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Finally, we establish the

Sufficiency of (3). From the well-known “openness” of the condition
for membership in A4,,w belongs to A, for some 7, with 1< r < p,
where p~! is the upper index of L,. Then, for Lebesgue-mensurable f

[ @ ((3f) (@) w (w) dw < ©

R®

w({Mf > s})D(s)(ds[s)

<0 (([3(.9)/8'0)( f ]f(./v)l“lw(m)(lm)(ds/&).

1f @) >s

CHB °"ﬁ3

Interchanging the order of integration gives
i)
Jir@row@)( [ (®(s)/s7) (ds f5)) dor..
V2 0
But, using (8) with, say, r = (ry+p)/2, means this is dominated by
& constant multiple of [ &(|f(2)[}w(«)dw. This completes our proot.
R'IL
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On the convergence of bilincar and quadratic forms
in independent random variables

by

PETER SIOGREN (Giteborg)

Abstract. We considor bilinear and quadratic Torms Say X; ¥; and Yay; X; X in
independent random vaviables with expectations 0 and variances 1. Necessary and
sufficient conditions for these forms to converge as. are given. Whon the X; and ¥;
are normal, wo cousider X = (.0}) and ¥ = (X)) as vectors in BN and ask when
Sa; X ¥; converges for X and ¥ in a subspace of BV of measure 1 for the distribution
law. This is proved to happen precisely when the ey deline a nuclear operator on I2.
The natural extonsion of this theorem to frilinear forms is shown to be false. An anal-
ogous resull for stochastic integrals is also given.

1. Introduction and statements of results. In fhis paper all random
varigbles and coefficients will be real-valued, Tlowever, our results extend
to the complex-valued case with only small modifications. The prob-
ability measure iv denoted by 12,

We shall say that a set of random vaviables stays eway from 0 if
it contuins no sequence tending to 0 in probability, i.c., if thereis an ¢ > 0
such that P ()X 2= &) = ¢ for all X in the set.

Linear formy e, A, have been congidered by Iloffmann-Jergensen
[2], Th. 4.10. If the X; are independent, stay away from 0, and satisty
IX; = 0 and BX; =1, then the condition Y af < co iy necessary and
sufficient for X, X; to converge a.s. Notice that this conclusion holds
it and only if the X stay away from 0, when the other agsunptions ave
satistiod.

For bilinear forms, several kinds of convergence exist, Call (21, Ny.)
an admvissible sequence it oneh M, and N, is & natural numboer or oo, and
M, and Ny, increase to oo with &, and both M, and N, azo not co. A bilinear
form 3wy X, Xy is sadd to converge for such w sequenco i‘fi . $ v ay X Xy

S Mg J XNy
converges a8 k-roo. Ioffmann-Jergensen’s techniques [27], ,])p. "1..'15-156,
are eagily modified to give the following vesult.

Trwoney 1. Let X; and X;, 4,5 =1,2,..., be independent, have

apectation 0 and variance 1, and stay away from 0. Then the following are
equivalent :
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(i) Dag < oo;
)

(ii) D ay X, ¥; converges as. as M, N—oo;

i<M<N )

(iil) 3 ayX;X; converges a.s. for some admissible sequence.

As to quadratic forms, we must pay special attention to the diagonal
terms since they have nonvanishing expectations. .

THBOREM 2. Let X, 4 =1, 2, ..., be independent with expectation 0 and
variance 1. Assume further that BXY% < oo for all i and that the set

(X —1)/(B(XI—1)3": P(1X,| =1) <1}

stays away from 0. Also let ay = ay; for all i and j. Then 3 ay X, X; con-
Li<N
verges a.8. as N —oc if and only if

Dlah+ Y @ BXi-1f < o
]
and lim > a,; ewists in R.
Nesoo i<N
When the X are identically distributed, the variables (X3 —1)/ (B (X* —
—17)"* will always stay away from 0, except when | X, = 1 a.s. We stato
this special case as a corollary.
COROLLARY. Let X;,i=1,2,..., be independent and identically
distributed and sotisfy BX; = 0, BX} = 1, and BX} < co. Assume a; = ay.
If P(|1X;| =1) <1, then 3 a;X,;X; converges a.s. as N-—oco if and only

LN
if Najy < coand im Y ay ewists in R. If P(|X;| =1) =1, i.e., P(X,
i Neco <N

= £1) =1/2, the same conclusion holds provided we replace 3 a% by
2 % "
irj

Under slightly stronger assumptions, Theorem 2 follows from Schrei-
ber [4]. It is not hard to see that in each of Theorems 1 and 2 the hypoth-
esis saying that a set stays away from 0 is necessary and sufficient for the
conclusion to hold, given the other hypotheses.

We now adopt a more functional-analytic standpoint and consider
X = (X)) and ¥ = (¥,){° as vectors in BY. Agsume the ¥ 5 are independent
copies of the X; so that X and ¥ have the same distribution law 14, whiel
is considered as a measure in RV, If the ay; satisfy the hypotheses of The-
orems 1 and 2, we have a bilinear form B(X, ¥) and a quadratic form
Q(X), and @(X) = B(X, X) when X € D(Q), the domain of Q. When the
a; are symmetric, it is natural to ask whether one can reconstruet 2 front
Q, say by means of

(1.1) B(X, Y) = QX+ Y)—Q(X)—@Q(X))

icm
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for X, ¥ e D(Q). Then X+ ¥ should also be in D(Q), ie., D(Q) must
be a vector subspace of u-measure 1. This is equivalent to gaying that
B(X, Y) is defined when X and ¥ belong to some subspace of p-measure 1.
As is easily scen, it is equivalent to assume B defined on the product
of two subspaces, or sets, of u-measure 1. This property of B makes sense
even if B is not symmetric. For normal variables there is a simple charac-
terization of the coefficients of such forms. By a full subspace we mean
a p-meagurable subspace of RV of y-measure 1.

TueorREM 3. Let X; and Y;,1,§ = 1,2, ..., be independent and N (0, 1),
so that w is the canonical Gaussiam measure in RY. Then the following are
equivalent:

(i) the matriz (ay;) defines a nuclear operator A: P—1*;

(i) D 64X, X; converges for X and ¥ in a full subspace as M, N — SH
i<M,j<N

(iii) the same sum converges for X and ¥ in a full subspace as (M, N)
runs through some admissible sequence.

If ay = ay;, this is also equivalent to

(iv) 3 ayX;X; converges on a full subspace as N -—co.

4,i <N

This means that convergence on full subspaces is far gtronger than
the a.5. convergence of Theorem 1. Simple examples of matrices () having
the property of Theorem 1 but not that of Theorem 2 are obtained by
letting a;; = 0 for ¢ s j and taking as (a;) & sequence in I* but not in I*.

It seerns plausible that Theorem 3 is valil for more general distri-
butions. In fact, our proof of the implication (i) =-(ii) holds quite gencrally,
but to show (iii) = (i), we use techniques applying only to normal variables.

Next, we study analogous forms for stochastic integrals. Let f and
y be independent Brownian motions and K a sure function in L*(R),
B =[0,1] %[0, 1]. Then the stochastic integral [ [ K (s, 1)dp (s)dy (1) exists.

I

One way of defining it is to consider partitions A: 0 = s, << 8, < ... < 8,
=land 0 =t#, <l <....<i, =1, and form the Riemann sum

S Eals, 0B ay) = 3 my(Bs)— Blssn))(y ) — v (5-0),
4

where X, is tho step function whose value in a rectangle s, 8;[ X 14y,
4l equals the mean value my of K in this rectangle. By an admissible
sequence of partitions we mean & sequence (4,)¢° such that 4., is a refi-
newent of 4, and the largest rectangle side of 4, tends to 0 as k—oo.
For such a sequence, ([, dfdy is an I* bounded martingale in k, as
we ghall gee later, and converges a.s. to [[Kdfdy. Let » be the Wiener
measure in [0, 1]. The following result is analogous to Theorem 3.

TemOREM 4. Let B, v, and K be as just deseribed, and assume K e I?(R).
The following are equivalent:

m
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(1) the operator K: I* [0, 11-L?[0, 1] defined by Kg¢(s) = [K (s, 1)
p(t)dt is nuclear;

(ii) as A runs through any admissible sequence of partitions, [ [ K , apdy
converges for f and y in o subspace of C[0, 1] which is full with respect to v;

(iii) same as (ii) but only for some admissible sequence.

If E(s,t) = K(t,s) and only symmelric partitions are considered,
this is also equivalent to

(iv) [{E, (s, 1)dp(s)AB(t) converges for any (or for some) admissible
sequence for B in a v-full subspace.

Notice that the subspaces in (ii)—(iv) depend on the admisgible sequence
considered. In general, one does not have convergence in the directed sct
of all partitions, see Sjogren [6].

" The proofs of Theorems 1-4 constitute Sections 2-4.

Finally, we consider trilinear forms > a,,X,Y;Z, in independent
N (0, 1) variables X,, ¥;, Z,. By the method of proof of Theorem 3, it
can be shown that such a form converges on the product of three full
subspaces if the coefficient tensor is in the completed projective tensor
product '@, 1*@, 1% But the converse of this is false, as proved by means
of an example in Section 5

Our main results were given in the preliminary report Sjogren [57.

By ¢ we denote many different positive constants whose values are
unimportant.

2. Almeost sure convergence.

LemmA 1. Let X;, 4 = 1,2, ..., be independent, have empectation 0 and
variance 1, and stay away from 0. Then the set {3 a,X;: ¥ a} = 1} stays
away from 0.

Proof. Assume P(]X | = &)= &> 0 for all i. By Chebyshev's in-
equality, P(e < |X;| <V 2/¢) > £/2, so for small ¢ one has

|[Eeost X, < 1—&*7/8.
TFurther,
|Bsint X, = |B(sint X, —1X,)| < B(#EXY) = .
So the characteristic function of X, satisfies
[Bexp (it X) | < (1 —a*8/8)2 - t* < exp( — 6417/8),
for || <ty = to(e). For these ¢ then
‘Eexp (itz z_l) < []esp(—22a28) = exp(—e428).

The lemma follows.
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LeyMA 2. If the random wvariables Z;,41 = 1,2, .. .y stay  aoay fwm
0, then there exists a 6 > O such that for mcw sequence ¢;>0,¢ =1,2,

one has
p(yc Ziz 53 6) = 6.

Proot. Let U, = min(Z%, 1), and notice that LU, = ¢ for some ¢ > 0.
It Ye; o oo, then T = e, U,/ 3 e; is bounded by 1 and has expectation
at least e Hence, P(T'> 8)> 0, 8 = d(¢), from which the assertion
follows. The case }¢; = oo is muly handled, and the proof is complete.

Proof of Theorem 1. (i) =(ii). The partial sums in (ii) form a double
index martingale which is bounded in I? because of (i). From this (i)
follows, in view of Théoréme 2, p. 6 in Cairoli [1].

Since (i) trivially implies (iii), we prove (iii)=(i). Let py and py
be the distribution laws of X and Y, respectively. By Lemma 1, there is
an & > 0 such that for any fixed ¥ and any M and N

(2.1) px X | ZMX,. Dag¥fze (Y a )}z
23 J<N

<M j<N

-2

Normalizing, we let
(] =( Y ) Fasz)
o JEN i<
Then Lemmag 1 and 2 imply
e wlr S Farfea 3 e
| <M <N <M, j<N
for some &, > 0. Since X and Y are independent, (2.1), (2.2) show that
a - v |2 5
P(( 2 ay, X, Yj) =86y 2 a.;j) > 816,
I<M,j<N <M, j<N

Thus, if S a,; X, ¥; converges a.g. for some admissible soquence, D < oo,
This ends 1]10 prooi of Theorem 1.

Proof of Theorem 2. The hypotheses clearly iraply
B(IX3~1]) = e (DX —1))",

for somie & > 0, This gives an estimate for B (X2 ~1)* from which it follows
that

(2.3) BX} < C.
Take @ na;buml number N. In the rest of ‘rhin section, it is understood
that 1 < <LV in all sums. Let @y = 3 a; X, X, = By--Ty, where

By == _}‘a,“ (X --~~11.), 8o that Ty =

Dy X, \ oy, with my = 3 ay.

i
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Then R, and Ty are orthogonal in Z* and have norms

and  fy = [Tyl = (4 Zaﬁj +miy )uz.

i<t

Ty = [Balh = (Y ek B(X3—1p)"

Also, @yl = (i + 1),
Levma 3. The L* norm of Ty satisfies |Tyl, < Oty .
Proof. Since |Tyl, < [lzaﬁXin ls-F Imyl, it is enough to prove
i#]

(2.4) 7 ((Z’ aﬁxix,.)“') = 0(8).

J<i
4
Developing the fourth power in (2.4), we obtain terws of type [[a,,; X, X,
K1
with j, < i;. As soon ag some subscript 4, or j, appears only once in such
a product, the expectation of this product vanishes. We clagsify theremain-
ing terms according to the number # of distinet pairs (i, j,) it contains.
For n = 1, we get terms a}; X; X}, and because of (2.3) they have a total
expectation bounded by €} af = O(t%). When n = 2, we get terms
j<i
alay X X3X: X:. The expectation of such an expression is O(afay),
because of (2.3) and sinee at most two of these four subseripts may coincide.
Again the sum of the expectations is 0(t%). For n.= 3, the terms are
necessarily of type af;a,,a;, X3 X3 X2 (cxcept possibly for the order between
the subscripts of each a). The expectation of this is at most Oz, 0
< Cajaf, + Caja}y,, and we can sum as before. Finally, n = 4 gives

D) Blayapana, XXX < Y ahal+adal = 0(th),

which completes the proof of (2.4) and the lemma.

Lemya 4. The random variables Qu/IQxylss 1@wle 540, stay away
from 0. -

Proof. Because of Lemma 1 and the hypotheses of Theorem 2, the
variables Ry/ry stay away from 0. If ty/ry < ¢, for some small G >0
which can be taken independent of ¥, it is easy to sce that also the vari-
ables Qy/ry and Qy/(rd+&)" stay away from 0.

Consider next those N for which #y/ry > ¢,. Let 4 be the event
{@x] > 6(r% +15)"} and assume P(4) < 4, 8 > 0. Then by Minkowski’s
inequality and Lemma 3,

(Johar)” <[ mar)” +( [ ,ar)"
A A A

< PAVA( [ TP < ry -+ 081y,
P
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Bstimating [Q3dP from below, we get
4
(1= +13) < (ry+ C8B1,)°.

But this is impossible when iy /ry > €o, If & is small enough, as is easily
verified. Lemma 4 is proved.

End of proof of Theorem 2. The “if” part follows from the fact
that (@x —my)y-; is an I? bounded martingale.

Conversely, if ),y converges a.s., there is for any &> 0 an M such that
P(1Qnl = M, all N) > L—e¢ From Lemma 4, we see that 7y and fy must
be bounded. But then (Qy—my)P is again convergent 8., and 80 my
converges. This ends the proof of Theorem 2.

3. Convergence om subspaces. Lot 4 be a compaet linear operator
in . Then 4”4 has a speetral decomposition 4*4dp = 2 %<, 6> e,
where 4, > 0 and the e, form an orthonormal system. Set ey = v 4, and
fp =¢;"de,, which defines another orthonormal system. This gives
a diagonalization Ao = 2% (@, 6,>f, of A with ¢, > 0. Then 4 is nuclear
it and only if Ye, < oo, and | Al = 36,-

Lismma 6. Let Ao = e, <@, e,5f, and A’z = Z'Q;, (&, epdfy be two
compact operators with diagonalizations as just deseribed. Asswme the ,
and ¢, are numbered in decreasing order. Then e, — eyl < 1A — A4/ for every
P, where we use the operator norm.

Proof. This follows immediately from the simple minimax formuls
for ¢, which says that

0, = inf{n(L): L = * subspace of dimension p —1},
where
(L) = sup{||d=|: » e L+ and || < 1}.
Proof of Theorem 3. (i)=-(ii). Let 4 be the nuclear operator
defined by (a;), and put XY = (X, ..., X5_,,0,...) and similarly for
YV, Then

D ey XYy e (XY, AN

12N

Sar,y +5
for M and N finite, and thus

» VoM N
SM,N Z Cp X :.7;7><Y)\7 0}1>

if we dingonalize 4 as before. Now observe that <X‘”,f'1,>5.‘}__,_1 is for cach
P @ martingale whose L* norm i 1. Ag Moo it converges u.s. o (X, Jov-
By the L* maximal theorem for martingales, we have

(3.2) s [ X, £, 51, < 2.
M

(3.1)
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Further,
(8.3) lep (XM, £,0 KTV, 0,51 < hep (XM, £,00 16, (T, )"

< Yo, sup (XM, £, 5 -+ Lo sup (XYY, 0,)° .
M N
Set
By (X 3 6 (X, 3 < 00 and (Tagy £
» “

converges for each p},

which is a subspace of RY and of full measure because of (3.2) and’ the
fact that e, < oco. Defining Iy analogously, we see that for (X, ¥)
ey xFy we may apply (3.3) to deduce the convergence of. Sy ay
M, N—co.

(i) =(iii). Trivial.

(iif) =(i). Because of Theorem 1, it is enough to assume 4 Hilbert—
Schmidt but not nuelear, and prove that we cannot have convergence
on g produet of full subspaces for a given admissible sequence (3, N,).
Suppose first that all M, and N, arc finite, and put K, = min(M,, N,)
and Ly, = max (M, N,).

TFor some k, let A': I'1* be the truneation of A in 4 < M, j < N,
ie., the operator defined by the matrix whose entries arve a; for ¢ < I,
j< N, and 0 otherwise. From Lemma 5, we see that [A'Y,u> 1 if &
is large enougl, and picking a subsequence of the given admissible se-
quence, we may assume & = 1. As Defore, we may diagonalize 4%, petting

(X, ATy = Do,X, 7,
. P<Ey .
where the X, are orthonormal linear combinations of X, ¢ < M, and
similarly for the ¥7.

Let A; be the truncation of A in i>Ly,j> Iy. Since - A, is
of finite rank and hence nuclear, 4, is not nuclear. Call 43 the truncation
of 4 in Ly <i< My, Iy <j< N,. Pagsing again to a subsequence, we
may assume that 3, and N, are so large that | A}, q > 4[4 —A
Then diagonalize A} so that

1“uuul 2.

F v AN Al 2l a4
X, A Yy = 3 o, X, Y.
L1<1)<K2

This time, the X, are orthogonal linear combinations of Xy Iy
Continuing in this way, we let 4,_, be the tiuncation of 4 in 4 s Ly

J= Ly, and Af_, the truncation of 4 in L, <i < My, Iy, <5j < N,
and assume fdi_illea > A — A, lga %k Then diagonalize AF., so
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that
s I N . ’ '
X, 4L, Y = 3 X, 7.

Lje y=in<ky,
‘We have
84) 8

77777 Y . v vt sy My
= /}4 ¢, X, },p +- <X
Ly Sp<i K

(A=A, )Y

For Ky, =5 p < Ly, we define }L;, in & suitable way 8o as to obtain a complete
system X7 == (X7)7° of orthonormal linear combinations of the X,y and
similarly for ¥,
It 8, converges for & and ¥ in o full subspace, then it converges for
X' ely, Y ely for full subspaces Fy and ¥y, since orthogonal trans-
formations are p-invariant. Thus we have convergence for X' = ¥’
& I'yNFy. Consider for u fixed & the bilinear form (X (4 —4, )Tk
a8 4 funetion By (X', X') of (X', X'). Diagonalizing and using the estimates
of the proof of (i) =(ii) we deduce
(3.5) f [By (X7 X (X') < 24~ Ay ot -
One ean clearly choose a <1 such that if § is an event with P(8) > «,
then [Z2AP > 1.2 for any N (0, 1) variable Z. Thus, for any p-measurable
N

seb B < RN with u(B) > a, one has

Y eprans=1 Y 6> 204 —dy e +E2.

1

H Ly w5p<Ky Loppe 1 ip< Ky,

From (3.4), (3.6) we then get

Splp(X'y > E[2.
Xle=¥'el
Since % is arbitrarvy, this is not compatible with a.s. convergence for
X' = X', and wo ave done.

Suppose next Ny = oo for all k. For operators in I of fixed finite
rank, it is cagy o cstimate the nuclear novm in terms of the operator
nornl. Therefore, we cnn find an inereasing sequence Ny such that the
nueloar norm of the traneation 4y of 4 in i < My, j = N}, stays bounded
a8 k-»co, Lot 8}, donote the partial sums corresponding to the admissible
sequence (M, N;). Then

8, = Sy <X, ALY

The nuelear norm of the operator corresponding to S, tends to infinity
with k. We can now diagonalize §; and procced essentially as we did
from (3.4), proving that 8, dominates (X, A, ¥>.


GUEST


icm

294 P. Bjogren

Now agsuine A symmetric. Clearly (ii) implies (iv), and (iv) impliog
(iif) with M, = N, = k, bacause of (1.1).
Theorem 3 is proved.

4. Stochastic integrals.

Proof of Theorem 4. Let (A4,)F be an admissiblo sequence of
partitions and assume Jsiy, s¥[ x Jfy, [ ave the rectangles of 4.
Oall ; the (random) step function which equals (B(s¥)— BsE-1)) /(85— st _1)
in Js%_ 1, s Define py, similarly by means of the t¥. Then

(K, apdy = [ K (s, 0 fils)vi()dsdt =By, I

Let S, be the subspace of L* == I*[0,1] consisting of those step
funetions which are constant in the intervals Js¥_,, s¥[, and set M, = dim S,
Then choose an orthonormal basis fi, fe, ... of I* such that fi, ..., fiy,
is a basis of 8§, for each k. Choose further a similar basis ey, s, ..., but
with the s¥ replaced by the ¢ and M), by . Then

B By = D) aylBiy IO Oy s
L3 SN
where ay; = (f;, Ke;y. Now {8y, > = [f;ap for i< My, so thiy scalar
product is independent of & and will be called X;. COlearly X; is N(0, 1),
and since the f; are orthogonal, the X, are independent. Siwilarly, let
Y; = <y, ¢ for j < N, Tvidently, K is nuclear if and only if the a;
detine a nuelear operator in I*. Summarizing, we have

(4.1) [ K, apdy = D XY,

G Mg, J<S N,

and the equivalence of (i), (ii), and (iii) follows from Theorem 3. As to
(iv), ef. the end of Scetion 3. We ulso see that the integral in (4.1) defines
a martingale in k.

5. A counterexample for trilinear forms. Let (X,)7°, (¥)P°, and (Z,)7
be independent N (0, 1) variables. We shall construct o trilinear form
D . X, Y7, which converges on a product of threo full gubspaces bub
whose coefficient tensor is not in I* @, 1?6, 1.

Choose a sequence (g,);° of integers such that o) == 0 and g, > 0,+
“-n2+4n for n 2 1. Within the “cubic block” ¢, <4, j, & - g,,,., Wo relabol
the variables, setting X} = X ot and ¥ == Y, ;5 and Zy = Zy oS00
1<4,j <n Denote by X" and Y" the n-vectors (XP)i,, and (¥).,
respectively, and by Z" the n xXn matrix (Z§)} jer - Notice that Z™ i a ran-
dom maitrix all of whose entries are independent and N (0, 1). Let & De
R” with the {* norm, and consider Z" ag an operator on & with norm ||Z7.
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By the method of Mantero and Tonge [3], Proof of Theorem 1.1, it can
be proved that # 12" = O(n) a8 n—oo, where 1 is the best possible expo-
nent. Iowever, we only need, the following simpler estimate.

LEMMA 6. BZ2E == O @), n-sco.

Proof. Comparing the operator norm to the Hilbert —Schmidt norm,
we geb

BZE - B (B2 < B (2" 2 s

ATV ORAT MR VRN AW i i
Bd kel

Tn the lash expronsion, woe see that & term in the sum has vanishing expec-
fation unlessd = jork = L The number of remaining terms is therefore
O(n®) from whiel the lemma follows.

Consider T' = 3, 8% whee §* = 3 ZRX} ¥} and a, > 0. Then
17, j«in

EAES AT ST A g S P SRR R

l <
and. g0 T converges il

) s .
Z annﬂlnzn”u < 0o
and

ST a, = ML < oo
X

and similarly for ¥*. Of course, H|X"|* = O(n%). From this and
Lemma 6, we seo that if

(5.1) 2 an't < oo,

fhese inequalitios define full subspaces Lo 7, X, and X, 1~es;pee.tively.h

o see that the coctiiciont tensor of 7' need not be in PRl 0,0,
wo show theet this tensor need not even be in the lurger space V= [
Deral). Lot (4 be an orthonormal hasis of £, and define ¢ and e like

’ y o 1 g G o N n L
the X¥ ohie., and considoer the tonsor 17 = %, @ &y Tere i @6},
R R B 1

L4, 4+ ab form un orthonormal system in P&l so 1" has diagonal
form, and, its V norm is a2 The ¢ mvolved for different values of n are
always orthogonal, so the V norn of the coofficient tensor of T is ) a,ne.
Deterrnining the a, so that this TJagt series iverges but (5.1) holds, we
obtain tho desirad example.

The tongor considerod is not gymmetrie in (4, §, k), but its gymunetri-
zation gives o symmetric example of the sane Kkind.
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Colacumary sequences in JL-spaces

by
D.J. ALDOUS (Canbridge) and DJIL FREMLIN (Colehestor)

Absteact. A goquonce (@, yen it a normed gpace is 2-colacunary if there is a con-
tinunous linoar map from lin{x,} to I* taking each @, to the nth basic wnit vector of
. Our maio result is that any sequence in an L-gpace which is bounded but not totally
bounded hag a 2-colacunary subsoquence.

1. DupisresoN. Let B be a normed space. A sequence (&, In
I is 2-colacunary it there 18 a § > 0 such that

H E oy ’?5: 6(2 Iailz)x/a

for any finite sequence ay, ..., a, of scalars.

For “lacunary” sequences see [7]. Of course one can define “p-co-
Iacunary ” sequences similaly for any p e J0, co]; and the results of §§2
and 9 below will generalise. But the central results of this paper (§§4-6)

2. LEMMA. Let B be a normed space, {it, >, & sequence in L.
(a) If {wpdpen 8 2-colacunary and x € B, there is an m € N such that
{8, + BDpmgy, 18 2-colacumary.
) If < Onew 18 2-colacunary and {y,>,on s another sequence in
B such that Y |, —y,l << 00, then Yyymm @8 2-colacunary for some
m e N. neN
(¢) If I is another novmed space and 1': B-+F a continuous linear
operator sueh that (T, 18 2-colaounary, then (&> 8 2-0olacunary.
Proof, (a) Let o =0 Do such that
H 27 i H e 2(;(2 [a,;l“)“2 Yy oony ty-
(AT

(2R

Suppose, it possible, that (o, 4-w,n,, I8 never 2-colacunary. Then in
particular G, | @, v 18 Not 2-colacunary, so there are ag, ..., a guch

that )
H )_;' ag g 1) H < 0(2 \ai|‘~‘)1/‘.
ik

Tl
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