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Colacumary sequences in JL-spaces

by
D.J. ALDOUS (Canbridge) and DJIL FREMLIN (Colehestor)

Absteact. A goquonce (@, yen it a normed gpace is 2-colacunary if there is a con-
tinunous linoar map from lin{x,} to I* taking each @, to the nth basic wnit vector of
. Our maio result is that any sequence in an L-gpace which is bounded but not totally
bounded hag a 2-colacunary subsoquence.

1. DupisresoN. Let B be a normed space. A sequence (&, In
I is 2-colacunary it there 18 a § > 0 such that

H E oy ’?5: 6(2 Iailz)x/a

for any finite sequence ay, ..., a, of scalars.

For “lacunary” sequences see [7]. Of course one can define “p-co-
Iacunary ” sequences similaly for any p e J0, co]; and the results of §§2
and 9 below will generalise. But the central results of this paper (§§4-6)

2. LEMMA. Let B be a normed space, {it, >, & sequence in L.
(a) If {wpdpen 8 2-colacunary and x € B, there is an m € N such that
{8, + BDpmgy, 18 2-colacumary.
) If < Onew 18 2-colacunary and {y,>,on s another sequence in
B such that Y |, —y,l << 00, then Yyymm @8 2-colacunary for some
m e N. neN
(¢) If I is another novmed space and 1': B-+F a continuous linear
operator sueh that (T, 18 2-colaounary, then (&> 8 2-0olacunary.
Proof, (a) Let o =0 Do such that
H 27 i H e 2(;(2 [a,;l“)“2 Yy oony ty-
(AT

(2R

Suppose, it possible, that (o, 4-w,n,, I8 never 2-colacunary. Then in
particular G, | @, v 18 Not 2-colacunary, so there are ag, ..., a guch

that )
H )_;' ag g 1) H < 0(2 \ai|‘~‘)1/‘.
ik

Tl
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i Zamin > 20| S’|a B2, S
<<l
through by a, scal(u if nece%ary, we may suppose that Y a; = 1. Next,

sk

&+ ®Dpzr41 18 sSUPPOsed not to be 2-colacunary, so there must be gy ,...

..., a, such that
| 3 aerol<ol 3 )

k1< Tk leir

Because cannot be 0; multiplying

Ad
Ttiisgr
But now

| Zao =1 3 wtacto <ol T " +ol 5 wi)”

kA l<isr
1/2
<2a(2 la| ) ,
i<r

which is impossible.
(b) Again let o >0 be such that

| X e > 20( 3
<n i<n

Let m be such that

Yag,..pa,.

D lyi—wl <o

izm

” 2 'm-H
P 0(2 |ai}‘*")1l“ Yag, ..., a,.

i<n

Then

y
H Z aiym+1
i<n

—crsup|a1|> 20(2 |a;}? } — osup la;|

i<n isn

(e) is elementary.

3. Martingale difference sequences. The central argument of this
1mper uses methods from the theory of martingales. Recall thut if (A,
ZF, p) is a probability space, a martingale difference sequence (an m.d.g.)
is a sequence (m,I),“N of integrable functions on X such that, for some
inereasing sequence (&, >, of o-subalgebras of &,
(i) =, is #,-measurable,

(ii) the conditional expectﬂtlon of #, on F,_,, 8w, |F,_1), is zoro,
for every n € N (we take #_;, = {X, @} In this case we say that <w,>,w
is adapted to (F,>,.n. Of comsv (2 2 Y 2,08 1S NOW & mar tingale adapted
0 {F,Dnen-
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The principal theorems we need are:

(a) IE <@y, 0n 18 an m.d.g. such that 2 @;, exists in I! (X), ‘rhen Y‘a‘ ()
existy for almost all ¢ ([12], Theorem IV1—2 We write a* e Lt for the
equivalence class of an integrable funection .)

(L) If {F, D I8 an increasing sequence of o-algebras of subsets
of o et X, a stopping time adapted to {F >, 18 a function v: X-—+Nu {oo}
such that

{t: (t) =n}e#, Vnekl.

Now if (D uenw 38 an nuds. adapted t0 <Fdpews %0 8 Ipdpew
== (B Ligsmydnenws Whore Ly, is the characteristic function of {¢: v(t) > n}.
Tt is eany to see that y, represents & (v, |F,), where &, is the o-algebra

{B: HeF, Bnfi: t(l) = m}e#,, YmeN};
so that H aJ,[|1 §{|)4 0@, for all a, ..., @, ([12], Prop. I-2-12).

(e) We sh..h]l 1.Lee(1 to digeuss uniformly integrable sequences. Recall
that a || [l,-bounded set A of integrable functions on a probability space
X ig uniformly integrable if for every e >0 there is a o> 0 such that

f]w|:; &

I

whenever @ ed and pl<o.

The set {w: @ € 4} iy relatively compact for the weak topology T, (L', L™)
itf A4 ig uniformly integrable ([11], IXI-T23 or [5], 83F). Recall also that
if 4 is uniformly integrable, so i

{y: dw e 4, ¢-algebra &' such that y represents &(x|F')}
(see the argument following V-T19 in [11]).

4. LuMmA. Let (X, F, i) be a probability space and {z,dpa @ uniformly
integrable m.d.8. on X adapled to a sequence (F,>na 0Of o-algebras, such
that o == inf (.l > 0. Suppose that {a,d,.v 18 @ sequence of scalars

nelN

such that Y a,m;, owisls in I1(X). Then 21 oy, |* << o0,

neN naN
Proof. Lot g = 0 be such that
f lo,] <5 4o whenever e N, pli < 1.

it
) exists for almost all ¢ (the point is

> 0 such that

As 3 a,m, existy in I, E 0 (1
nelN

that (e, @, >, v I8 8o an m d §.), and there is a 4

/z{t dn e N, Iz a2y (1 l>/’l}


GUEST


300 D. J. Aldous, D. II. 'remlin

Let 7 be the stopping time given by
v(t) = it fn: | 3 aift’i(t)'> 2}

pi=r
(taking inf @ == oo); then 7 is adapted to (F,>,n. Set ¥, = Les,, -
(a) It B = sup la,®,(1)] < oo, we see that

neN, e X

ga,-?i<t>|:) S ] B2

f=cmin{n, (1))
for ull » € N, t € X. At the same tinme

it Yo (1) 7 2, (O} < pfts v(t) < oo} <0y,

s0 that
f{g/ny > f{wn( —4ioz=30c VneN.

= Dleql® [Inl?
S

It follows that

(622> [| Do

isn

(beeause {Y;p,on I8 an m.d.s.)

> Dlai ([0 =30 Mial

Faim
for every # e N, and Zla,,-}‘J < oo.
ieN
) If B = oo, set
B = Lyl sy -
Of course <z,>,.v need not be an m.d.s. 1Iowovor, since z, (1) = 0 unlesgs
7(f) > n, in which case \Eaiwi t)| and |2 am; (1) wust both be < 4,

we have |a,z, (1) < 24 for rmllt So we may fmd an &, _,-measurable rep-
resentative w, of the conditional expectation & (2, |#,_,) such that {a,w, (1)]
< 24 for all ¢ Now <z, —w,>,av I8 an m.d.s. adaptoed to (F, D, .x. We shall
complete the proof by showing that {z,—w,),.n satisfies the eonditions
of part (a). '

Congider >'a,(y, —#,). We know that

Z %Y,

miEn
whenever m < n, s0 that Z a, ¥, oxists in L', At the same time, > a(t)
neN lm\]

exists at least for those ¢ for which 2 a2 (1) exists, which is almost
everywhere, and i PARTEA )] A for (‘V(\ry t, n; 80 Z @, %, oxigls in LN
i<n

neN
Thus 3} o,(y,—=2,) exists in I*. But

neN

U2 = 8Ly,
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Y — %0 Dnen 18 @ disjoint sequence, and

laﬂl Hq/n—"n“l == |I Va ?/n zﬂ) “ < co.
wn\ nc\'

As w, 1 is o representative of & (s, |F,_1) = & (2, — ¥, |F,_1), it follows
that N ja, ]yl < ooy 50 that 3 a,w;, and 3 a, (s, —w,) exist in I

neN neN nh

Now:

(i) Since [z,| << |o,| for every ne N and {,: ne N} iy uniformnly
integrable, {z,: n e N}, {w,: n e N} and {2, —w,: # € N} are uniformly
integrable.

(ii) Sinee

f I'.]/u “”:‘fnl = f |mn 1(1::7:) I = {7/37 f I"" - Uni = f Imn“l'(mr::;n)l LS (’/3

for every o (because p{t: 7(t) < oo} < ), we have |, =< g, — ¥l
and

cl3

lle —wully 2 el — Ity — 2l — lhoyll, 2 /3 Vne N.
(i) Finally,
|ty (2 (1) =10, (1)) < lety 2, (1)) + |y, 20, ()] < 42
for every t, n.

It follows by paat (a) that 3 |a,[* < co.
’IIE
5. PrOPOSITION. Let X be a probability space and (&>, .n @ uniformly
integrable m.s. on X such that inf o), > 0. Then (&>, s 2-colacun-
ary in LN(X). neN
Proof. Because {0, 18 an m.d.s., {80, 41'5 a basis for the G]()s:ed
lincar subspace B of I} which it spans. Now by Lemma 4 we can define

T: B-+I* by writing T 3 a,a;,) = {a, v It is easy to see that T has
IIEN

closed graph, therefore is continuous; which is exactly the same thing
a0y being 2-colacunary.

6. Tuvorey. Let B be an L-space and {e,Ypen 6 bounded sequence
in B, Lhen either {e,D v has @ convergent subsequence or {e,>, v has a 2-co-
lacunwry  subsequence.

Proof. As the closed Riesz subspace of B generated by {e,: n e N}
is a separable L-gpace in its own vight, it ean be embedded in L0, 1])
([8], § 15, Theorem 3 and § 14, Cor. to Theorem 9); accordingly, we may
take B = L'([0,L]).

Let us suppose that <e,>,.v has no convergent subsequence. YWe
need to take two cases separately.
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(a) <€Dn.v has no weakly Cauchy subsequence. In this case it has
a subsequence equivalent to the usual basis of I' ([15], Main Theorem),
which is certainly 2-colacunary (in fact, 1-colacunary).

(1) <6,,.n has a weakly Cauchy subsequence. As I is weakly sequen-
tially complete, this subsequence has 2 limit e; to simplify notation, let
us suppose that (6, D,y itself converges weakly to 6. Now (e, —e),y
is convergent to 0 for T, (L', L) bubt not for the norm of IL'. There is
therefore a subsequence <ep,— € pav a0l an m.d.s. Wdpov consisting
of simple funefions such that

(i) infllen(k) —elly >0,
keN

() Nl — (g~ )i < 27" Vb e N
(see [6], Lemma A); the iden is to take n (k4-1) so large that |8}, (6,p.41 — €)lly
< 27%1 where &, is the conditional expectation on the finite subalgebra
of sets determined by ..., % Now (Tdpay 18 T(L', L®)-convergent
to 0, therefore uniformly integrable, and liminf|w.l, > 0. It follows
Fowy00
from Proposition 5 that {# )= i8 2-colacunary for some m e N, so that
Lnry — €D zm 18 2-colacunary for some m € N and {b,pyDrzm 18 2-colacunary
for sore m e N; thig is the required subsequence of {g, >, .~ -

7. Immediate corollaries. (a) Let X be a probability space and {,>,.x
a sequence of random variables, of finite expectation, such that for each k e N
the joint distribution of (T, .-, Tngy) 95 the same whenever n(0)<<...
cor < N(K). Them (@, pen 18 cither consiamt or 2-colacunary in L'(X) (since
any subsequence is isomorphic in the relevant sense 10 x>, n)-

(This result has an alternative derivation. The special case in which
the », are independent in a fairly easy consequence of the classical three-
series theorem ([1], Theorem 5.3.3). The general case follows from [2]
and the well-known representation of exchangeable sequences as mixtures
of independent identically distributed sequences.)

(b) If B is @ normed space, F' an L-space, and T': E-+F is a non-com-
pact continuous linear operator, then there is a subspace G of H and a non-
compact continuous linear operator S: G—I°,

For there is a bounded sequence <{@,>,.v in B such that {Iu,>,
hag no convergent subsequence. By Theorem 6, {7, >, Dk & 2-colacunary
subsequence, and therefore <(@,>,. has @ 2-colacunary subsequence
gy dren $2y. Now we can take ¢ = lin{w,y,: & € N}, Sw,q = Ith basic
unit vector of I

(e) It follows that every continuous linear operator from any gub-
space of ¥ to L' is compact if p > 2; see [13], Theorem A2.

8. Applications to Banach lattices. (2) Recall that if B is o Banach
lattice, then T, (F, B') is the topology on B with basic seminorms i f(|x])

icm
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where f runs through B’ ([5], § 81). Now if (#,Dn.x I8 &t sequence in #
which is convergent. to 0 for T (#, B') but not for T, (H, '), then (,),.n
has a 2-colacunary subsequence. (We apply Theorem 6 to (), in the
L-space completion of F/{z: f(lx]) = 0}, where fe " is such that lim
sup f(l,]) >0.)

7»00

(h) A Banach lattice has the P-decomposition property it 3 |, ||
neN

< oo whenever (@, is 4 disjoint order-bounded sequence in B*. If
B is o Banach lattice with the P-decomposition property, and {@,%,.n
is & sequence in J which is weakly convergent to 0 but not norm-conver-
gent to 0, thon {m,)pev has o 2-colacunary subscquenee. (I (wyp, v is
not convergent o 0 for X, (B, B'), wse part (a). Otherwise, noting that
the norm of B must be order-continuous ([47], Theorem 2.5), we can find
a subsequence {T,gyren and o disjoint sequence {Ydpenw such that
Sty — Yrll < oo. The I*-decomposition property is just what we need to
keN

show that disjoint sequences bounded away from 0 are 2-colacunary,
so that the result follows from Lemma 2(b).)

9. Spaces of cotype 2. A mnoxmed space B is of colype 2 (see [10]) if
there is & o > 0 such that, for every g, ..., #, € I,

wlt: “ Zmz)mij > 1} oo aniuh; 1,

kEey )

where (5. 18 the soquence of Rademacher functions on [0,1] (indepen-
dently taking values -1 with equal probability). In any normed space,
2 SOQUENCe (&, Dy i wnconditional it there is a constant y such that
| S g < y)| 3l whenever neN and o < |8 for each i< mn.
=<n i=n

Evidently an unconditional sequence, bounded away from 0, in a space
of cotype 2 is 2-colacunary. We have the following simple result:
PrROPOSITION. Let T be a Banach space of cotype 2 with an uncondi-
tional basis <bdpen. Let {eydnen be any bounded sequence in H. Then either
epdpen has @ convergent subsequence or it has a 2-colacunary subsequence.
Proot. As ¢,(N) is not of cotype 2, it cannot be embedded in ¥, and
Bdien I8 boundedly complete ([3], Theorem IV. 4.2). Taking a subse-
quenee of (e, >, if necessary, we may Suppose that 11)11:; file,) exists
for every i e N, where {fD;v i8 tho w*-basis of B dual to (b Now
there is an ¢ e B such that f;(e) = lim fi(e,) for cvery 4 e N. Tither
w08
{yonew haws a subsequence converging to e, or it has a subsequence

e .~ Such that inf [le,g — el > 0 and e,y — 64w 18 unconditional
() keeN e e ()

([9], Proposition 1.2.12). But in this case Ly — EPpen 18 2-colacunary,
50 that (e, >,y has & 2-colacunary subsequence.

8 — Studia Math, 71. 3
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Remark. I}([0, 1]) does not have an unconditional basis, so, even
though it is of cotype 2 ([10], Lemma 1.1), we cannot deduce Theorem
6 from this proposition. We doubt that the proposition remains true
without the hypothesis that B has an unconditional basis, but we do not
have a counter-example.

10. Concluding remarks. We should like to thank the referce for
several suggestions concerning the proofs in this paper. L. Dor and H.P. Ro-
senthal have given a sharper version of Proposition 5 with a different proof
based on martingale inequalities.
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Inégalités & poids pour le projecteur de Bergman dans Ia boule unité de C*

par
DAVID BEKOLLE (Orléans)

Resumé. Dang la boule unité do € munie de la mesure dug(l) = (L— |¢ Pe-idu (),
oit « > 0 et poest la mesure de Lebesgue, nous cavactérisons les mesures boréliennes
positives £ pour lesquelles le projecteur do Bergman

1° wétend en un opérateur continu de LP(dQ2) dans lui-mbme, si 1 < p < oo;

2¢ g’étend en un opérateur faiblement continu sur L1 (42).

§ 1. Dntroduction. D = {z e C": |z| <1} est la boule unité de C;
dpg(8) = (L—[ZF)* 1 du(S), ot @ >0 eb x est la mesure de Lebesgue sur
" = R*™. Nous désignons par L?(du,) les espaces do Lebesgue relatifs
A phyy 15 Pl ool }

Liv projection de Bergman 7', f d'une fonetion f e I (du,) sur le sous-
espace de LP(dp,) formé par les fonctions holomorphes est donnée, & une
constante ne dépendant que de a et # Prés par

Tof(e) = f “—5;,;:,; du (L),

n

oz § = 2k oo 2y by, quand 2 = {2y, 25, ..., 2,} €6 § = ({yy ..., &)

II est bien connu que Popérateur T', s’étend en un opérateur continu
de L”(dp,) dans lui-méme si 1 < p < co, ¢t est faiblement continu sur
L (dw,) (B.M. Stein [13], ¥, Forelli ¢t ' W. Rudin [8]). Ceci se démontre
de la figon suivante. Selon la théorie des intégrales singulitres sur les
ospaces homogénes développée par R.R. Coifman et G. Weisy [B], si
D est munie d'une psewdo-distance d pour lequelle le triplet (D, d, u,)
congtitie un espace howmogdne ot qu’on note I, (2, 8) = L/(L—=z, E)*H®
le noyau du projecteur T, il suffit de démontrer que K, vévifie

N1: il exigte trois constantes 8, €'y, €, telles que

Kol O) — Koo, 0 < CIAE, (P [[d(=, )],
quels que soieut 2, £, £°, véritiant d(z, £0) > C,d (&, C°).
C’est le cay quand sur D on prend la pseudo-distance d définic par

a2, &) = |ll —1¢l| +|L —= Elle} 1 ]

?
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