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Some generalisations of Chebyshev polynomials
and their induced group stracture over a finite field

by
REX MarTHEWS {(Hobart)

1. Introduction. If u, b are rational integers then the polynomial
fl&) = #*—uz b hag roots oy, 0,in the complex field, such that ¥ = o, + o,
and b = o,0,. The polynomial g (u; d) may be defined by requiring
File) = 22— g (u; B)z+b* to have roots of, of. Thus g,(u;d) = %4 oF
= oF + b%e7* and B = o¥oF and Waring’s formula (see Lausch—Nobauer
[71, p. 297) allows the expression of g, (w; b) a8 a polynomial in « and b.
These polynomials g, (w; b) are known as Dickson polynomials ([7], p. 209},
the case b — 1 being the classical Chebyshev polynomials of the firsh
kind. When theze polynomials are considered as being defined over a finite
field F, (i.e. the coefficients are reduced modulo the field characteristic)
it eventuates that some of them are so called permutation polynomials, i.e.
the mapping of the field into itself induced by these polynomials is a per-
mutation. The necessary and sufficient condition for g,(%; d) t0 be a per-
mutation polynomial is that (%, ¢*—1) = 1 where ¢ is the order of the
Held (see [7], p. 209). Nobauer [14] showed that the set {g,(u; b), b fixed}
is closed nnder composition of polynomials if and only if b = 0, 1, or —1,
and determined the structure of the groups of permutations induced by
polynomials of thig type in these cages. _

~ Lidl [10] extended this definition to an n-variable form. of the Che-
byshev polynomials and their algebraic properties were considered by
Lidl and Wells [11]. In this formulation the guadratic f(z) iz replaced
by a polynomial :

F(Ugy erny Ugy B) = z’l“"l—ﬁlz"+...+(—~1)"u,,z+(—1)“+1b
= (g—0y) ... (8—0p11),

where %; € Z, o; € C. When taken over F,, r has #+1 not necessarily
distinct roots in Fym+uy.
I & is a positive imbeger, set

k
(g, iy Uy, 8) = (2—0%) L (2 —0hy).
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The coefficients ¢ (u,, ..., %,) of #*¥ are elementary symmetric functions
of (a¥, ..., ¢k,;), and so are symmetric functions of (o, ..., 6,.,). Thus
the coefficients of ™ are all polynomials in (4, ..., %,) by the funda-
mental theorem on symmetric funetions. In this way we obtain a poly-
nomial vector g(n, k, b) = (0% (uy, ..., %y, )y ey g8 (0, ..y w0y, b}). The
explicit forms, recurrence relations, a.nd generating functions of these
polynomials are contained in [10]. Here we deal only with-their algebraie
properties. When considered as a polynomial vector over F,, ¢(n, %, b)
induces a pernmutation of (F, )“ if and only if (%, ¢°—1) = 1 §=1,.
very L, for b 0,8 =1,...,n for b =0 (see [11], p. 106).

In the two vamiable Case the corresponding group of permutations
has been determined by Lidl {[8] and [9]). In this paper we begin by
considering & more general construction. We take

P(Uyy aeny Uy, 2) = 2" —u 2" T (D)%, = (2—0qy) ... (B—a,).

If f(&) iz a fixed polynomial, define
y2) = [p—flon)} ... f—F(o,)

=t — gy, )T L (=L P g, e ).

Then, as before, each g¥) may be written as a polynomial in a,, ..., U,
When f(z) = 2%, this essentially corresponds to g(n, &, 0) a3 given above.
In the first section of this paper we examine the properties of the poly-
nomials defined in this way. Then we consider the groups of permubations
induced by Chebyshev polynomials in » variables over F, and determine
which of these groups are cyeclic. (This generalises the results in [97, [10]
and [12] to the n-dinensional case.) The general results are then applied
to obtain o result of Brawley, Carlitz and Levine [2] on polynomials
which permute the set of »n x# matrices over F,.

I

2. The general construction. The construction outlined in the intro-
duction. defines a polynomial vector (g7, ..., 4} which induces a map
Fy — F. It is more convenient to consider this process as an operation
on the get of monic polynomials of degree n over F,, denoted by P (g, n).
Thus if fe F,[x] is a fixed pelynomial over F,, define the operator

Ap Pig, n}—=P (g, n) a5 follows: It B(x) e P{g,n) and h(z) = [] (z—a;),
=]

a; € Fau, is the factorization of h(z) into linear factors in a suitable exten-
sion field of F, then A h(2) = []{z—f{a;)).
Clearly the map induced by (¥, ...,4%) on F? is a permutation

i and only if A, induees a permutation on P(g, n). The following prop-

erties follow immediately from the definition:
Lemma 1. dkg) = A hA.g. ‘
LeMMA 2. d,,,b = A(4,R).
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We will need the following three elementary lemmas. For each
divisor & of =, put

Kd={aEFq

LeMMA 3. f(z) € Fy[o] is a permutation polynomial over Fpu, n e Z,
if and only if f(z) induces a permutation of K4, for each &)n.

Proof. Let f(x) permute Fypn. Then f(») permutes F, = K,. Let »
be the smallest integer such that () does not permute K,, #|n, If e € K,,
suppose that f(a) ¢ K. Then f(a) € K,. for some '|r, * 5= 7. Since f(x)
permutes K, there exists f e K. with f(a) = f(8). But K.nK, = @, so
a 5= fi. The reverse implication is trivial, as Fp» is the disjoint union
of the K,, din.

Lexvwa 4. If f(x) s B, (2] and fla) = f(b) implies that a,b are con-
Jugate over K, when a, b € Fn, then f(z) induces a permulation of E,, for
7| n.

Proof. By induction on r.

Hr =1, let f(a) = f(b), a,b € F,. a, b conjugate implies a equals 5.
Hence f(z) induces & permmibation of F, = K;. Now assumc the prop-
osition true for r < k. If fla) e K., r <k, where a € K, then since f(z)
Induces a permutation of K,, there exists b e K,, with f{a) = F{b). Thus «
and b are conjugate over F,. But all the conjugates of a lie in X, and
K, nK, = @ Thus f(a) e K,. It f{a) = f(b) with @ % b, a, b € K, then
a, b conjugate implies f(a) = flod) = [f(a}]?, 1< k. Thus f(a) ¢ F, and
50 f(a) e by, ¥ <k, and we have already shown that f(a) € K, o con-
tradiction.

Lenvwa 5. Let flx) € F [2). The following conditions are equivalent,

{1) fla}) = f(b), a, b € Fn, implies o, b are conjugate over F,.

(L) If a,b e By, and fla), f(b) are conjugate over F,, then o, b are
conjugate over F,, '

(iil) f(z) 45 a permutation polynomial over Fyn

Proof. (ii)=(i) trivial.

(iil) ={1) trivial. .

(i) =(ii). Let f(a), f(») be coﬂguga.i;e over F,. Then f(b) = [f(a)]?
= f{a®}, k< n. Thus & and at® are conjugate over F, and s0 a ang b
are conjugate over F,.

(1) =(iii) by Lemmas 3 and 4.

We are now in a position to prove our main resulf.

THEOREM 1. A, induces a pe?"mumtim of P(g,n) if and only if f{x)
is a permutation polynomial over Fp, for each r < n.

Proof. (i) Sufficiency. We note that if h(w) ig irreducible of degree
< n then Ak g ereduclble, for if b = H(w ' oﬂ), O'Equ, then A,h

n| dega = & over F.
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has as roots the eonjugates over F, of f(¢), and these are all distinet since
f is a permutation polynomial over Fy.

I b = []hi, g = []g; ave the f&ctomzatmns of b and ¢ into products
of irreducibles over F,, and if 4;h = 4,¢, then [14:h, [14,9; are factor-
izations of Ak into a product of irreducibles over F and so for each i
there is a j with Ak, = A.q;, degree h; = degree g; = 7. If k; has roots
o%, and ¢; has Toots th then f(o) = f(+7), gor gome k << . Since f(z)
iz a permutation polynomizl over F =, ¢ = 1%, Thus the conjugates of o
and 7 coincide and f; = g;. Hence h = g.

(i) Necessity. If f(z) is not a permutation polynomial over F,
then by Lemma 5 there exist non-conjugate o, 7 e Fr with f(o} = f(z).
The field polynomials of ¢ and 7, ky, b, respectively, are distinet of degree
7, but Aphy = Achy. Tiet gy (@) == 2" "k, go() = #*"hy. Then g, {x) # g.()
but Ayq, = A;g,, and degree g; = degree g; = #.

Levra 6. Let Mz) = LOM (¢ — 2, ..., 2% —u). If f(z) =
then Ah = Ak, for all R(z) eP{g,1), t< 0.

Proof. I f(s) = (%) mod A(#) then f(z) = r(z) mod (a?° —g), for
k< n. Any root ¢ of %(2) lies in Fy for gome k< n, and so f(o) = r(o).
Thus Ach = 4,k

Lexa 7. The set G of polynomials f(2) e F,[w] such that

(i) degree f(w) < degreei{w), _

(i) f(») induces a permutation of Fup, for each k<
under composition mod A(w).

Proof. IE f{z) »» () is defined to be (for)(w) = f(r(m)) mod A(xz) then
for—fxr =1, for some t<F,[#]. Bince A(o) =0 if csFpr, (for)(o)
= (f*7)o. But for induces a permutation of Fx, and thus so does fxr.
The identity of &, is # and inverses exist since that system is finite and
cancellative.

We now proceed to determine the group P, of permufations of
P(g, ») induced by this proecess. By Lemma 6 it is sufficient to congider
the action of A; for fed,,.

The structure of &, was determined by Carlitz and Hayes [3]. We
now invesbigate the structure of P,.

r(x} mod A(x)

n, forms a group

Lmyvys 8. The map 0: f— 4 is a homomorphism from G, onto P,.

Proof. By Lemmas 2 and 7 and Theorem 1.

Lenova 9. Kerb = {f e G2 f(o) 48 a conjugate of o, for all ceFu

< nk

Proof. I §(f) induces the identity map on P(g, ) then Ak =5,
for all & of degree <\ n. Let o e Fp, and h be the minimal polynomial
of o. Then A;h =k = f(0) is a conjugate of ¢. Conversely, if h eP(q, n),
then b = []h;, where the h; are irreducible over F,. h; has roots o, ..., ot

?
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k = degh;, and so f(¢) is & conjugate of o. Since f{( qu) [f(cr)]ql f
runs through the set {o?}. Hence Aphy = by, and Ak = h.
We denote by A, the group of permutations of K, which induce
permutations on the set of equivalence classes of conjugate elements.
Lemwma 10. If fe@,, then f induces a permutation of K, for each
4 < n. Denote ihis permutation by p;. Define p: @, —A; X4, %... x4, by

¥: P> {P1y -y Pa)
Then p is @ group isomorphism.

Proof. To show that p is sarjective, let =, ..., =, be arbifrary
elements of A4,,..., 4,. Consider F,:. Choose on each K, # < d<nl,
any permutation m; of H,; which induees a permutation on the conjugacy
classes in ;. Now consider the map = which is =; on each K, 1 <1< nl,
Since m commutes with the Frobenius automorphism of Fym, there is
& polynomial f(x) of degree less than ¢ with coefficients in F, which
induces = on Fya. The reduction of f{z)mod A(zx) induces =; on each
4;, since each F iz a subficld of Fu, and so f(z) € G,. I f e Kery, then
f(z) induces the identity on K, for all € < #. Hence f(z) = » mod (wqd — )
for all d<<m, and so f(z) =z mod A(x). The other properties of v are
obvious.

Bach m e A; induces a permutation of the set of conjugacy classes
of K ;. I there are n(d) classes in K ; then this gives rise to a homomorphism
from 4; to 8,4, the symmetric group on =(d) elements. Thus there is
a homomorphism ¢: A4, %... XA p=>8o0) X X By, Define p = goy:
Gn _>‘Sn(l) Keua XSz(n).

Lewmnra 11, Kerpy = Ker .

Proof. If f e Kerp, then f induces the identity map on the set of
conjugacy classes of H;, d < n. This means that f{o) is a conjugate of o,
for all 0 e Fx, &< n. Thus feKerf. Conversely, if f e Kerf, then w(f)
induees the identity on the set of conjugacy clasges and so feKerpu.

TamormxM 2. The group P, of maps of P(g,n)—>P(q,n) induced by
elements of G, is isomorphic to the product of n symmetric groups of orders
z(k), k< n, where

a(k) = k‘lz ,u(%) ¢, where u is the Mobius p-function.
dik

Proof. From Lemmas 8 and 11. The number of conjugacy classes
in K is the number of monic irreducible polynomials of degree k in F,[z],
given by w({k) above (see Blake and Mullin [1], p. 33, for this formula),

3. Chebyshev polynomials in several variables. As stated in Section 1,
the Chebyshev polynomial vector g{n, %, D) is a permuiation polynomial

2 — Acta Arithmetlea XLI, 4
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vector if and only if (K, ¢"—1) =1, L<r<m, for b =0, and (&, ¢ —1)
=1, 1<r<n+1, for b £ 0. The case b = 0 in fact follows directly
from Theorem 1, as the polynomial #* is a permutation polynomial ove}
F, if and only i (k, ¢—1) = 1. Tt was shown by Lidl and Wells [11]
that the set {g(n, %, b)}, for b fixed, is closed under composition if and
only it h = 0,1, or —1, and for n = 2 the structure of the group of per-
mutations induced by the g(n, k, ) was determined in [8] and [9]. We
now extend this to arbitrary #. The case b = 0 is treated first, then b = 1
and —1 are dealt with together.

The case b = 0.

TrworeM 3. The group G of mappings of Fy — F7? induced by the per-
mutation polynomial vectors among the vectors g(m, k, 0), is isomorphic to
the group B of reduced residues mod N = LCM(¢—1, ..., " —1) factored
by the eyelic subgroup € of order LOM (1, ..., 1), genemted by g.

Prooil. If k =% mod N, then & = %" mod (¢" —1), ¥ < m, and g0
the maps fi: # =% f.: 2 >2" coincide on F, 1<r<w,, and so the
maps dp, 4., are 1dentrea1 on P(g, n). Thus the map ¢,—~k", where %’
is the remdue of kmod ¥, is a homomorphism of the semigroup of per-
mutation vectors amongst the g(n, k, 0) onto R. The map ¢ which sends
k to the map which g{n, %, 0) induces on F} is then a homomorphism
of B onto G. It remains to determine the kcmel of this homomorphism.
Suppose % == ¢' mod V.

It f{z} = []f;(x) is the decompogition of f(») into irreducible factors

n—1

over F,, and fi(») = HD (#—o%) is the factorization of fi (where f; has
degrec n), over its splitting field, then
—1 .
Axfi@) =[] o— ™) = fi(a).
r=0

Thus dgef = f.

Now suppose k & Kerg. Then o* is a conjugate of ¢ for all o€ ¥y,
ig<r<n, by Lemma 9. If ¢is a pr]:mltwe element of Fyr, then oF = 6,1:
gince 0 <1< 7

Thus % = ¢ mod (¢"—1) and % is a solution of the system of con-
gruences

E=1med (g-—1),
k=1, gmod (¢>—1)
W
k=1,g, ..., " mod (¢*~* —1),
k=1, g ..., " mod (¢"~1).
We now show that this system is equivalent to the single congruence

(2) k=1,¢,...,¢ mod ¥, where ¢=LCM{,...,n).
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Firstly it is clear that any solution to (2} i3-also a solution to (1). We
now wish to determine the order m of gmod N. If ¢ = LOM (1, ..., n),
then ¢ =1 mod N, since (¢ —1)](¢*—1) for all ¢ with 1< i< n. Thus
m]s. Since ¢ = 1mod N, ¥ |{¢"—1), and s0 (¢ —1)|(¢"—-1), 1<t n.
This holds only if ¢{m. Thus s{m, and so § = m, implying that the number
of solutions of (2) is 5 = LOM(L, ..., »). We next show that the number
of solutions of (1) is also s, thus proving that every solution of (1) is & sol-
utior of (2). We do this by induction on #n. When % =1 there i3 nothing
to prove, as N = g—1. By the induction hypothesis, the number of
solutions of the first (#» —1) econgrnences is LCM(1, n—1), and by
the earlier arguments this system Is  eguivalent fo k=1,¢,...
voey U= 0d TOM (g1, ..., "' 1). Let N =LCM(¢—1,.

., g" " —1). Suppose k = q‘mod N, k= ¢ mod {q —1). Then k = g‘-i—
+c:N = ¢*mod (¢"—1), for some aeZ. aN' = ¢(¢*—1)mod (g®—1),
where (8 —1) is taken mod #. This has a solution if and only i.f god (N', " —

—1)|¢{¢°*—1). Now suppose that » is not of the form p° p a prime.
Then

1

7= np;‘f, mz=%, and pHE<n.

=1

Thus
T pﬂ‘i
F=¢mod¥N =k=q¢mod (4 ~1)

and so

for each pf.

(@ 1)1 -1

Thus s = t mod p%, and so s = fmod n#. Hence the choice of s is
already determined and so the number of solufions remaing the same,
namely LOM(L, ..., n—1) = LCM(1, ..., n). If » = p, then the condition
for & solution is (¢ —1)|(¢*~* —1), which always holds, and so s is arbitrary,
and for each choice of s there is a unique solution mod LOM{N', ¢* —1) = N.
Thus the number of solutions is aLCM(L, ..., n—1) = LCM(L, ..., n).
Now suppose @ = p% o > 1. The condition reduces te¢ s = {mod Pt
which has p solutions module p®, each giving a unique solution mod .
Thus the number of solutions is pLOMQA, ... ,n—-1) = LOMQA,...,n).

The cases b =1 or —1. In this section, let f(z) = #*, with b =1
for characteristic 2, otherwise % odd, b = 1. We use the mnotation
of Sections 1 and 2.

Lizainra 12. If A; induces the identity map on the set PP of polynomials
of dagree n with constant term (—1)"b, then f induces the identity map on

, and Ay indiuces the identity map on all polynomwls of degfee less than n,
_far n > 2.
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Proof. Let o be 2 primitive element of F, and let
h(z) = (#-1)"*(m—o0f(r—0™™), b =1;
hiw) = (8 —1)"* (0 o)l (24 ™), b=—1,
Then
Ah = (213 (z— o®P (3 —0~%), b =1;
dih = (@ -1 — * P (5 + ™), b= —1,

since % is assumed to be odd. If the characteristic is 2, consider only
the case b = 1.

In each case, h e P}, and 8o Ah =k by hypothesis. Thus o — w*,
by wnique factorization, and o primitive implies % =1 (¢—1). Hence
J(#) induces the identity map on F,. (Note that if » = 2, o =w"is
also possible, and we ean only deduce % = 41 (¢—1})) Now let g(z)
€ F,[x], with degree g(x) = m < n. Let g{z) have constant term f. Clearly
Wwe may assume f = 0. Define

_1 ‘m,b
k(%) =(m——~—( ,8) ) (-1 g (m),
h(w) has degree n, and has constant term (—1)"b, and so 4k = k. But
—1)™b
Ak = (w—— (—»ﬁL—) (@—1"""1 4,

since g e F,, and §* = §. Thus 4,9 = g.

LEMwA 13. Let o be a primitive element of Fpny and put 2 = @,
geven or 0dd, p = ¥, godd. Then 4, uckK,.

Proof. A has order (¢" —1)/(g—1). Tf 1 Fyy v < m,then ordd < ¢ —1.
But (¢"—1)/(g—1) > ¢"—1, r <n, and so0 2 €K, . H peFy,r<n, then
A= pu*e Fy. Since K, nF; =@, this i3 impossible.

THEOREM 4. 4, induces the identity map on Prtlb=11 if and
only if & sabisfies the system

k =1mod (g—1),

----------

(3} kEl,Q,..-,Q"modEw

qn-i—l' —1

in case b =1,

or k=1,q...,q"mod 2( ) W oase b= —1,

‘ Proof. Assume firstly that k satisfies the system. Then if g(z) is
irreducible over F,, and degreé gw)y<n, Ag=g. I g is irreducible
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of degree (n-+1) and has comstant term (—1)*'3, then

gle) = (m—.a_)...(m—oaﬂ), ceFpnn
where
(1Y gl (=18, or FTI-nla-n g

In the case & = 1, this implies that

oF = for some 1<t n,
and so

Afg == g-

K b = —1, then o@"=0e-D o 3 ang 2@ 0D 3. ang (3)
again gives A, = ¢. _

Conversely, if 4,9 = g for all g € P¥*Y, then by Lemma 12, 4, induces
the identity map on all polynomials of degree < #. Henee & satisfies the
first » equations of the system, as in the case b = 0.

Now let o be & primitive element of Fnii, and fake 4 = o2},
u = w'@ Y for g 0dd. Tf ¢ is even consider just the first case, sinee 1 = —1,
By Lemma 13, 4, u € K,,, and so their minimal polynomials h, g respect-
ively, have degree (m-+1).

The constant terms of &, g are

e+l pyig— il -
ale DA and @ Ditg-2),

which equal 1 and —1, respectively.
In the case b =1, it follows that 4, =% and so

® =3 o<i<n.
- @lDE _ o1
= (g—1)k = (g—1)¢'mod (¢"*' 1)
. -1
ok = gmod (E“_“_l)
q—1
In the case b = —1, A,g = g implies

pE = o<t

o i@ DE _ ms}{q—l)gf

=3 (g—1)k = ${g—1)¢mod (g"** —1)

>k = ¢'mod 2(¢"*' —1)/(g—1).

CoroLLARY. The group G of mappings F, —~ F induced by permutation
polynomial vestors g(n, k; b), where b =1 [resp. b = —1], is isomorphic
to the group of reduced residues mod LOM {g—1, ..., "1, (@ —-1)j(g—1))
[resp. mod LOM (¢—1, ..., ¢*—1, 2(¢"** —1)/(g~1))] factored by the cydlic
subgroup generated by q of order LCM (1, ..., n+1).
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Proof. The proof is esgentially the same as for Theorem 3, with
the following modification, We freat the case & =1, the cage b = —1
is similar, Let ¥ = LOM (g1, ..., £*—1, (q‘““—l),’(q‘——l}). We notie tirstly
that the order of qmod((q““—l)/ {q —~1)) is (%+1), since clearly gni!
= 1 mod {(¢"** —1)/(g 1)}, and i ¢ has order ¢|(n 1), then (¢ —1) | (¢ —
~1)(g—1)- |

But '

(q—1)(¢ —1) = (¢ —1)— (¢ +9—2).

Since ¢=2, and as »+l1>2, i< (+L)2<n, and so ("F1—1)>>

(g—1){¢'—1), a contradiction.
We now defermine the order of ¢ mod N. Let s = LCM(L, ..., n41).
Then ¢ = 1modN. If ¢™ =1mod N, then t{m, Lt n To show

(w-+1)|m, we have

() 1.

Let y = ged ("™ —1, ¢"—1) = ¢#°4*+1m 1 then

a1 _1 T
g (g—1) 2

¥
thus

a4+l

1
ltg—1)
or .
(@ -1 g -1 (g 1),

Ag before, thig ig impossible unless n+1 == ged(n+1, m), i.e. (n+1)|m
Kow suppose

n—E—lwl
h=¢med ¥, ¥ =IOM(g—1,..,¢~1), k=¢ m"d(g?i“)'
Then
) . i
b =g +aN --j'gsmod(g!g!_:L )5
henee
e+l _ g
ai\rl — gt(gs—t_l)(qull).
Thus |

.(qg %1) g t—1 for m|n-+l.
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As Dbefore this implies m|(s—1), or s =t mod m. The rest of the
proof goes through as before, noting that we already ]mow the nature
and number of the solutions to the first » congruences.

Lidl and Miiller [12] examined the question of when the group induced
by the permutation polynomial vectors g(m, k, d) is cyclic for n = 2.

The case » =1 was setfled earlier by Hule amd Milller [6]. We now
extend this to the general case.

TemOoREM 5. The group G induced by the permutation polynomial
vegtors amongst the g(n, k,b) is cyclic if ¢ =2, % =2 and b =1, or if
g=2o0r3, n=2and b=0.G is not eyelic if n > 2.

Proof. The fact that & is eyclic in the cases given was established
in [12]. The following argument was suggested, in the case # = 2, by
W. Narkiewicz [13]. If an Abelian group A contains a subgroup isomorphic
to the direct sum of three or more copies of €,, then, when A is factored
by a eyclic group, the resulting group cannot be cyclic. ¥ N is the appro-
priate modulus (LCM{g—1,...,9*—1) for b =0, etc.), and ¢ is odd

3
then 8l(g2—1), and (g —1) (resp. (q ))13 divisible by an odd

prime. Thus the prime decomposition of N is of the form ¥ = 2°p%1 ... pin,
p; 2, f23, a2 1. The group & of reduced residues mod N is iso-
morphic to the direct sum of the groups Z (2%, Z [(pF). Z[(2") ~ O, @ Cpi—1,
where (; denofies a cyclic group of order 4.

Zif{p3) =~ Gpith @ Cp]_-! -

Thus ¢ contains a subgroup izomorphic to (3. :

If g is even, g # 2, then ged(g?—1, ¢*—1) == (g—1), and so there
are prime factors of (¢*—1) not dividing (¢ —1). T ¢—1, ¢#+g+1 have
a common prime factor %, then ¢ = 1 mod k, and so ¢*+¢+1 = 3 mod. %.
Thus unless 3 is the only prime dividing {g—1), there is a prime dividing
(g—1) and not (g-+g41). If ¢—1 = 3§, then

¢ +g+1l = (17 +3{g—1)+3 = 3[3* T+ 5 41]

and the second factor is not divigible by 8. Thus there are at least three
odd primes dividing ¥, ard so & conmtaing G. If ¢=2, n23,
N =ged(L,3,7,15,...) and so N is divigible by at least three odd
primes as before.

4. Matrix permutation polynomials. Brawley, Carlitz, and Levine
[2] have determined the polynomials f{z) € F,[2#] which permute the set
of nxn matrices over F, under substitution. In this section we give
a different prool of their result using Theorem 1.
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TeEEOREM § (Brawley, Carlitz and Levine). Let f(x) € F,[2]. Then f(z)
i& a permutation polynomial on I, ., the set of n X n matrices with entries
in F, if and only if -

(i} f(&) is a permutation polynomial over K, 1< r < n,

(i} f'(x) does not vanish on any of the fields F,, ..., Fq[n,’ﬂ'

“We first prove the following lemma.

Lemnaa 14, f(z) € F,{z] 4 o permulation polynomial on ¥ .. if and
only if f(2) permutes the similarity classes of F, ., , where the similarity
class of BeF, ., is Op = {A7'BA| AeF,,, , A invertible}.

Prooi. Suppose f(s) is a permutation polynomial on F, .. Then f
acty on the similarity classes, by defining

f (GB) = Gj’(B)'

If ¥ €0z, then ¥ = A7'BA, and f(¥) = A7'f(B)A4 ¢ ;. The map
Cp =g, is surjective on the set of similarity classes, a8 otherwise there
would be a class with no preimage, and any matrix ¥ in thiz class would
have no preimage under f, contradicting the fact that f is a permutation
polynomial on F,,,. Thus f permutes the similarity classes, ag there
are a finite mumber of them.

Now suppose f permutes the similarity elasses in #,,,. Then since
[Cpmy! < [0l for all B eF,,,, each €z can only be mapped to o class
'.WhOSG order is less than or equal to that of Cp. If |0y = [Crml then f
induces a one-to-one map of Cp onto (. Thus f can fail to permute
By only i |Og] > [0z for some Op. Leb M be the set of classes which
are of maximal order # with respect to this property.

Then. since all the classes of order greater than » are mapped onto
o]asses_ of their own cardinality, the set of preimages of the classes
of M must be M itsell. '

Thus f(z) preserves the cardinality of the classes of M, a contradietion.
Thus f(») preserves the cardinality of all elasses and go is a permutation
polynomial over F,,,.

Proof of Theorem 6. Suppose f{x) permutes By Lot A
e F, [z], and let €, Dbe its companion matrix, The minimal polynomial
of 0, is A(y). Hence the algebra J(4) generated by ¢ '« over F, is iso-
morphic to Fy[y] /(4 (y)). Since f(z) is a permutation polynomial on ¥, ,
it is 50 on J(4), and vie the isomorphism is so on F, [y]](A (y)). No;lv ’;f
A(y) = [T (y), then F,[y)/(A(y)) = OIF,[y1/(p%(y)), and f(z) permutes
each of the ¥ [y1/(pi(y)). Taking A (y) to have an irreducible factor of
degree r and multiplicity one, we see that f(z) permutes Fr. Now if 4 (y)
has a factor of multiplicity greater than one (and the degree of any such
must be less than or equal to [#/2]), f(#) must permute F,lyl/(pE W), a;
>1, degp;(y) > r. Such an f(») is called regular over F,, and it is known
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that regularity of f is equivalent to f'(u) £ 0 for u e F,. [S8ee Lausch
and Nobauer [7], prop. 4.31, p. 163].

Now assume f(x) satisfies the given conditions. The similarity classes
are determined by their invariant factors, which are polynomials in
F,[z].

A result from Gantmacher ([5], p. 158, note 2) ensures that the
invariant factors of f{4) are A,q, where g are the invariant factors of 4,
and ;is the mapping defined in Bection 1. If f{A) = f(B), where 4, B
are in different similarity classes, then if {g,} are the invariant factors
of A, {h;} of B, the invariant factors of f(4), f(B) are {A.g;}, {4k} re-
gpectively. Since the degrees of g, by are =< s, and as by Theorem 1 4,
permutes the polynomials in F, of each degree < n, {g;} = {#;} and so
A is shmilar to B, & contradiction. Thug f permutes the similarity classes,
and so permutes F .. by Lemma 14
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