

296 P.

References

- [1] R. Cairoli, Une inégalité pour martingales à indices multiples et ses applications, Séminaire de probabilité IV, Lecture Notes in Mathematics 124, 1-27, Springer-Verlag, 1970.
- [2] J. Hoffmann-Jørgensen, Integrability of seminorms, the 0-1 law and the affine kernel for product measures, Studia Math. 61 (1977), 137-159.
- [3] A.M. Mantero & A. Tonge, The Schur multiplication in tensor algebras, ibid. 68 (1980), 1-24.
- [4] M. Schreiber, Fermeture en probabilité des chaos de Wiener, C.R. Acad. Sci. Paris, Sér. A 265 (1967), 859-861.
- [5] P. Sjögren, Almost sure convergence of bilinear and quadratic forms in independent random variables, Uppsala University, Department of Mathematics, Report 13 (1977).
- [6] Convergence of Riemann sums for stochastic integrals, Z. Wahrscheinlichkeitstheorie verw. Gebiete 56 (1981), 181-193.

DEPARTMENT OF MATHEMATICS CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GÖTEBORG S-412 96 GÖTEBORG, SWEDEN

> Received February 12, 1979 (1514) Revised version October 8, 1979

STUDIA MATHEMATICA, T. LXXI. (1982)

Colacunary sequences in L-spaces

by

D. J. ALDOUS (Cambridge) and D.H. FREMLIN (Colchester)

Abstract. A sequence $\langle x_n \rangle_{n \in \mathbb{N}}$ in a normed space is 2-colacunary if there is a continuous linear map from $\lim \{x_n\}$ to l^2 taking each x_n to the nth basic unit vector of l^2 . Our main result is that any sequence in an L-space which is bounded but not totally bounded has a 2-colacunary subsequence.

1. DEFINITION. Let E be a normed space. A sequence $\langle x_n \rangle_{n \in \mathbb{N}}$ in E is 2-colarunary if there is a $\delta > 0$ such that

$$\left\|\sum_{i\leq n}a_ix_i
ight\|\geqslant \delta\left(\sum_{i\leq n}|lpha_i|^2
ight)^{1/2}$$

for any finite sequence a_0, \ldots, a_n of scalars.

For "lacunary" sequences see [7]. Of course one can define "p-co-lacunary" sequences similarly for any $p \in]0, \infty]$; and the results of §§2 and 9 below will generalise. But the central results of this paper (§§4–6) are special to p = 2.

- 2. Lemma. Let E be a normed space, $\langle x_n \rangle_{n \in \mathbb{N}}$ a sequence in E.
- (a) If $\langle x_n \rangle_{n \in \mathbb{N}}$ is 2-colaounary and $x \in E$, there is an $m \in \mathbb{N}$ such that $\langle x_n + x \rangle_{n \geq m}$ is 2-colaounary.
- (b) If $\langle w_n \rangle_{n \in \mathbb{N}}$ is 2-colarunary and $\langle y_n \rangle_{n \in \mathbb{N}}$ is another sequence in E such that $\sum_{n \in \mathbb{N}} ||w_n y_n|| < \infty$, then $\langle y_n \rangle_{n \geqslant m}$ is 2-colarunary for some $m \in \mathbb{N}$.
- (e) If F is another normed space and $T \colon E \to F$ a continuous linear operator such that $\langle Tx_n \rangle_{n \in \mathbb{N}}$ is 2-colacunary, then $\langle x_n \rangle_{n \in \mathbb{N}}$ is 2-colacunary.

Proof. (a) Let $\sigma > 0$ be such that

$$\left\|\sum_{i\leq n} a_i x_i \right\| \geqslant 2\sigma \left(\sum_{i\leq n} |a_i|^2\right)^{1/2} \quad orall a_0, \ldots, a_n.$$

Suppose, if possible, that $\langle x_n + w \rangle_{n \geq m}$ is never 2-colaeunary. Then in particular $\langle x_n + w \rangle_{n \in \mathbb{N}}$ is not 2-colaeunary, so there are a_0, \ldots, a_k such that

$$\Big\| \sum_{i \in \mathbb{J} k} \alpha_i(x_i + x) \Big\| < \sigma \Big(\sum_{i \in \mathbb{J} k} |\alpha_i|^2 \Big)^{1/2}.$$

Because $\|\sum_{i\leqslant k}a_ix_i\|\geqslant 2\sigma(\sum_{i\leqslant k}|a_i|^2)^{1/2}$, $\sum_{i\leqslant k}a_i$ cannot be 0; multiplying through by a scalar if necessary, we may suppose that $\sum_{i\leqslant k}a_i=1$. Next, $\langle x_n+x\rangle_{n\geqslant k+1}$ is supposed not to be 2-colacunary, so there must be a_{k+1},\ldots,a_r such that

$$egin{aligned} & \Big\| \sum_{k+1\leqslant i\leqslant r} lpha_i(x_i+x) \Big\| < \sigma \Big(\sum_{k+1\leqslant i\leqslant r} |lpha_i|^2 \Big)^{1/2}, \ & \sum_{k+1\leqslant i\leqslant r} lpha_i = -1. \end{aligned}$$

But now

$$\begin{split} \left\| \sum_{i \leqslant r} \alpha_i x_i \right\| &= \left\| \sum_{i \leqslant r} \alpha_i (x_i + x) \right\| < \sigma \left(\sum_{i \leqslant k} |\alpha_i|^2 \right)^{1/2} + \sigma \left(\sum_{k+1 \leqslant i \leqslant r} |\alpha_i|^2 \right)^{1/2} \\ &\leqslant 2\sigma \left(\sum_{i \leqslant r} |\alpha_i|^2 \right)^{1/2}, \end{split}$$

which is impossible.

(b) Again let $\sigma > 0$ be such that

$$\left\| \sum_{i \leq n} \alpha_i x_i \right\| \geqslant 2\sigma \left(\sum_{i \leq n} |\alpha_i|^2 \right)^{1/2} \quad \forall \alpha_0, \dots, \alpha_n.$$

Let m be such that

$$\sum_{i>m} \|y_i - x_i\| \leqslant \sigma.$$

Then

$$\begin{split} \Big\| \sum_{i \leqslant n} \ a_i y_{m+i} \Big\| \geqslant & \Big\| \sum_{i \leqslant n} \ a_i x_{m+i} \Big\| - \sigma \sup_{i \leqslant n} |\alpha_i| \geqslant 2\sigma \left(\sum_{i \leqslant n} \ |\alpha_i|^2 \right)^{1/2} - \sigma \sup_{i \leqslant n} |a_i| \\ \geqslant & \sigma \left(\sum_{i \leqslant n} \ |\alpha_i|^2 \right)^{1/2} \quad \forall \alpha_0, \ \dots, \ \alpha_n. \end{split}$$

- (c) is elementary.
- **3. Martingale difference sequences.** The central argument of this paper uses methods from the theory of martingales. Recall that if (X, \mathcal{F}, μ) is a probability space, a martingale difference sequence (an und.s.) is a sequence $\langle x_n \rangle_{n \in \mathbb{N}}$ of integrable functions on X such that, for some increasing sequence $\langle \mathcal{F}_n \rangle_{n \in \mathbb{N}}$ of σ -subalgebras of \mathcal{F} ,
 - (i) x_n is \mathcal{F}_n -measurable,
- (ii) the conditional expectation of x_n on \mathscr{F}_{n-1} , $\mathscr{E}(x_n|\mathscr{F}_{n-1})$, is zero, for every $n \in \mathbb{N}$ (we take $\mathscr{F}_{-1} = \{X, \emptyset\}$). In this case we say that $\langle x_n \rangle_{n \in \mathbb{N}}$ is adapted to $\langle \mathscr{F}_n \rangle_{n \in \mathbb{N}}$. Of course $\langle \sum_{i \leq n} x_i \rangle_{n \in \mathbb{N}}$ is now a martingale adapted to $\langle \mathscr{F}_n \rangle_{n \in \mathbb{N}}$.

The principal theorems we need are:

- (a) If $\langle x_n \rangle_{n \in \mathbb{N}}$ is an m.d.s. such that $\sum_{n \in \mathbb{N}} x_n$ exists in $L^1(X)$, then $\sum_{n \in \mathbb{N}} x_n(t)$ exists for almost all t ([12], Theorem IV-1-2. We write $x \in L^1$ for the equivalence class of an integrable function x.)
- (b) If $\langle \mathscr{F}_n \rangle_{n \in \mathbb{N}}$ is an increasing sequence of σ -algebras of subsets of a set X, a *stopping time* adapted to $\langle \mathscr{F}_n \rangle_{n \in \mathbb{N}}$ is a function $\tau \colon X \to \mathbb{N} \cup \{\infty\}$ such that

$$\{t: \ \tau(t) = n\} \in \mathcal{F}_n \quad \forall n \in \mathbb{N}.$$

Now if $\langle x_n \rangle_{n \in \mathbb{N}}$ is an in.d.s. adapted to $\langle \mathscr{F}_n \rangle_{n \in \mathbb{N}}$, so is $\langle y_n \rangle_{n \in \mathbb{N}}$ = $\langle x_n 1_{(\tau \geq n)} \rangle_{n \in \mathbb{N}}$, where $1_{(\tau \geq n)}$ is the characteristic function of $\{t : \tau(t) \geq n\}$. It is easy to see that y_n represents $\mathscr{E}(x_n | \mathscr{F}_{\tau})$, where \mathscr{F}_{τ} is the σ -algebra

$$\{E: E \in \mathcal{F}, E \cap \{t: \tau(t) = m\} \in \mathcal{F}_m \ \forall m \in N\};$$

so that $\|\sum_{i \le n} a_i y_i\|_1 \le \|\sum_{i \le n} a_i x_i\|_1$ for all a_0, \ldots, a_n ([12], Prop. I-2-12).

(c) We shall need to discuss uniformly integrable sequences. Recall that a $\| \|_1$ -bounded set A of integrable functions on a probability space X is uniformly integrable if for every $\varepsilon > 0$ there is a $\sigma > 0$ such that

$$\int\limits_{\mathbb{R}} |x| \leqslant \varepsilon \quad \text{ whenever } \quad x \in A \ \text{ and } \ \mu E \leqslant \sigma.$$

The set $\{w: x \in A\}$ is relatively compact for the weak topology $\mathfrak{T}_s(L^1, L^{\infty})$ iff A is uniformly integrable ([1.1], II-T23 or [5], 83F). Recall also that if A is uniformly integrable, so is

 $\{y\colon\exists x\in A,\,\sigma\text{-algebra}\,\,\mathscr{F}'\text{ such that }y\text{ represents }\mathscr{E}(x|\mathscr{F}')\}$ (see the argument following V-T19 in [11]).

4. LEMMA. Let (X, \mathcal{F}, μ) be a probability space and $\langle x_n \rangle_{n \in \mathbb{N}}$ a uniformly integrable m.d.s. on X adapted to a sequence $\langle \mathcal{F}_n \rangle_{n \in \mathbb{N}}$ of σ -algebras, such that $\sigma = \inf_{n \in \mathbb{N}} \|x_n\|_1 > 0$. Suppose that $\langle a_n \rangle_{n \in \mathbb{N}}$ is a sequence of scalars such that $\sum_{n \in \mathbb{N}} a_n x_n$ exists in $L^1(X)$. Then $\sum_{n \in \mathbb{N}} |a_n|^2 < \infty$.

Proof. Let $\eta > 0$ be such that

$$\int\limits_{\mathbb{R}} |x_n| \leqslant \tfrac{1}{3}\sigma \quad \text{ whenever } \quad n \in \mathbb{N}, \, \mu E \leqslant \eta \, .$$

As $\sum_{n \in \mathbb{N}} a_n x_n$ exists in L^1 , $\sum_{n \in \mathbb{N}} a_n x_n(t)$ exists for almost all t (the point is that $\langle a_n x_n \rangle_{n \in \mathbb{N}}$ is also an m.d.s.), and there is a $\lambda \geq 0$ such that

$$\mu\left\{t\colon \exists n\in N, \Big|\sum_{i\leqslant n}a_ix_i(t)\Big|>\lambda\right\}\leqslant \eta.$$

Let τ be the stopping time given by

$$au(t) = \inf \left\{ n : \left| \sum_{i \le n} a_i x_i(t) \right| > \lambda \right\}$$

(taking inf $\emptyset = \infty$); then τ is adapted to $\langle \mathscr{F}_n \rangle_{n \in \mathbb{N}}$. Set $y_n = x_n 1_{(\tau \geq n)}$.

(a) If
$$\beta = \sup_{n \in N, t \in X} |a_n x_n(t)| < \infty$$
, we see that

$$\Big|\sum_{i\leqslant n} a_i y_i(t)\Big| = \Big|\sum_{i\leqslant \min(n, au(t))} a_i x_i(t)\Big| \leqslant eta + \lambda$$

for all $n \in \mathbb{N}$, $t \in X$. At the same time

$$\mu\{t: y_n(t) \neq x_n(t)\} \leqslant \mu\{t: \tau(t) < \infty\} \leqslant \eta$$

so that

$$\int |y_n| \geqslant \int |x_n| - \frac{1}{3}\sigma \geqslant \frac{2}{3}\sigma \quad \forall n \in \mathbf{N}.$$

It follows that

$$(\beta+\lambda)^2 \geqslant \int \Big|\sum_{i \leqslant n} a_i y_i\Big|^2 = \sum_{i \leqslant n} |a_i|^2 \int |y_i|^2$$

(because $\langle y_i \rangle_{i \in \mathbb{N}}$ is an m.d.s.)

$$\geqslant \sum_{i \leqslant n} |\alpha_i|^2 \left(\int |y_i| \right)^2 \geqslant \tfrac{4}{9} \, \sigma^2 \sum_{i \leqslant n} |\alpha_i|^2$$

for every $n \in \mathbb{N}$, and $\sum_{i \in \mathbb{N}} |a_i|^2 < \infty$.

(b) If
$$\beta = \infty$$
, set

$$z_n = x_n 1_{(\tau > n)}.$$

Of course $\langle z_n \rangle_{n \in \mathbb{N}}$ need not be an m.d.s. However, since $z_n(t) = 0$ unless $\tau(t) > n$, in which case $\left| \sum_{i < n} a_i x_i(t) \right|$ and $\left| \sum_{i \leq n} a_i x_i(t) \right|$ must both be $\leqslant \lambda$, we have $|a_n z_n(t)| \leqslant 2\lambda$ for all t. So we may find an \mathscr{F}_{n-1} -measurable representative w_n of the conditional expectation $\mathscr{E}(z_n | \mathscr{F}_{n-1})$ such that $|a_n w_n(t)| \leqslant 2\lambda$ for all t. Now $\langle z_n - w_n \rangle_{n \in \mathbb{N}}$ is an m.d.s. adapted to $\langle \mathscr{F}_n \rangle_{n \in \mathbb{N}}$. We shall complete the proof by showing that $\langle z_n - w_n \rangle_{n \in \mathbb{N}}$ satisfies the conditions of part (a).

Consider $\sum a_n(y_n-z_n)$. We know that

$$\Big\| \sum_{m \leqslant i \leqslant n} a_i y_i \Big\|_1 \leqslant \Big\| \sum_{m \leqslant i \leqslant n} a_i x_i \Big\|_1$$

whenever $m \le n$, so that $\sum_{n \in \mathbb{N}} a_n y_n$ exists in L^1 . At the same time, $\sum_{i \in \mathbb{N}} a_i z_i(t)$ exists at least for those t for which $\sum_{i \in \mathbb{N}} a_i x_i(t)$ exists, which is almost everywhere, and $\left|\sum_{i \le n} a_i z_i(t)\right| \le \lambda$ for every t, n; so $\sum_{n \in \mathbb{N}} a_n z_n$ exists in L^1 . Thus $\sum_{n \in \mathbb{N}} a_n (y_n - z_n)$ exists in L^1 . But

$$y_n - z_n = x_n \mathbf{1}_{(\tau = n)},$$

so $\langle |y_n - z_n| \rangle_{n \in \mathbb{N}}$ is a disjoint sequence, and

$$\sum_{n \in \mathcal{N}} |a_n| \, \|y_n - z_n\|_1 \, = \, \Big\| \sum_{n \in \mathcal{N}} a_n (y_n - z_n) \cdot \, \Big\|_1 < \, \infty.$$

As w_n is a representative of $\mathscr{E}(z_n|\mathscr{F}_{n-1})=\mathscr{E}(z_n-y_n|\mathscr{F}_{n-1})$, it follows that $\sum\limits_{n\in \mathbb{N}}|a_n|\,\|w_n\|_1<\infty$, so that $\sum\limits_{n\in \mathbb{N}}|a_nw_n|$ and $\sum\limits_{n\in \mathbb{N}}|a_n(z_n-w_n)|$ exist in L^1 . Now:

- (i) Since $|z_n|\leqslant |x_n|$ for every $n\in N$ and $\{x_n\colon n\in N\}$ is uniformly integrable, $\{z_n\colon n\in N\}$, $\{w_n\colon n\in N\}$ and $\{z_n-w_n\colon n\in N\}$ are uniformly integrable.
 - (ii) Since

$$\int |y_n - z_n| = \int |x_n \mathbf{1}_{(\tau \leqslant n)}| \leqslant \sigma/3, \quad \int |x_n - z_n| = \int |x_n \mathbf{1}_{(\tau \leqslant n)}| \leqslant \sigma/3$$

for every n (because $\mu\{t\colon\,\tau(t)<\,\infty\}\leqslant\eta),$ we have $\,\|w_n\|_1\leqslant\|z_n-y_n\|_1\leqslant\sigma/3$ and

$$||z_n - w_n||_1 \geqslant ||x_n||_1 - ||x_n - z_n||_1 - ||w_n||_1 \geqslant \sigma/3 \quad \forall n \in \mathbb{N}.$$

(iii) Finally,

$$\left|\left|a_{n}\left(z_{n}(t)-w_{n}(t)\right)\right|\leqslant\left|a_{n}z_{n}(t)\right|+\left|a_{n}w_{n}(t)\right|\leqslant4\lambda$$

for every t, n.

It follows by part (a) that $\sum_{n \in \mathbb{N}} |a_n|^2 < \infty$.

5. PROPOSITION. Let X be a probability space and $\langle x^n \rangle_{n \in \mathbb{N}}$ a uniformly integrable m.d.s. on X such that $\inf_{n \in \mathbb{N}} \|x_n\|_1 > 0$. Then $\langle x_n \rangle_{n \in \mathbb{N}}$ is 2-colacunary in $L^1(X)$.

Proof. Because $\langle x_n \rangle_{n \in \mathbb{N}}$ is an m.d.s., $\langle x_n \rangle_{n \in \mathbb{N}}$ is a basis for the closed linear subspace E of L^1 which it spans. Now by Lemma 4 we can define $T \colon E \to l^2$ by writing $T(\sum_{n \in \mathbb{N}} a_n x_n^*) = \langle a_n \rangle_{n \in \mathbb{N}}$. It is easy to see that T has closed graph, therefore is continuous; which is exactly the same thing as $\langle x_n \rangle_{n \in \mathbb{N}}$ being 2-colacumary.

6. THEOREM. Let E be an L-space and $\langle e_n \rangle_{n \in \mathbb{N}}$ a bounded sequence in E. Then either $\langle e_n \rangle_{n \in \mathbb{N}}$ has a convergent subsequence or $\langle e_n \rangle_{n \in \mathbb{N}}$ has a 2-colaminary subsequence.

Proof. As the closed Riesz subspace of E generated by $\{e_n : n \in \mathbb{N}\}$ is a separable L-space in its own right, it can be embedded in $L^1([0, 1])$ ([8], § 15, Theorem 3 and § 14, Cor. to Theorem 9); accordingly, we may take $E = L^1([0, 1])$.

Let us suppose that $\langle e_n \rangle_{n \in \mathbb{N}}$ has no convergent subsequence. We need to take two cases separately.

302

- (a) $\langle e_n \rangle_{n \in N}$ has no weakly Cauchy subsequence. In this case it has a subsequence equivalent to the usual basis of l^1 ([15], Main Theorem), which is certainly 2-colacunary (in fact, 1-colacunary).
- (b) $\langle e_n \rangle_{n \in \mathbb{N}}$ has a weakly Cauchy subsequence. As L^1 is weakly sequentially complete, this subsequence has a limit e; to simplify notation, let us suppose that $\langle e_n \rangle_{n \in \mathbb{N}}$ itself converges weakly to e. Now $\langle e_n e \rangle_{n \in \mathbb{N}}$ is convergent to 0 for $\mathfrak{T}_s(L^1, L^\infty)$ but not for the norm of L^1 . There is therefore a subsequence $\langle e_{n(k)} e \rangle_{k \in \mathbb{N}}$ and an m.d.s. $\langle x_k \rangle_{k \in \mathbb{N}}$ consisting of simple functions such that
 - (i) $\inf_{k \in \mathbb{N}} ||e_{n(k)} e||_1 > 0$,
 - (ii) $||x_k (e_{n(k)} e)||_1 \le 2^{-k} \forall k \in \mathbb{N}$

(see [6], Lemma A); the idea is to take n(k+1) so large that $\|\mathscr{E}_k(e_{n(k+1)}-e)\|_1 < 2^{-k-1}$, where \mathscr{E}_k is the conditional expectation on the fixed subalgebra of sets determined by x_0, \ldots, x_k . Now $\langle x_k \rangle_{k \in \mathbb{N}}$ is $\mathfrak{T}_s(L^1, L^{\infty})$ -convergent to 0, therefore uniformly integrable, and $\lim_{k \to \infty} \|x_k\|_1 > 0$. It follows from Proposition 5 that $\langle x_k \rangle_{k \geqslant m}$ is 2-colacunary for some $m \in \mathbb{N}$, so that $\langle e_{n(k)} - e \rangle_{k \geqslant m}$ is 2-colacunary for some $m \in \mathbb{N}$ and $\langle e_{n(k)} \rangle_{k \geqslant m}$ is 2-colacunary for some $m \in \mathbb{N}$; this is the required subsequence of $\langle e_n \rangle_{n \in \mathbb{N}}$.

7. Immediate corollaries. (a) Let X be a probability space and $\langle x_n \rangle_{n \in \mathbb{N}}$ a sequence of random variables, of finite expectation, such that for each $k \in \mathbb{N}$ the joint distribution of $(x_{n(0)}, \ldots, x_{n(k)})$ is the same whenever $n(0) < \ldots < n(k)$. Then $\langle x_n \rangle_{n \in \mathbb{N}}$ is either constant or 2-colacunary in $L^1(X)$ (since any subsequence is isomorphic in the relevant sense to $\langle x_n \rangle_{n \in \mathbb{N}}$).

(This result has an alternative derivation. The special case in which the x_n are independent in a fairly easy consequence of the classical three-series theorem ([1], Theorem 5.3.3). The general case follows from [2] and the well-known representation of exchangeable sequences as mixtures of independent identically distributed sequences.)

(b) If E is a normed space, F an L-space, and $T: E \rightarrow F$ is a non-compact continuous linear operator, then there is a subspace G of E and a non-compact continuous linear operator $S: G \rightarrow l^2$.

For there is a bounded sequence $\langle x_n \rangle_{n \in \mathbb{N}}$ in E such that $\langle Tx_n \rangle_{n \in \mathbb{N}}$ has no convergent subsequence. By Theorem 6, $\langle Tx_n \rangle_{n \in \mathbb{N}}$ has a 2-colacunary subsequence, and therefore $\langle x_n \rangle_{n \in \mathbb{N}}$ has a 2-colacunary subsequence $\langle x_{n(k)} \rangle_{k \in \mathbb{N}}$ say. Now we can take $G = \lim \{ x_{n(k)} : k \in \mathbb{N} \}$, $Sx_{n(k)} = k$ th basic unit vector of l^2 .

- (c) It follows that every continuous linear operator from any subspace of l^p to L^1 is compact if p > 2; see [13], Theorem A2.
- **8.** Applications to Banach lattices. (a) Recall that if E is a Banach lattice, then $\mathfrak{T}_{|\mathfrak{s}|}(E,E')$ is the topology on E with basic seminorms $x\mapsto f(|x|)$

where f runs through E'^+ ([5], § 81). Now if $\langle x_n \rangle_{n \in \mathbb{N}}$ is a sequence in E which is convergent to 0 for $\mathfrak{T}_s(E,E')$ but not for $\mathfrak{T}_{|s|}(E,E')$, then $\langle x_n \rangle_{n \in \mathbb{N}}$ has a 2-colacunary subsequence. (We apply Theorem 6 to $\langle x_n \rangle_{n \in \mathbb{N}}$ in the L-space completion of $E/\{x\colon f(|x|)=0\}$, where $f\in E'^+$ is such that $\lim\sup f(|x_n|)>0$.)

- (b) A Banach lattice has the l^2 -decomposition property if $\sum_{n \in \mathbf{N}} \|x_n\|^2 < \infty$ whenever $\langle x_n \rangle_{n \in \mathbf{N}}$ is a disjoint order-bounded sequence in E^+ . If E is a Banach lattice with the l^2 -decomposition property, and $\langle x_n \rangle_{n \in \mathbf{N}}$ is a sequence in E which is weakly convergent to 0 but not norm-convergent to 0, then $\langle x_n \rangle_{n \in \mathbf{N}}$ has a 2-colacunary subsequence. (If $\langle x_n \rangle_{n \in \mathbf{N}}$ is not convergent to 0 for $\mathfrak{T}_{[s]}(E,E')$, use part (a). Otherwise, noting that the norm of E must be order-continuous ([4], Theorem 2.5), we can find a subsequence $\langle x_{n(E)} \rangle_{k \in \mathbf{N}}$ and a disjoint sequence $\langle y_k \rangle_{k \in \mathbf{N}}$ such that $\sum_{k \in \mathbf{N}} \|x_{n(k)} y_k\| < \infty$. The l^2 -decomposition property is just what we need to show that disjoint sequences bounded away from 0 are 2-colacunary, so that the result follows from Lemma 2(b).)
- **9. Spaces of cotype 2.** A normed space E is of cotype 2 (see [10]) if there is a $\sigma > 0$ such that, for every $x_0, \ldots, x_n \in E$,

$$\mu\left\{t\colon \Big\|\sum_{i\leq n}r_i(t)x_i\Big\|>1\right\}\leqslant \sigma\Rightarrow \sum_{i\leqslant n}\|x_i\|^2\leqslant 1,$$

where $\langle r_i \rangle_{i \in N}$ is the sequence of Rademacher functions on [0,1] (independently taking values ± 1 with equal probability). In any normed space, a sequence $\langle x_n \rangle_{n \in N}$ is unconditional if there is a constant γ such that $\left\| \sum_{i \leq n} \alpha_i x_i \right\| \leqslant \gamma \left\| \sum_{i \leq n} \beta_i x_i \right\|$ whenever $n \in N$ and $|\alpha_i| \leqslant |\beta_i|$ for each $i \leqslant n$. Evidently an unconditional sequence, bounded away from 0, in a space of cotype 2 is 2-colacunary. We have the following simple result:

PROPOSITION. Let E be a Banach space of cotype 2 with an unconditional basis $\langle b_i \rangle_{i \in \mathbb{N}}$. Let $\langle e_n \rangle_{n \in \mathbb{N}}$ be any bounded sequence in E. Then either $\langle e_n \rangle_{n \in \mathbb{N}}$ has a convergent subsequence or it has a 2-colaounary subsequence.

Proof. As $e_0(N)$ is not of cotype 2, it cannot be embedded in E, and $\langle b_i \rangle_{i \in N}$ is boundedly complete ([3], Theorem IV. 4.2). Taking a subsequence of $\langle e_n \rangle_{n \in N}$ if necessary, we may suppose that $\lim_{n \to \infty} f_i(e_n)$ exists for every $i \in N$, where $\langle f_i \rangle_{i \in N}$ is the w^* -basis of E' dual to $\langle b_i \rangle_{i \in N}$. Now there is an $e \in E$ such that $f_i(e) = \lim_{n \to \infty} f_i(e_n)$ for every $i \in N$. Either $\langle e_n \rangle_{n \in N}$ has a subsequence converging to e, or it has a subsequence $\langle e_{n(k)} \rangle_{k \in N}$ such that $\inf_{k \in N} \|e_{n(k)} - e\| > 0$ and $\langle e_{n(k)} - e \rangle_{k \in N}$ is unconditional ([9], Proposition 1.a.12). But in this case $\langle e_{n(k)} - e \rangle_{k \in N}$ is 2-colacunary, so that $\langle e_n \rangle_{n \in N}$ has a 2-colacunary subsequence.

Remark. $L^1([0,1])$ does not have an unconditional basis, so, even though it is of cotype 2 ([10], Lemma 1.1), we cannot deduce Theorem 6 from this proposition. We doubt that the proposition remains true without the hypothesis that E has an unconditional basis, but we do not have a counter-example.

10. Concluding remarks. We should like to thank the referee for several suggestions concerning the proofs in this paper. L. Dor and H.P. Rosenthal have given a sharper version of Proposition 5 with a different proof based on martingale inequalities.

References

- [1] K. L. Chung, A course in probability theory, Academic Press, 1974.
- [2] D. Dacunha-Castelle, Indiscernability and exchangeability in L^p spaces, Proc. Seminar on Random Series, Convex Sets and Geometry of Banach Spaces, Aarhus 1974.
- [3] M. M. Day, Normed linear spaces, Springer-Verlag, 1962.
- [4] P. Dodds, Indices for Banach lattices, Proc. Netherlands Acad. Sci. (A) 80 (1977), 73-86.
- [5] D. H. Fremlin, Topological Riesz spaces and measure theory, Cambridge U.P., 1974.
- [6] V. F. Gaposhkin, Convergence and limit theorems for sequences of random variables, Theor. Probability Appl. 17 (1972), 379-399.
- [7] M. I. Kadec & A. Pelczyński, Bases, lacunary sequences and complemented subspaces in the spaces L_p, Studia Math. 21 (1962), 161-176.
- [8] H. E. Lacey, The isometric theory of classical Banach spaces, Springer-Verlag, 1974.
- [9] J. Lindenstrauss & L. Tzafriri, Classical Banach spaces I, Springer-Vorlag, 1977.
- [10] B. Maurey & G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géometriques des espaces de Banach, Studia Math. 58 (1976), 45-90.
- [11] P. A. Meyer, Probability and potentials, Blaisdell, 1966.
- [12] J. Neveu. Discrete-parameter martingales, North-Holland, 1975.
- [13] H. P. Rosenthal, On quasi-complemented subspaces of Banach spaces with an appendix on compactness of operators from $L^p(\mu)$ to $L^p(r)$, J. Functional Anal. 4 (1969), 176–214.
- [14] On subspaces of L^p , Ann. Math. 102 (1973), 344-373.
- [15] A characterization of Banach spaces containing P, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413.

STATISTICAL LABORATORY UNIVERSITY OF CAMBRIDGE CAMBRIDGE MATHEMATICS DEPARTMENT UNIVERSITY OF ESSEX COLCHESTER

> Received July 17, 1979 Revised version October 17, 1979

(1446)

Inégalités à poids pour le projecteur de Bergman dans la boule unité de C^n

par

DAVID BÉKOLLÉ (Orléans)

Resumé. Dans la boule unité de C^n munie de la mesure $d\mu_a(\zeta) = (1 - |\zeta|^2)^{a-1} d\mu(\zeta)$, où a > 0 et μ est la mesure de Lebesgue, nous caractérisons les mesures boréliennes positives Ω pour lesquelles le projecteur de Bergman

 1^o s'étend en un opérateur continu de $L^p(d\Omega)$ dans lui-même, si $1 ; <math>2^o$ s'étend en un opérateur faiblement continu sur $L^1(d\Omega)$.

§ I. Introduction. $D = \{z \in C^n : |z| < 1\}$ est la boule unité de C^n ; $d\mu_a(\xi) = (1 - |\xi|^2)^{a-1} d\mu(\xi)$, où a > 0 et μ est la mesure de Lebesgue sur $C^n = \mathbb{R}^{2n}$. Nous désignons par $L^p(d\mu_a)$ les espaces de Lebesgue relatifs à μ_a , $1 \le p \le \infty$.

La projection de Bergman $T_a f$ d'une fonction $f \in L^2(d\mu_a)$ sur le sous-espace de $L^2(d\mu_a)$ formé par les fonctions holomorphes est donnée, à une constante ne dépendant que de a et n près par

$$T_{\alpha}f(z) = \int_{D} \frac{f(\zeta)}{(1-z\cdot\xi)^{n+\alpha}} d\mu(\zeta),$$

où $z \cdot \zeta = z_1 \cdot \xi_1 + \ldots + z_n \cdot \xi_n$, quand $z = \{z_1, z_2, \ldots, z_n\}$ et $\zeta = (\zeta_1, \ldots, \zeta_n)$.

Il est bien connu que l'opérateur T_a s'étend en un opérateur continu de $L^p(d\mu_a)$ dans lui-même si $1 , et est faiblement continu sur <math>L^1(d\mu_a)$ (E.M. Stein [13], F. Forelli et W. Rudin [8]). Ceci se démontre de la fáçon suivante. Selon la théorie des intégrales singulières sur les espaces homogènes développée par R.R. Coifman et G. Weiss [5], si D est munie d'une pseudo-distance d pour lequelle le triplet (D, d, μ_a) constitue un espace homogène et qu'on note $K_a(z, \zeta) = 1/(1-z, \zeta)^{n+\alpha}$ le noyau du projecteur T_a , il suffit de démontrer que K_a vérifie

S1: il existe trois constantes β , C_1 , C_2 telles que

$$|K_a(z,\zeta)-K_a(z,\zeta^0)|\leqslant C_1\lceil d(\zeta,\zeta^0)\rceil^{\beta}/\lceil d(z,\zeta^0)\rceil^{n+\alpha+\beta},$$

quels que soient z, ζ , ζ^0 , vérifiant $d(z, \zeta^0) > C_2 d(\zeta, \zeta^0)$.

C'est le cas quand sur **D** on prend la pseudo-distance d définie par

$$d(z, \zeta) = ||z| - |\zeta|| + |1 - z \, \xi / |z| \, |\zeta||,$$