

270 D. Vogt

[20] - Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117.

- [21] D. Vogt, M. J. Wagner, Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau, Studia Math. 67 (1980), 225-240.
- [22] -, Charakterisierung der Unterräume und Quotientenräume der nuklearen stabilen Potenzreihenräume von unendlichem Typ., ibid. 70 (1981), 63-80.
- [23] M. J. Wagner, Unterräume und Quotienten von Potenzreihenräumen, Dissertation, Wuppertal 1977.

Received November 16, 1978

(1480)

STUDIA MATHEMATICA, T. LXXI. (1982)

Discrete nilpotent groups have a T_1 primitive ideal space

b:

DETLEV POGUNTKE (Bielefeld)

Abstract. Let G be a discrete nilpotent group, let $C^*(G)$ be the C^* -hull of $L^1(G)$, and let Prim(G) be the space of all primitive ideals in $C^*(G)$, equipped with the Jacobson topology. It is shown that Prim(G) is a T_1 space, i.e. the primitive ideals are maximal. As a consequence, the set of maximal two-sided ideals in $L^1(G)$ coincides with the set of primitive ideals and with the set of kernels of irreducible *-representations of $L^1(G)$.

For a locally compact group G let $C^*(G)$ be the C^* -hull of $L^1(G)$ and let $\operatorname{Prim} G = \operatorname{Prim} C^*(G)$ denote the space of kernels of irreducible *-representation of $C^*(G)$, equipped with the Jacobson topology. Using R. Howe's results on representations of a certain type of discrete nilpotent groups, C.C. Moore and J. Rosenberg have shown that $\operatorname{Prim}(G)$ is a T_1 space (i.e. the primitive ideals in $C^*(G)$ are maximal) for all finitely generated discrete nilpotent groups. In this paper, I want to give a short direct proof for the T_1 property of $\operatorname{Prim}(G)$ for all discrete nilpotent groups.

The heart of the proof is the following lemma.

LEMMA 1. Let G be a locally compact group, let N be an open normal subgroup of G, and let W be a subgroup of G with $N \subset W$ and such that W/N is central in G/N. Let λ be the left regular representation of G in $L^2(G/N)$, and let σ and τ be unitary representations of G. Suppose that σ is irreducible and weakly contained in $\lambda \otimes \tau$ (symbolically: $\sigma \leqslant \lambda \otimes \tau$). Then there exists a unitary character χ of W, $\chi \equiv 1$ on N, such that

$$\ker_{L^1}(\chi \otimes \tau |_{\mathcal{W}}) \subset \ker_{L^1} \sigma |_{\mathcal{W}},$$

where \ker_{L^1} means that we take the kernel of the corresponding representation of $L^1(W)$.

Remark. In [1], the so-called class $[\psi]$ of locally compact groups was introduced. For a locally compact group G, denote by $\operatorname{Priv}_*(L^1(G))$ the space of kernels of irreducible *-representations of $L^1(G)$, equipped with the Jacobson topology. G belongs, by definition, to $[\psi]$ if the canonical map $\operatorname{Prim}(G) \to \operatorname{Priv}_*(L^1(G))$ is an homeomorphism. It was shown that

every locally compact group with polynomially growing Haar measure (e.g. every nilpotent locally compact (discrete) group) is in $[\psi]$. Moreover, it was shown that a locally compact group G belongs to $[\psi]$ iff for every pair π , ϱ of unitary representations of G the inclusion $\ker_{\mathcal{I}^1}\pi \subset \ker_{\mathcal{I}^2}\varrho$ implies $\ker_{\mathcal{C}^*}\pi \subset \ker_{\mathcal{C}^*}\varrho$. Thus, if we assume in Lemma 1 additionally that W belongs to $[\psi]$, then the assertion means that $\sigma|_W$ is weakly contained in $\chi \otimes \tau|_W$.

Proof of Lemma 1. Here, I use an idea from [7] where we proved the symmetry of the group algebra of a discrete nilpotent group. Let $\mathscr{C} := \tau(C^*(G))$, and let $\mathscr{A} = \mathscr{L}^1(G/N,\mathscr{C})$ be the Leptin algebra with trivial factor system and trivial action. In other words, \mathscr{A} is just the (projective) tensor product of the two algebras $\mathscr{L}^1(G/N)$ and \mathscr{C} . We define

$$E \colon \mathscr{L}^1(G) {
ightarrow} \mathscr{A}$$

by

$$(Ef)(\dot{x}) = \int_{N} f(xn) \tau(xn) dn = \tau(x) \int_{N} f(xn) \tau(n) dn$$

where \dot{x} denotes the image of x under the quotient morphism $G \rightarrow G/N$. Since N is open in G there are no measurability problems. Trivial computations show that E is an *-morphism.

Let $\mathscr H$ be the representation space of τ . Then $\tau' := \lambda \otimes \tau$ acts in $\mathscr H' := L^2(G/N, \mathscr H)$, and we have

$$(\tau'(f)\,\xi)(x) = \int_{G} f(y)\,\tau(y)\,\xi(\dot{y}^{-1}x)\,dy,$$

where $f \in \mathcal{L}^1(G)$, $x \in G/N$, $\xi \in \mathcal{H}'$.

Moreover, we define $\tau'' := \mathscr{A} \rightarrow \mathscr{B}(\mathscr{H}')$ by

$$(\tau''(f)\,\xi)(x) = \int_{G/N} f(y)\,\xi(y^{-1}x)\,dy$$

where $x \in G/N$, $\xi \in \mathcal{H}'$, and $f \in \mathcal{A} = \mathcal{L}^1(G/N, \mathcal{C})$, especially note that $f(y) \in \mathcal{B}(\mathcal{H})$.

One verifies very easily that $\tau^{\prime\prime}$ is an *-representation of ${\cal A}$ and that the diagram

commutes. Let $\tau'(\mathscr{L}^1(G))^-$ and $\tau''(\mathscr{A})^-$ be the closures in the norm (of $\mathscr{B}(\mathscr{H}')$). From $\sigma \leqslant \tau'$ it follows that $|\sigma(f)| \leqslant |\tau'(f)|$ for all $f \in L^1(G)$. Therefore, there exists a unique irreducible *-representation $\bar{\sigma}$ (in the representation space of σ) of $\tau'(L^1(G))^-$ with $\bar{\sigma}\tau' = \sigma$. From 2.10.2 in [2] it follows that there exists an irreducible *-representation σ' of $\tau''(\mathscr{A})^-$ such that the restriction of σ' to $\tau'(L^1(G))^-$ contains $\bar{\sigma}$ as a subrepresentation. Let $\tilde{\sigma} = \sigma'\tau''$, $\tilde{\sigma}$ is an irreducible *-representation of \mathscr{A} . By construction, we have

(*)
$$f \in L^1(G), \quad Ef \in \ker \tilde{\sigma} \Rightarrow f \in \ker \sigma.$$

The representation $\tilde{\sigma}$ of \mathscr{A} can be extended to an *-representation of the adjoint algebra \mathscr{A}^b , see [6], which contains $L^1(G/N)$ and \mathscr{C} , and we find a unitary representation σ_1 of G/N and an *-representation σ_2 of \mathscr{C} such that

$$\tilde{\sigma}(f) = \int\limits_{G/N} \sigma_1(x) \, \sigma_2(f(x)) \, dx$$

for $f \in \mathcal{A} = \mathcal{L}^1(G/N, \mathcal{C})$.

Since $L^1(W/N) = L^1(W/N, C)$ is central in \mathscr{A}^b , the restriction of σ_1 to W/N is the multiple of a unitary character χ of W/N. We consider χ also as a character of W and assert that $\ker_{L^1(W)}(\chi \otimes \tau|_W) \subset \ker_{L^1(W)}\sigma$. Using (*) we see that it is enough to show:

$$f \in L^1(W), \quad (\chi \otimes \tau|_W)(f) = 0 \Rightarrow \tilde{\sigma}(Ef) = 0.$$

The assumption says that $\int\limits_W f(\omega)\chi(\omega)\tau(\omega)\ d\omega=0$. But

$$\begin{split} \tilde{\sigma}\left(Ef\right) &= \int\limits_{G/N} \sigma_1(x) \, \sigma_2\left(Ef(x)\right) dx = \int\limits_{G/N} \sigma_1(\dot{x}) \, \sigma_2\left(\int\limits_N f(xn) \, \tau(xn) \, dn\right) d\dot{x} \\ &= \int\limits_{W/N} \chi(\dot{x}) \, \sigma_2\left(\int\limits_N f(xn) \, \tau(xn) \, dn\right) d\dot{x} = \sigma_2\left(\int\limits_{W/N} \chi(\dot{x}) \left(\int\limits_N f(xn) \, \tau(xn) \, dn\right) d\dot{x}\right) \\ &= \sigma_2\left(\int\limits_W \chi(\omega) f(\omega) \, \tau(\omega) \, d\omega\right) = 0, \end{split}$$

and the proof of Lemma 1 is finished.

LEMMA 2. Let G be a discrete nilpotent group, let $G_0 = \{e\} \subset G_1 \subset G_2 \subset \ldots \subset G_n = G$ be the ascending central series of G, i.e. $G_k|G_{k-1} = c$ enter of $G|G_{k-1}$ for $k \ge 1$. Let π be an irreducible unitary representation of G such that $\ker_{C^*}\pi$ is a maximal ideal in $C^*(G)$. Let τ be another irreducible unitary representation of G, let $1 \le k \le n$, and let γ be a unitary character of $G_k|G_{k-1}$ such that $\gamma \otimes \tau |G_k \le \pi |G_k|$.

Then $\pi | G_k$ and $\gamma \otimes \tau | G_k$ are weakly equivalent.

Proof. We consider π as fixed. Suppose that the Lemma is false. Then we take the largest k, $1 \le k \le n$, such that there exist an irreducible

unitary representation τ of G and a unitary character γ of $G_k|G_{k-1}$ with the property that $\gamma\otimes\tau|G_k$ is properly weakly contained in $\pi|G_k$. Then we have k< n because $\gamma\otimes\tau\ll\pi$ implies $\pi\ll\gamma\otimes\tau$ since $\ker_{C^\bullet}\pi$ is maximal. From $\gamma\otimes\tau|G_k\ll\pi|G_k$ it follows that

$$\inf_{G_k\uparrow G}\gamma\otimes\tau\,|G_k\>=(\inf_{G_k\uparrow G}\gamma)\otimes\tau\leqslant\inf_{G_k\uparrow G}\pi\,|G_k\>=\pi\otimes\lambda$$

where λ denotes the left regular representation in $L^2(G/G_k)$. The reader should note that the "continuity of the induction" was shown in [3] only in the separable case. But here it is also true because one can compute the L^1 -kernels of the induced representations explicitly in terms of the kernels of the original representations. And it is enough to know the L^1 -kernels since G belongs to $[\varphi]$. Now, we choose an irreducible unitary representation σ of G which is weakly contained in $(\operatorname{ind} \gamma) \otimes \tau$. From Lemma

1 (together with the Remark), applied to $N = G_k$, $W = G_{k+1}$, it follows that there exists a unitary character χ of G_{k+1}/G_k with $\sigma|G_{k+1} \leqslant \chi \otimes \pi|G_{k+1}$ or $\overline{\chi} \otimes \sigma|G_{k+1} \leqslant \pi|G_{k+1}$. Since k was maximal, $\overline{\chi} \otimes \sigma|G_{k+1}$ and $\pi|G_{k+1}$ are weakly equivalent. Then $\sigma|G_k$ and $\pi|G_k$ are weakly equivalent, too. But from $\sigma \leqslant (\operatorname{ind} \gamma) \otimes \tau \leqslant \pi \otimes \lambda$ it follows that

$$\sigma | G_k \ll \gamma \otimes \tau | G_k \ll \pi | G_k (\ll \sigma | G_k).$$

Hence, $\gamma \otimes \tau \mid G_k$ and $\pi \mid G_k$ are weakly equivalent which is a contradiction Theorem. Let G be a discrete group which is a finite extension of a nilpotent group. Then $\operatorname{Prim}(G)$ is a T_1 space.

Proof. Since the T_1 property is stable under finite extensions, see [10], we may assume that G is nilpotent. Let ρ be an irreducible unitary representation of G. We have to show that $\ker_{G^*}\rho$ is maximal. Since $C^*(G)$ has a unit, ker oo is contained in a maximal two-sided ideal which is the kernel of an irreducible *-representation, say $\pi.$ Let $G_0=\{e\}\subset G_1\subset\ldots\subset G_n$ = G be the ascending central series of G. Since π and ρ are irreducible, their restrictions to G_1 are weakly equivalent to characters. These characters are identical because $\pi | G_1$ is weakly contained in $\varrho | G_1$, hence $\varrho | G_1$ is weakly contained in $\pi | G_1$. Next, we show that $1 \leq k < n$, $\rho | G_k \leq \pi | G_k$ implies $\varrho | G_{k+1} \ll \pi | G_{k+1}$. From $\varrho | G_k \ll \pi | G_k$ it follows that $\varrho \otimes \lambda \ll \pi \otimes \lambda$ where λ denotes the left regular representation of G in $L^2(G/G_k)$. Since G (or better: G/G_k) is amenable the trivial representation is weakly contained in λ . Hence ϱ is weakly contained in $\pi \otimes \lambda$. From Lemma 1 it follows that there exists a unitary character χ of G_{k+1}/G_k with $\varrho \mid G_{k+1} \ll \chi \otimes \pi \mid G_{k+1}$. Moreover, we have $\pi | G_{k+1} \leqslant \varrho | G_{k+1}$. By Lemma 2, $\pi | G_{k+1}$ and $\chi \otimes \pi | G_{k+1}$ are weakly equivalent. Hence $\pi \mid G_{k+1}$ and $\varrho \mid G_{k+1}$ are weakly equivalent, too. By finite induction, we get that π and ϱ are weakly equivalent. Therefore, $\ker_{C^*}\varrho = \ker_{C^*}\pi$ is maximal, and the Theorem is proved.

The Theorem has also some consequences for the ideal theory in the group algebra $L^1(G)$.

COROLLARY. Let G be a discrete group which is a finite extension of a nilpotent group. Let $\operatorname{Max}(L^1(G))$ denote the set of all maximal two-sided ideals, let $\operatorname{Priv}(L^1(G))$ denote the set of primitive ideals (in the algebraic sense), and let $\operatorname{Priv}_*(L^1(G))$ denote the set of all kernels of irreducible *-representations of $L^1(G)$. Then $\operatorname{Max}(L^1(G)) = \operatorname{Priv}_*(L^1(G)) = \operatorname{Priv}_*(L^1(G))$.

Proof. It is known from [8] or [7] and [5] that $L^1(G)$ is a symmetric Banach*-algebra which implies the inclusion $\operatorname{Priv}(L^1(G)) \subset \operatorname{Priv}_*(L^1(G))$. The inclusion $\operatorname{Max}(L^1(G)) \subset \operatorname{Priv}_*(L^1(G))$ is obvious. Now, let $P = \ker_{L^1}\pi$, π irreducible, be in $\operatorname{Priv}_*(L^1(G))$. Since $L^1(G)$ has a unit, P is contained in a maximal two-sided ideal M. There exists an irreducible *-representation μ of $L^1(G)$ with $\ker_{L^1}\mu = M$. Since G as a group with polynomially growing Haar measure belongs to $[\psi]$, the inclusion $\ker_{L^1}\pi \subset \ker_{L^1}\mu$ implies $\ker_{G^*}\pi \subset \ker_{G^*}\mu$ and, consequently, $P = \ker_{L^1}\pi = \ker_{L^1}\mu = M$.

References

- J. Boidol et. al., Räume primitiver Ideale von Gruppenalgebren, Math. Ann. 236 (1978), 1-13.
- [2] J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris 1969.
- [3] J. Fell, Weak containment and induced representations of groups, Canad. J. Math. 14 (1962), 237-268.
- [4] R. Howe, On representations of discrete, finitely generated, torsion-free nilpotent groups, Pacific J. Math. 73 (1977), 281-305.
- [5] H. Leptin, On symmetry of some Banach algebras, ibid. 53 (1974), 203-206.
- [6] Verallgemeinerte L¹-Algebren und projektive Darstellungen lokalkompakter Gruppen, Invent. Math. 3 (1967), 257-281, 4 (1967), 68-86.
- [7] H. Leptin, D. Poguntke, Symmetry and nonsymmetry for locally compact groups, J. Funct. Analysis 33 (1979), 119-134.
- [8] J. Ludwig, A class of symmetric and a class of Wiener group algebras, ibid. 31 (1979), 187-194.
- [9] C. C. Moore, J. Rosenberg, Groups with T₁ primitive ideal space, J. Funct. Analysis 22 (1976), 204-224.
- [10] D. Poguntke, Der Raum der primitiven Ideale von endlichen Erweiterungen lokalkompakter Gruppen, Arch. Math. 28 (1977), 133-138.

FAKULTÄT FÜR MATHEMATIK UNIVERSITÄT BIELEFELD POSTFACH 8640, D-4800 BIELEFELD 1 (WEST-GERMANY)