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Integral inequalities with weights for

the Hardy maximal function*

by

R. A. KERMAN (St. Catharines, Ont.) and
A. TORCHINSKY (Bloomington, Ind.)

Abstract. Necessary and sufficient conditions are obtained in order that inegqual-
ities of the form

Je (@) w@dn<0 [ &(f@))v@)de
RV RN
hold, where Mf is the Hardy maximal function of f and @ is an appropriate Young's
funection. This result gives similar inequalities for the usual singular integral operators.
1. Our aim is to study weighted integral inequalities involving the
maximal funetion operator M defined for Lebesgue-measurable f on B" by

(M) (@) = sup—- ]Q| @)y, @eRY

as is always the case below, @ is a nondegenemte cube with sides parallel
to the axes. More specifically, we extend to the context of Orlicz classes
the result of B. Muckenhoupt, [4], for Lebesgue classes:

J D @Pw@)de<0 [ |f@)Pne)ds,

Rn Rn
p fixed, 1 <p < oo, and ¢ independent of Lebesgue-measurable f, if
and only if w(x) is in the class 4, of those weight functions for which

1 R
(t@]!w(“d”)(tgchw(“) ’ )dw) <E

for all cubes Q.
The integral inequalities of interest to us are of the form

Jo( ) @)w@d< ¢ [ o(1f@))we)ds
R" RR
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The Young’s functions @(t) involved is given by
¢
o) = [pwdu, t>0,
u

where ¢ (u) is & nondeereasing function defined for % > 0 with ¢(0") = 0.
We require that (1) satisfies the A, condition

D(2t) < BDH), t>0,
which is equivalent to the more general property
DALy s BO), t>0

(with postsibly different B). It is also important that the Young’s function
Y(t) = Df ¢ (w)du, complementary to @(t), obey the A, condition. (Here

¢ (1) = sup{s: p(s) < u}.) These restrictions ensure that lim (1)
. —1, . B — L0t
:t]ilqu (t) =0 and %an)(t) = ilnl(p '(t) = oo, and hence that these
functions are equivalent to strictly monotonic ones. We will make use
of the following properties of @(t) without explicit reference:

(1) @(¢) is essentially equal to tp(l),
(i) 1< TP < 2.

Ehe Ol:liGZ space Ly = Lg(w), w(w) positive and locally-integrable
on K", consists of all Lebesgue-measurable functions on R* for which there
is a K >0 such that

[ (if (@) /K)w(w)do < 1.
R"
The norm of f in I, is the infimum over all such K. Under our restrictions
s the « on T, i
on @(t) and W(1), the spaces L, and Ly ave mutually dual and, in par-
ticular, are reflexive.
. Matuszewska and Orlicz, [3], have associated a pair of indices with
a given Lg. A generalization of these, or rather their reciprocals, has been
%wen in th1e more general context of rearrangenient invariant spaces in
oyd [1]. There, the upper and lower indices a and § are defined by

o= inf — BRE) o Ink(s)

0<s<l nsg 530+ Ins
and

Inh(s ]
B = sup Inhs) =lim I (s)

- =y

1<s<oo Ing P Ins
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where, for Orlicz spaces,

o7 (1)
h(s) StEIn) T (st) .

We refer to [1] for a complete discussion of their properties, some of which
will be introduced below as needed. We just mention that for the &(t)
we consider, 0 < < a< 1; that in the case of Lebesgue spaces, Ly,
when ®(t) =1, one has a = f =p~\

We now state our madn result.

TurorEM 1. Let w(x) be a positive, locally-integrable function on R™

¢
and let @(t) = [¢(u)du be a Young’s function whieh, logether with 4t com-

0
plementary function ¥ (1), satisfies the A, condition. Then, in order that the
wnequality
) [ @((31f) (@) w0 (2)do < € [ ®(1f@))w(@)de

Iﬂ"‘ Rn
be valid for C independent of f, it is necessary and sufficient that either one
of the following holds:

(2) w() is in the class Ay; that is,
1 1 - .
———few(w)dm ¢ -—qu (Lfer0 (@) dor) < K
Q1 4 @l 4
for all cubes @ and all & > 0;
(8) w(x) is in the class A,, where pt is the upper index of Ly; that 1s

. In7i(s) D7)
—1 = — I = sup —————-
p 51_1301:, Ins ’ !(#) tg%) &} (st)

In §2 we show that (2) is necessary for (1), in §3 that (2) implies
(8), whieh in turn is sufficient for (1).

Finally, arguments similar to those of [2], Theorem III, show that,
given w(z) € 4,4, integral inequalities of the form (1) hold for the usual
singular integral operators. Indeed, for the Hilbert transformation, the
condition w(z) € 44 is also necessary.

2. It will be enough to obtain the condition of (2) with ¢ =1, pro-
vided that K is seen to depend onty on €. To begin, we claim thereisa con-
stant €y so that for all cubes @ and all & > 0
(4) lzgll zo fewlle < 01191

Here || ||, denotes the norm in Ly (aw); || |l; the norm in L y(ew). Firstly,
our assumptions on w(x) ensure that 0 < B < oo, where B = |xg/zwli.-
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For, B = 0 implies that the L, (sw) norm of y,/sw is zero, which means,

in torn, that |@| = 0, making @ a degenerate cube. Again, B = oo requires

the existence of a nonnegative tunction fin L (ew) on @ with [ f(2)de = co.
o

This forces Mf == oo on @, which isn’t consistent with (1) if ¢ is nondegen-
erate. )

Next, the converse of Holder’s inequality allows us to ¢hoose a nonneg-
ative function f, supported on @, so that |ff, == 1 and [f(=)de == | 2olewl;.
Then, for z €@, ¢

(M) () = (g ewl/1Q1) 2 (@),
and so '
[ @ lxqlewll./1Q1) ew () dar < € f B (f (@) ew(@)dw = O
Q (4]
that is,

P (llzglewl/|QN) ew(Q) < C.

On taking €y = h(071), (4) follows.
Now, from the definition of ||y, /ew|, and (4),

(Calizglle/101) [ ¢ (Callzgll/1Q] ew (@) die < By,
Q

where t™! (1) < B, P(t) for all $>> 0 and 0, = O;'. Leti s > 0 satisfy Colixolly/
/el@] = 1. Such an s exists since the left hand side of the equation is
a continnous funetion of ¢ which tends to infinity as ¢ -> 0, and to zero
as &—>oco. Indeed, since |xql, = 1/@ (1 /ew(Q)),

Culliglhe/s 1@ = €, [¢1QI 2™ (L/ew ()]}

is.essentia%ly equal to Cyw (Q)¥~*(1/ew(Q))/|Ql, which menns the desired
¢ iy essentially equal to [w(§)¥ (1Q1C/w(@))]*. We thus have, for some
B, comparable to B,,

of 77 (1w (@) do < B, [w(Q) W (1Q10: /0 (Q))] < B4 1Q] 97 (1Q10:/w(Q)

yielding (2) with. K = BBy, where B, corresponds to .A = 28,0,
in the generalized A, condition for @ (1)

3. In this section we prove that (2) implics (3) and that (3) suffices
for (1). The former is a consequence of the threo results proved below and
the following interpolation criterion due to Stein and Weiss [6].

Suppose 7' is a sublinear operator defined for functions Xy X o gub-
get of B of finite Lebesgue measure, and that w () is & nonnegative, locally-
integrable function on R Suppose, further, 7' is simultuneously of restric-

icm®
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ted weak-types (p1, py) and (s, Ps)y 1 <Py <Py < oo, With respect to
w(x):
w(r)de < Cw(E)A™%, 1=1,2,
{Typ=>24}
with ¢ independent of the set B and the positive number . Then T is

bounded from L, (w) to itself, provided p; < » < Ds. .
The first of the following results seems to be of some independent

interest, particularly as it velates to the 4, condition; see [2] and [5].
PROPOSITION 1. For w(w) a positive, locally-integrable function on ET,
the restricted weak-type (p, p) inequality
w(z)de < Cw(E)A™?,

(8)
{Mym>Aa}

with C independent of the Lebesgue-measurable set E and, the positive number
4, is equivalent to the ewisience of a positive constant K such that for all cubes
Q and all Lebesque-measurable E = @
(6) 1B1/1Q < K [w(B) (@)1

Proot. Condition (6) is an immediate conseguence of (5) and the fact
that

1<p < oo,

Myz= | B1/1Q2e-
Agsume that (6) holds for w(z). Then
) Myp < E[M, 251",

where the maximal function operator M, is given by

(Mof) (@) = sup 1f0(Q) [ IF@)wy)dy.
ZE Q

Clearly, w(x) satisties the doubling condition

0(@") < Cw(Q),
where Q* is the double of @. Thus, as pointed out in [2], Lemma 1, M, is
of weak-type (1,1) with respect to w(z). The inequality (5) is now seen to
bold with ¢ = €, K”, 0, being a weak-type (1,1) bound for M,,.
Levua 1.(*) Let @ and p be as in Theorem 1. Then w(x) e A, implies
w(z) € A, whenever ¥ > .
Proof. Given Proposition 1 and the interpolation criterion stated

above, it is enotgh to show (6).
Let Q be & cube and let E be a Lebesgue-measurable subset of Q.

We have, successively, by Holder’s inequality and (2), that |B|/|Q| is

(! We wish to thank J.-O. Stromberg for pointing out an error in the original
proof of this result.
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bounded above by

Nzl gz f2wll, /1Q1 < € ™ (w(

By /ew (Qw (B)) ™" (1 /e (1)).
The latter term, however, is less than 20(w(H)/w(@))?. Tor, he(s) > s~ v
when 0 < s < 1. This means that for fixed s <1 there is o ¢ >0 with
D7Ht) [N (st) > s7HP 2 and so P (st) /D (8) < 28YP. Taking s = w(B) w(Q)
and & = 1/tw(Q) yields (6).

LeMua 2. Let © and p be as in Theovem 1. For 8 > 0 define the Young’s
unction D, by the equation

o5 (1) = (¢ (1),

Then, the upper indew of Ly, is greater than p~*. Moreover, if w
then w(x) € Ag, for all sufficiently small 6.

Proof. To prove the second assertion it will be enough to establish

the condition of (2) for @; when ¢ = 1, provided it is seen the ¢ depends
only on K.

Set v(z) =

(v) € 44,

¢~ (1w (). Then w(w) = 1/p(v(2)) and w(z) € A, implies

(7 (@nQn [ (Lie(o(@)))do) (o@)/1Q)) < &£
Q

We show there exist «, f, > 0, independent of ¢, so that for I = {x e Q:
v(:w) > av(@)/IQ} we have |F|>= flQ|. On the complement of E in @,
B, v(x) < av(@) /9] and so, using (7),

1B°1/1Q1¢(av(@)/1Q]) < K jp(v(@)/1Q).

Therefore,
1211191 < 101)/9(0(@)/191)) < K (®(200(Q)/1Q1) /a® (2(Q)/1Q1)).-
As established below, given a fixed 7 < p there is an s,, 0 < §, < 1, with

(8) B (st) < 577" D(1),

K (cp (av(Q

t>0, 0<s< 1.
This will mean [E°|/|Q| < Ksy 27" < 1/2 for small .

Arguing
equality ”

(/1@D [ 51w (@) de) ' < Co11Q1) [ g7 (1 pw () dir,
@ o

for all sufficiently small 8. Thus,

?o((L1Q) [ 95" (Liwa)) da) <
Q

as in [2], Theorem IV, we have the “reverse Toldor in

o (L (L9 f(})' (L (a ))dw)
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and the latter, by the generalized A, condition for @ and by (7), is no bigger
than

o ((1119)) f ¢ (Lfw(@) da) < 0191 (@),

with € = C,I. Hence w(x) € 44, for all small 4.
To see (8), observe that there exists 89y 0 << 8o << 1, with hg(s) < s™"
when 0 < s < g5, Thus

Sy DM st) < s, 1> 0, 0<s< 8,
that is,

D(st) < S"P(L), 1>0, 0<<s<Ts,.

For 8, < 5 <1, (8) follows from the fact that & increases.

Finally, we show the upper index of L, is greater than p~'. By duality,
it will be sufficient to prove the associate space, Ly, has lower index less
than ¢!, (p~'+¢~ ' = 1), the lower indes of Ly. Given & > 0, we have,
for fixed, sufficiently large ¢ > 1,

—g h‘y( )< —1IQ+S

where hy(s) = sup(?[/'l(t)/!l’“l(si-)). Thus,

>0
W ) < 8 =57
for all t >0 and
57V P ) [P (st)

for some t > 0. With ¢ = ¥(z) the former gives
P (s%7) [P (7) < 8

From ¥ satisfying the A, condition we infer that ¥,{t) essentially equals
Pt +9°, and so the last inequality reads :
(s%0)° Wy (s97) [z° W (v) < Es'F°.
Letting T = Wy(z) and o = """ yields
TUT) W (oT) < Ky, b= (—g  e)/(1+8(p7 +e)),
for tixed large o and all T > 0. Similarly,
Kyo® < Wy

N WD), o= —q [1+pT),

for fixed large ¢ and some T > 0. This shows the lower index of Ly, must
equal ¢ (1+0p~Y) < ¢!
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Finally, we establish the

Sufficiency of (3). From the well-known “openness” of the condition
for membership in A4,, w belongs to A, for some 7, with 1< r < p,
where p~! is the upper index of L,. Then, for Lebesgue-mensurable f

f B ((Mf) (@) w (@) doe < C | w({Mf > s} D (s)(ds/s)

Figg 0
<0 (@(s) /s'o)( I f(./z:)l“lw(m)(lm)(ds /s).
0 ) >s
Interchanging the order of integration gives
i)
Jir@row@)( [ (®(s)/s7) (ds f5)) dor..
0

R’IL
But, using (8) with, say, r = (ry+p)/2, means this is dominated by
& constant multiple of [ &(|f(2)[}w(«)dw. This completes our proot.
R'IL
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On the convergence of bilincar and quadratic forms
in independent random variables

by

PETER SIOGREN (Giteborg)

Abstract. We considor bilinear and quadratic Tormg ay X; ¥; and Yay; X; X in
independent random vaviables with expectations 0 and variances 1. Necessary and
sufficient conditions for these forms to converge as. are given. Whon the X; and ¥;
are normal, wo cousider X = (.0}) and ¥ = (X)) as vectors in BN and ask when
Sa; X ¥; converges for X and ¥ in a subspace of BV of measure 1 for the distribution
law. This is proved to happen precisely when the ey deline a nuclear operator on I2.
The natural extonsion of this theorem to frilinear forms is shown to be false. An anal-
ogous resull for stochastic integrals is also given.

1. Introduction and statements of results. In fhis paper all random
variables and coefficients will be real-valued, Tlowever, our results extend
to the complex-valued case with only small modifications. The prob-
ability measure iv denoted by 12,

We shall say that a set of random vaviables stays eway from 0 if
it contuins no sequence tending to 0 in probability, i.c., if thereis an ¢ > 0
such that P ()X 2= &) = ¢ for all X in the set.

Linear formy ¥, A have been considered by Iloffmann-Jergensen
[2], Th. 4.10. If the X; are independent, stay away from 0, and satisty
IX; = 0 and BX; =1, then the condition Y af < co iy necessary and
sufficient for X, X; to converge a.s. Notice that this conclusion holds
it and only if the X stay away from 0, when the other agsunptions ave
satistiod.

For bilinear forms, several kinds of convergence exist, Call (21, Ny)
an admvissible sequence it oneh M, and N, is & natural numboer or oo, and
M, and Ny, increase to oo with &, and both M, and N, azo not co. A bilinear
form 3wy X, Xy is sadd to converge for such w sequenco i‘fi . $ v ay X Xy

S Mg J XNy
converges a8 k-roo. Ioffmann-Jergensen’s techniques [27], ,])p. "1..'15-156,
are eagily modified to give the following vesult.

Trwoney 1. Let X; and X;, 4,5 =1,2,..., be independent, have

apectation 0 and variance 1, and stay away from 0. Then the following are
equivalent :
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