 < L

< }/9??1.
With the notation specified above, we prove

TeEoREM 1. (a) Let p =1 (mod 4). If m =1 (mod 4) then twe have

(=) | d

( 1)a:m+1 (Tn) (___1)!! (m ) , zf 'm,. =h (mod 8).

m =2 1 (mod. 8),
(2.12) (1’3) —
P/

If m =3 (mod 4) we ehoose =z, so that(%): +1. Then we have
m) [~ |

R

(b} Let p = 1 (mod 8). Then we have

(%), )

If m =1 (mod 4) we have

(2.15) (gﬂ) :(—1)(23”“1)”(%’”) (1) ”““”m’z(%’").
P /s m

if  p =1 (mod 8},
if  p =5 (mod 8).

(2.13)

(2.14)

m
' &
If m =3 (mod 4) we ohoose ®,, so that (—3‘3) = +1 and we have
m

Py = 1, 3 (mod 8),
Byp = B, T (mod 8).

4

» -1, f
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Proof. (a3) We set

(2.17) Imm = Q“tvfm a0, w,:,, = 1 (mod 2),
ym:‘?“ym .3203 ymgl(mOdg)'

Now from (2.1) we obtain

(-

2
= (—5) for p =1 (mod 4)) we have

BL-GI )

By the law of quadratie reciprocity we have

() =05 - () - (50 = ()= 1w
P » i [0 - m

80 that (as (;1)
P

I4

and
(5)=(%) - () - (58) - (=) -
P P Wy %2a Yl ’
80 that
at+fp m—1 1 ¢
I R I e

Ifm =1 (mod 8) we deduce from {2.7) and (2.8) that k, =1 (mod 2).
Thus, from (2.9) and (2.10), if p = 5 (mod 8) we have at+5+1 =2,
and (2.18) gives, for both p =1 (mod 8) and p =5 {mod 8),

(5.~ )
vl \m]

It m = 5 (mod 8), again from (2.7) and (2.8), we have k,,
Thus, from (2.9) and (2.10), we have

=1 (mod 2).

2 a--§51. + v
= —1)° = (—1)mH = (—1)m,
(ﬂ) (—1)° = (—1fm = (1)

and so (2.18) gives

(- o) -com ()
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@
I m = 3 (mod 4), choosing &, so that (ﬁ)m—kl, we have
(1m0 (J”Mm_‘) = (—1)Emhe,
g0 that (2.18) becomes
atpil
-
P pl }
This completes the proot of (2.13) when p = 1 (mod 8). Suppose

p =5(mod 8). I k, is even, by (2.7) and (2.8), we have a =f =0
proving (2.13) in this case. If &, is odd, by (2.9) and (2.10), we have a« = 0,
B =1, which completes the proof of (a).

(b) From (2.2) we obtain .

50 - (55=)

By (2. 11), om 200 @, are odd and ¥, Is even. Settmg Yom = 2 4 ms
B=1, Yo 0dd, we obtain (as p = 1 (mod 8))

2%

By the law of quadratid reciprocity, we have
()51 - () () - ()
r P @y A %) -
(%) = (5 = () = () Gz =
P P Weml [Y2ml |92l

(Zim,) _ ( 2m )
P ‘4 |m2m|

which complete the proof of (2. 14)
If m =1 (mod 4) we have
(B p—1)0+vams2 -

moy [ v _ %m)
(:mgmt) _( m )_( m
2 (mzm_l)‘,s o
= (—1)\™ = (=1 , ,
( |‘T’2ml) (=1 e (=1

which proves (2.15).

and

50 that

and

icm
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If m = 3 (mod 4) we choose (W—) = -1, and it follows that

Zm _ 2 lmZmI . (lrﬂ]];]"‘l)l‘fi 2 (ram—1)i2
(Emm!) (l%ml)( m )( b (Imam]){ L

HE:THE:
-1, if

which proves (2.16).

We remark that if a1l the prime factors of m are congruent to 1
medulo 4 then (2.12) and (2.15) can be expressed as follows:

(2.19) (ﬁ) (ﬁ) _f=)tmen, if  m =1 (mod 8),
' pl\mly (1) if =3 (mod 8),
2m P
2.20 el T R Y B (o e ).
( : ( P )4(29%)4 (=i

Where(-g—) = (—1)P~0% (see for example [18], p. 319).
“la

The result (2.19) follows from (2.12) as

(2.21) (%):q(me“m(%m) mm( ) H(k;p)
R R

()= -(2) -2 - ()

The result (2.20) follows from (2.15)

()= () (),
e (5) () = () (o) = (52 () = (22)

3. Congruences velating &,, ¥y, %, ¥y Toms Yo APDlying Theorem 1

2
and (1.4) to the 1dent1ty(jp) (ﬂ) :(__wi) , We obtain the following
4 4 4 . ’

(2.23)

P v
theorem.

TEEOREM 2. Let p = 1 (mod 8) be prime and let m be an odd positive
squarefree integer, all of whose prime factors are quadratic residues (mod p),
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so that there emist integers L, Y, Cpy Ymy Pomy Yoms By Boy Stch that

P = m?z. *‘}‘29';, kfu.'p = 433:;‘1*""@?1;“;” kng = m§m+2m’y§m‘
(a) If m =1 (mwod 4) we have

a m m I
Yom = Yo+ 3m—1) 4, + 5 (ki —1) (m0d &) (Jffi) = +1.

(b) If m =3 (mod 4), choose =, and @, to satisfy (i’:) = (%f‘—)

= +1, then
Loy, =2 1, 3 (mod 8) <=2, 22, = 3 (mod 8).

We remark that if all the prime factors of m are congruent to 1

modulo 4, by (2.21), (2.22), (2.23) and (2.24), (f’%?-"l) in Theorem 2(a)

—1\{—2 : ,
can be replaced by (k—) (7.,__) We note that when m =5, Theorem
Py

e
2 is a special case of a theorem of Leonard and Williams [24], p. 102
or [25], Theorem 2, and that when m = 65, Theorem 2 gives a “pre-
dictive” criterion for determining whether p or 9p iz represented by

%+ 6552 (compare [28], Theorem 1).
4. €Congruences relating &,., ¥,., Ly Yoy Loy Yo - APDPIying Theorem 1
to the identity (ﬁ) (—’-1'-) =(£m¥) , we obtain the following theorem.
P\Pls P /s
THEOREM 3. Let p =1 (mod 4) be prime and let m, n, mn be distine
odd positive squarefree integers, all of whose vrime faclors are guadratic

residues (mod p), 50 that there ewist integers Lp, Yms Bns Yns Buns Ymns ko,
ky, by such that :

Kep = b o,  Kp =aibuyl, D = o, mngl,.

Then we have:
(i) if m =n =1 (mod 8)

o) () = ()

(ii) if m =1 (mod 8), » == 3 (mod 4)

-1

with =z, and x,, chosen g0 that (ﬁ) = (—a—cﬂ)ﬂ 41
n] o \mn

icm
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(iii) 4f m =1 (mod 8), # =& (mod 8)

Yo = Yn(mod 2)«»(3’&) (—"5-) (‘”"*) — 4y
m " mn

(iv) if m =3 (mod 4}, % = 5 (mod 4), mn = 1 {mod 8)

~1 .
22 (=1} = 0 (mod 4)¢>($’M) = 1,
mn

By — By, + 9

with x,, and z, chosen so that (m”‘) = (fji) = 41;
" %
(v} If m =3 (mod 4), n =3 (mod 4}, mn = 5 (mod 8)

p-—1 T
5 (fop— %) = 2 (mod 4)@(?%) = 41,

Ty, — & + 2mmn +

& &z
with @, ond o, chosen $o thal (mii«) = (Fé';) e I

(vi) if m =3 (mod 4}, » =5 (mod 8)

—1 x
mmn—mm'i'?‘mn_!‘ %“ (kmn_km) w2 (DlOd 4’)":b (_nn;) = +15
with o, and @, chosen so that [or) =[Zmn) +1;
" fi m mn

(vil} if m = n = 5 (mod 8)

Yoy = Un(mod 2} o> (—‘”ﬂ*—) (”"—) (fm) ~ 1.

m T m

We remark that if all the prime factors of m and % are congruent
to 1 modulo 4, we have

G- G0, G -6

g0 that
) ) ) = i)
(; W ymn N -k'mknkmn )

We remark that when m =5, » =13, Theorem 3 gives a.nothgr
“predictive” criterion for determining whether p or 9p i repregented by
@2+ 6542, (compare Kuroda [20], pp. 155-156).
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5. Theorem 1 and the law of quartic reeiprocity. Theorem 1 ecan be
used in conjunetion with the law of quartic reeciprocity to obtain eengru-
ences relating &, 41, %, ¥, , where ¢ is ah odd prime satisfying (E—) = 1,
»

We use Gauss’ law of quartic reciprocity in the form given by Gosset [15],
namely,

(5.1) (

(_1)}(q—1)q x +?j1’5 1((_1)(4—1)12,_,_1)
; = o } (mod g),

P lml'—yli

where p =ai+y;, o, =1 (mod 2), 4, = 0 (mod 2). Appealing to The-
orem 1, we obtfain :

THROREM 4. Leét p = 1 (mod 4) be a prime, and let ¢ be an odd prime
satisfying (%) = +1, so that there are integers m,, y,, %, such that klp
= &g +qys. Then, if ¢ = 1 (mod 8}

_ P - i 1e-1
(8.2) (—4) = +1«-{wlﬂ’i?f—} =1 (mod g};
g & —Y1?

if g =5 (mod 8),

o -1 Hg-1)
(4): +1, {ﬂﬂ} o= 41 (mod q);

T =Y

or
T ® i13e-Dn '
(—q—) = -1, {wlj—_—‘%—%l = —1 (mod ¢);

q &y — yli’j
if g =3(mod 4), with x, chosen so that (&) = +1,
. q
R < ri, #Hg+1)
%, = 1 (mod 4)@{%1 - = +1{mod q),
T, — Zh‘?ff

when p = 1 (mod 8),

. . : 2, -1 i 1g+1)
%, =1+ 2k;(mod 4) <« {ﬂ—yl—} = +1 (mod ¢),
D1 — Yyt

| when p =5 (mod 8).

The special case of Theorem 4 when g = 3 appears in [17], Theorem 2.

Variants of the special case of Theorem 4 when g = b appear in
& number of papers, see for example [2], Corollary 3.35; [37; Corollary
4.25; [4], Theorem 4; [5], Theorem 3; [6], Lemma 6.3; [21], p. 243 [22],
Theorem 1; [28], p. 367; [24], p. 102; [25]; (28], §3; [29], p- 198.

icm
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Some generalisations of Chebyshev polynomials
and their induced group stracture over a finite field

by
REX MarTHEWS {(Hobart)

1. Introduction. If u, b are rational integers then the polynomial
fl&) = #*—uz b hag roots oy, 0,in the complex field, such that ¥ = o, + o,
and b = o,0,. The polynomial g (u; d) may be defined by requiring
File) = 22— g (u; B)z+b* to have roots of, of. Thus g,(u;d) = %4 oF
= oF + b%e7* and B = o¥oF and Waring’s formula (see Lausch—Nobauer
[71, p. 297) allows the expression of g, (w; b) a8 a polynomial in « and b.
These polynomials g, (w; b) are known as Dickson polynomials ([7], p. 209},
the case b — 1 being the classical Chebyshev polynomials of the firsh
kind. When theze polynomials are considered as being defined over a finite
field F, (i.e. the coefficients are reduced modulo the field characteristic)
it eventuates that some of them are so called permutation polynomials, i.e.
the mapping of the field into itself induced by these polynomials is a per-
mutation. The necessary and sufficient condition for g,(%; d) t0 be a per-
mutation polynomial is that (%, ¢*—1) = 1 where ¢ is the order of the
Held (see [7], p. 209). Nobauer [14] showed that the set {g,(u; b), b fixed}
is closed nnder composition of polynomials if and only if b = 0, 1, or —1,
and determined the structure of the groups of permutations induced by
polynomials of thig type in these cages. _

~ Lidl [10] extended this definition to an n-variable form. of the Che-
byshev polynomials and their algebraic properties were considered by
Lidl and Wells [11]. In this formulation the guadratic f(z) iz replaced
by a polynomial :

F(Ugy erny Ugy B) = z’l“"l—ﬁlz"+...+(—~1)"u,,z+(—1)“+1b
= (g—0y) ... (8—0p11),

where %; € Z, o; € C. When taken over F,, r has #+1 not necessarily
distinct roots in Fym+uy.
I & is a positive imbeger, set

k
(g, iy Uy, 8) = (2—0%) L (2 —0hy).



