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On the Banach—Mazwr distance of finite-dimensional symmetric
Banach spaces and-the hypergeometric distribution

by
CARSTEN SCHUTT*

Abstract. It is proved that for n-dimensional symmetric Banach spaces the
inequality

d(B, 1) < O(log, 4A(B))"2 4(E)

ig valid. Moreover, we give the order\ of d(B,13), pe{l,2, o}, of a class of n-di-
mensional Banach spaces containing tensor products of symmetric Banach spaces.

In [7] it was asked whether there is a real-valued function f such
that for the projection constant A(E) and the Banach—Mazur distance
4a(E, 1) of n-dimensional Banach spaces B we have

a(B, 17) < f(A(B))- :

This question was answered for certain classes of spaces [7]. Nevertheless
the problem is still open. Moreover, one may ask what such a funection f
looks like. Since A(F) < d(E,IY) is valid for all finite-dimensional E,
one may ask whether A(®) and d(¥,17) are the same up to a constant.
In the first section we show that for symmetric spaces d(F, l) can be
estimated by O(log,24(E))"*A(B). We also give a formula for A(E) and
d(B, 1Y), using the geometry of the unit ball of K.

. In the second section we estimate the Banach-Mazur distance
of symmetric Banach spaces to . In fact, the result is more general,
so that it covers also tensor products of symmetric spaces. Finally, we
give applications of the results in the second section. We give the
ovder of the Banach-Mazur distance of I;®,l; to 5z for 1 <7< oo and
pefl, 2, oo} A

Not all the estimations we present in the third section are new.
Some can be found in [3]. Professor T. Figiel has shown (in an unpublished
paper) that A(BQ,F) = A(B)A(F). We would like to thank Dr. N. Tom-
czak-Jaegermann and Professor A. Pelezyfiski for discussions and
guggestions concerning this paper.

* During the preparation of this paper the author was supported by a stipend
of the Polish Academy of Sciences.
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0. Preliminaries. Most of our notation is standard and can be found
in [8]. The Banach-Mazur or isomorphic distance of two Banach gpaccs
E and F is defined by

d(#, F) =mt{|J)| |J7| J e L(B, F), J is isomorphism}.

If there is no isomorphism, we set d(#, F) = co. The p-factonng norm
of an operator 4 eL(H, F) Where B a,nd F are flmte dimensional is
given by

¥p(4) = mi{|B] [C]| 4 = BO, C e L(T, ), B eL(¥, F)}.

For A being the identity we denote y,(idz) by p,(B). y.(H) is also called
the projection constant A(H).

The . 1-absolutely summing norm. of an operator A e L(B,F) is
given by the infimum of all ¢ e R such that for all sequences {m,}%; of
vectors of B we have

A (ay)
=1

The norm is denoted by m;(A4). Let & be a subset of H = {¢ = ei)i,ﬂ[
g = +1}. We say that a basis {e,}1=1 of a Banach space F is G-uncondi-
tional with constant € if

n n )
HZ@QH < 0“ 2 & 0,0;
i=1 i=1

Moreover, let D be a subset of the set P of all permutations of the set
{1,...,n}. We say that a basis is G, D-symmetric with constant ¢ if

)
< 0 sup 2 [<w:y @*D].
=1 &

for all e e R* and ce@.

”Zn’aieiﬂg(]”jsia,,mei” . for all aeR™ weD and seG‘. ‘
i=1 iml

We say that a basis is unconditional (symmetrio) with constant ¢ if @ = H
(@ =H, D =P). We say that a basis is unconditional (symmetrio) if it
is normalized and unconditional (symmetric) with congtant 1. By {ef}.
we denote the dual basis of {¢}7,.

The e-tensor product for finite-dimensional spaces is B®,F = L(H* F)
and the n-tensor product (H*Q,F Y = BEQPF. We identity tensors ‘hnd
matrices in a natural way. We need espeeially the Walgh matrices

1 1 ‘ W, w, ; .
W, = L __1], W = [Wn —-WJ for n=12,...
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1. Estimations of the pro_;ecnon constant and the Banach—Mazur
distance.
PrOPOSITION. 1. Suppose that {¢}7.., 18 & symmetric basis of a chach

space B and the extreme points of the dual unit ball are of the form z = ¢, Zw e
where ¢, e B and x, e {0, —1, 1} Then

ME)< mm max (%/j)b 5 b 2;/1 (J)(ﬂ J) =V2Am
g S

g =1, = =1 b
P ,

where a; 2 0 and b; = “jﬁ“: ji=1..,n
Fo

Proof. We first prove the right-hand side inequality. Let M be the
set of extreme points of the dual unit ball of B. We consider the embedding

TeL(B, (M), I@

mate the norm of the projection

i n. We esti-

n
= Ewigﬂ where gy = (%)penr, ¢ =1, ...
i=1

Z o 929

gl
with v
8y = <fur 0> = D fi%-

zeld

We have

Pl = max o voul.

g=1

= max male(fﬂ Yy

Wlloo=1 2eM 32y

= max le 2, f+

2eM el i=1

Because of the unconditionality of the basis {e;}?, and the Khintchine
inequality [5] or [11] we get

IP} = 1/l/2 max Z (2’ ef?] )1/2

welM q=1
.

with
foz,- =1 for i¢=1,...,n.

2eM
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Obviously, we may assume that 2[ izl =1 for ¢ =1,...,n and we

may assume that fi =0 if 2 = 0 Moreover, we may restrict ourselves
to considering only the set M of extreme points with non-negative coor-
dinates 2; > 0, ¢ = 1, ..., n. Therefore

(1//2) max > (:VJ [ziﬂ,,lg)m

ged  efp t=1

1) Pl =

w; =0 for §=1..,7nand well

In"‘Z‘lemfi *

weldl =1

By denoting the number of non-zero coordmates of w by k, we gek

(3) n= ¥ Tk;lb, 3 I

well i=1 .
Now we group certain vectors. For w e M with exactly %, positive coor-
dinates and % —%, zero coordinates there is a set of (’;: ) permutations
w

.G, such that for all sy, =, € &, we have w, (i) 7 w,, (i) for at least one
i, 1< i< n. For every = €@, there is a set of permutations D, leaving
the vector (w,g)i, invariant. This set has k,l(n—Fk,)! clements. So
we have, because of symmetry, by averaging over all permutations

1Pl = (L /;/2) max 2 2 Z (Z " ﬁ?om)‘z) n

welf "Gy €Dy =1

Applying the triangle inequality, we get

P13 (L1V3) max———ZZ(Z' D) forl

wedl ner i=l he

2)1’2

This means in view of (2) that we average (fi,)l., exactly over those
coordinates that might be non-zero. Introducing the function @: B— {0, 1},
O(0) =0 and Oa) =1 if a 0, we get

I ftonol = Fuln—k) (L) D] 1710 ().

neDy Ju=1
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Denoting
° kil
= (k) by, 3 171,
j=1
we get

1P|l = (1/V2)n max 2( ) -

relf weM

batlawl ) 2 l2:0 (1w)12) "

nely, 1=1
Condition (3) changes into
(CON D lay| =1.

i welt

Grouping once again M, = {w| we M and w has exactly %k non-zero
coordinates} and denoting
@ = 2 Ia’w|7

wely,
we get for (4) the condition

(8) | Dlal =1.

k=1

Moreover, we have

P> WEn mex 3 3T (2)7 vitiadl 3 3 100w

zelM k"weﬂk nely, =1

Suppose 2 has exactly j non-zero coordinates. Let us denote 4, = {m/|
1< m<n, 2, «0} and for every I, 1<I<k let By={B|Bc{l,...
..y}, card(B) =k, card(BnA4,) = 1}. Thus we have

(7 3 (D wewar)” |
Gy =1 ‘
I 6=
=(1/bj)(k) ;card = (1/8}) ;Vz ()
where b} = H;S:l‘ ¢ Therefore we get .

[Pl = (1/V'2) max (n/j)b,Zlbk & Z,/, ( )( )
i< = ( )

2 — Studia Mathematica 72.2
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which gives together with (5) the right-hand side estimation. We prove

the_left-hand side 1nequa111:y ‘We have for symmet;nc Banach spaces [2]
0 =B )nl(Fz)

We estimate m, (H) from below. We choose sets of vectors I, = {z| |#| = 1,

# has exactly % coordinates different from zero, the absolute values of

a J X (> i 3 4
the non-zero coordinates are the.same}., For every {a}t_, such that
n

> ol =1 we have

= ()7 oo e 5 2, CERZE

=1 521 weky,
W\~ ok A
=(max22|ak()r 27w, o) .

n

7y (H) >(2 pX

k=1 xeK},

lle* =1 ;=1 weky,

On the other hand, denoting K, = {x| s e K, %,> 0 for i =1
and applying the Khintchine inequality, we have

N O
o S D1 o) -

ek,

ﬁgﬁi Z Iakl( ) Z(Z A )l/~ ‘
zeky, =1
<maxb* 121%112,6 ZVZ()(( )J) ..

PRrOPORITION 2. There is an absolute constant ¢ > 0 such that
(1) for jh<n and 1<j, k< n

= (63
O(jbimy < D'V T < jkfm,
=1 %
(i) for jk=mn and 1< 34, k L
N o
NVikn < Z ViRl < Vi,
="

Proof. We nced the following lemmas
Levua 3. Let n—j

=k and 1<4, k< n. Then

7 <t
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Proof. . } .

(”"i)/(7%> _ (n—Hm—j—1y. " (n—j—k+1) -
AL “n(n—1)... (b— k1)
(1—j/n) (L —j/(n—1)) .

Because of 1+r<¢" for all reR we get

1

< [L—jln—k+1)).

(%)) < exp(—smesp (i1 1) .. exp (=l 0 - +1)
S k-1

= expr (—921/ —l))

1=0
RN

0

This' we get

{ ;j)/(';:)<e:ip(——j(ln(n5—ln(n-k+}))) = ((n—k-+1)Jn)

‘We also use the following elementary fact

LeMmA 4. For every € >1 there ewists an m e N such that for all
s&N and r e R with s/r<1/'m, we have

(1-1pP< —(1/0) 8/r).

In order to prove the left-hand side inequality of (i) we choose & = m
in Lemma 4 so big that the estimation holds for 0 =2, Suppose first
that jk < n/d. Then we have )

Z Vi ()£ )—l) /; ()(( )3) - (7).

By Lemmas 3 and 4 we get

=N

="
If n/d < jk < n is valid, we choose y, kowith §<j, %
And we observe

==

ST > (12) (TF m) =
20 e

> (1/2) (j(k—1)/n).

<k and n/2d < jk.

(1/4d) (j&n).
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In order to prove the right-hand side inequalities of (i) and (ii) we use
the fact that the expectation of the hypergeometric distribution is jk/n [9].

0 e (6
Sl

= jk/n.

=1 1=1

B2 5

And by Hélder’s inequality

gyﬂﬁ))(zw @%@r=ﬁm;

It remains to prove the left-hand side inequality of (ii). Again, it is enough
to prove it for k, j < »/4 and jk > dn for a real number d > 1 that will
be specified later. We need the following lemma:

LeMMA 5. For every ¢ >0, a>>1 there is a constamt € > 1 such that
for every reR with r =1 we have

D (1) (ar) < (1[0 +1) (1 +2)".

- 1<r/0

1=

Proof. Of course, 0 can be chosen so big that for every 1< r/C,
(LA (ar) < (ear [T} = ((ae)" (r 1)) < (1+8).
Therefore :
D (A () < A+r/0)(1+e). m
I<riC -

Because of k, j < n/4 we have
(lil)(ki;zl) L
6=
A6 < (") am@smy,

and by applying Lemma 5 for ¢ = 1/2 and a = 2 we get a congtant ¢
such that for all jk/n > 1 we have

=

n
1O i) (k)

. G=hE=D
() (n—j—k+1+1)

ik
@+1n’

Hence

. (L) (257
(k) 1<(1/0) (3k/n)

(14 (110) (3 [n)) (3 /2) HI™.
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And by Lemma 3 and 14-r <¢" the last quantity is not greater than

e(L-+ (L/C) (jk fm)) (26 3)F¥n.

‘We choose d b1g enough to have
e (14 (1/0)(j% n)) (2¢ /3)-ik/" 1/2.

With this we eventually get

6=
2" (k)

The following theorem is obtained from Propositions 1 and 2:
THEOREM 6. Suppose that {e}r_, is a symmetric basis of Bandsh syace

g)_(;’:l:_g)) > (1/2VO)jkn.

V(l/O)(ak/n) (1—
1< (0)ikeim) (k)

1=0 n

E and the extreme poinis of the dual unit ball are of the form x = azzw,-e‘-
where ¢, € R and x;€ {0, —1,1}. Then o=t

MEYL mm maxbj(z akbk+2 Vnlik a,,b) CA(E),

n © ism :
z ay=1 k<nlf k>nlf
k=1

where 0 is an absolute oomta/nt a,,
=1,.

COROLLARY 7. Suppose that {e};.., is a symmetric basis of a Banach

space E and the extreme pomts of the dual unit ball are of the form

@ = a,,Zm e 'where ¢.eR and w‘e{(} —1,1}. Then

Oh—W%mH“WEHM

- . LI i . .

ABY=@1 G)(log 2 e ) minmax Vn /kj ¢ ¢

s o S mime v S 131
where O is an absolute constamt. .
Proof. We define N, ={k| 2™ ' << b, < 2™}, 1< m <t < log,2b,,,

and for given a¢;,>0, ¢ =1,...,» we define
ay = 2 )
KeN gy,
. fan i k=min{j] jeN,},

0  elsewhere.
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First, we prove that for all.a;>0, i-=1,...,n, we have R

2( Y @)+ 2 Vak[f(Lib) e = ) ko) + > Vnk[i1b,) é,
k<nli k>nli k<nlj k>nfj

We introduece the notation M* = {m| for all k € N,, we have k< n/j}
and M? = {m| for all ke N,, we have k> n/j}. Thus there is exactly
one m, so that m, ¢ M' and my¢ M?% So we get

D a (ko) + ) Vk[i(Libe) e

k<nfi k>nfj
= > Y akby+ Y akb)+ D) Vakli(Lib,) e+
med keNy, kENm, keNpi, .
) k<snfj k>nli

D Vnk[j( 1/bk

m;— keNy,

Congidering the definition of N,, we get for .the last expression

D 2k Y 2 T™ka+ ) Vak[j2 ™+

meM! keN,, eNmo . ksto
k<nfj k>nfj
2 D Vnklizma, > 3 N eTmak4 Y 270 ki, +
medL? keNy, MeM keNy, keNp,
k<n/i .
+ 2 Vnk[j 2™, -+ 2 ZVM/J.& "’ak
medl2 keNyy

k>n/j
Using the deﬁmtlon of N again, we get eventually ‘
2( D) au(hfo) + 2 Vikli(ba) > Y & (kb + 3 Vakjj(1 (1)
k<n[] k>nfj k<nly k>nli

Applying now Theorem 6, we get that we have for a certain &

20 A(E) = nm;b ( D @i XV, /ma,ﬁbk)

EAS Y =77} k>nlf
On the other hcmd there are at most ¢ numbum Gy ¢ k log,2b,,, dll[olem

from zero and )_',’ a, = 1. Thub there is at lwstz one /o(, s0 that

k=1
“zc[, (210g2 b,‘)‘
So we get
* * e . .
20 A(B) > (2log,2b,)~ el by - R<nl,
i/n/k.,j if by > nff.

icm
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Observing that b,bf <
we finish the proof. m . o

PrOPOSITION 8. Suppose that {e;}i-, s a symmetr ic basis of o Banath
space Il and the ea;treme points of the dual unit ball are of the form

—1,1}. Then

w505 for jk<m and choesing a proper constant

2 =0y Tm ;61 where ¢, eR and #; € {0,
1—1

(B, 1)

al

Proof. Instead of d(E,I?) we consider d (B, I}L). Adnnttmg another
constant, it is enough to take the minimum only over I = 2™, me N.
First, suppose that #/l € N. Then we choose the mapping U e L(i,, B*)
represented by the matrix

W -

W 0
=@m| o ,
0 W
where W is a Walsh matrix of rank I. We have |Ulj =1 and
107 = max (U™ (@)l
iall=1

<0(log22l e,
i=1

I<n k>l

*_1
= (b; /l) max max max max byt ‘ E P wm(r‘
k<n  wil 1< i <1 Ml m=l r=1 i=l
e ok 1 i<l v
'™ *m

where wj,,,('r) are the components of the Walsh matrix W. Because of

the orthogonality of the Walsh matrix we get
nfl
< (@' max max BN D Vi

ksn njl — Y
2k m=1 .

maxb‘(b,,/k win {, Vnk(l} = max b} b V' kl.

Suppose #/l is not a natural number. Then we choose the greatest nintuml
number o that is smaller than » and s/l € N and a matrix » of rank s ag
above. Moreover, we take the matrix

o Ju O
“T 00
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We algo choose another matrix V. For n—s there are unique numbers

a, €{0, 1} such that n—s ——Z‘a2’
=0

__(1 / b;) Vt 0

ap Vi |

‘LO Vo_

where ¥, are Walgh matrices of rank 2% that appear in the matrix ¥V
whenever a; = 1. Now we take ‘

0 0]
P =
0 V
and the operators Uy, U, € L(0,, B) represented by % and . We consider
U,+U, and get 1IU1+Uﬂl| =1 and

N Ty+ T = 1o +'ut7-1||.

We computed 17 aheady in ‘the firgt part of this proof It remairs
to estimate | U;7|.

107 407 <

m
U7 < max max max max bi! b* g-m Y|Z !
k<n 2‘: ,; _g1<j! <2"“ai =l m-=1 . r=1 iml

Because of the orthogona.hty of the Walsh matrix the lagt quantity is
less than

*—]1
max max by szml/'bm

k<n 1
.. lim=k M=l -

Becaunse of the Holder inequahty and ¢ < log,! we get for the lust quantity

max bk 1b;' (log, YV k.
k<n

icm®
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It is left -to prove that for such an I where

max Vn [kl b,b]
kenfl

takes the minimum we have 1< bi. Indeed, we would have

: ma.xb— by (log, 1) <

b,
(4log,b,)"? max —~ b}
k<n }/

b, b
< (4log,b,)"? max | max —% ¥, max —=- b}
(4log.b,,) l"“” Ve 1y ot Vi ]

< (4logyb,) 2 max lma.x b,b7, max]/ il b,,b“

k<nfl k=nfl

Choosing a proper constant C, we get

b . —
max % b7 (log, /" < € (logzh,)? max Vn [kl b,b] .
k=nil

k<n

Thus it is left to show 1< bi. Obviously, we may assume that 2<b,.
Thus we get by the triangle inequality .

DX

or if 1> b%,
) 1 1 1
b??ﬂ bj.?% b, = —Z_b:‘> b,
By this we get
J— 1 —
max Va/klbb} = —bf = V2 bﬂ.
k>nil 7

Since the minimum is legs than b, “2&,]], this shows that 1< b}.

THEOREM 9. Suppose B is an n- dwme'n,swnal Banach space with a sg/'m-
metric basis. Then

A(E) <

where O is an absolute constant.
Tor the proof we need a generalization of a lemma in [12].
LuvMa 10. Suppose B is an n-dimensional Banach. space with a sym-

melric basis. Then there exists another Banach space B with a symmetric

4B, ) < O(logs 3B 4(B),
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basis {e, . such that the extreme points of the dual wnit ball are of the forim
& = %2% , where ¢, R and @; € {0, ~1,1} and
i=1 f

a(B, B) < '0(1052'2”‘2";’ ),
=l

where O is an absolute constant.
The proof of the lemm% is based on the simple observation that
the norm of a vector Z a;6; Wlth norm 1 does not change much if
we set zero all coordmates less than 2||2 ¢l The rest of the vector
5 “gliced” into log 2”2 e|} picces.
Proof of Theorem 9. Suppose the dual unit ball fulfills the lwpo-

thesis of Goro]lary 7 and Proposition 8. Then
1]
*
e;
i J :

(B, 1) < 0, (log,2

@
<0, (10g22“ 2
i1

Now we apply Corollary 3 of [10] saying that

I

1/2 N —yq

minmax V%l “ 2 ¢
< k>nfl ]

o) Am).

Thus ‘we get
(B, 1) < Cyflog, 42 (B)P A(E). e
If the dual unit ball does not fulfill the hypothesis of Corallary 7 we

apply Lemma 10 and get because of d(¥,IX) < d(&,H) d(H, 1) and
ME)< M(E) (B, B) the right hand side incquality. m

2. Estimations of y,(E) for p € (1,2, ). In the following thebrém
|G| denotes card(@).

" THEOREM 11. Suppose that there are sels G and D such that {e‘}m 98
a G, D-symmetric basis of the Banach space B with constant ¢ and

6) WD) D laul = (1) X la]  for oll a R,

neD Tl

M. ape (2]2 aaf )" ;(2” )™ for all acR™.
. el =1 . Fa=l’ -
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Let I eL(E,L) denote the isomorphiém I (Swe) = (a)iey. Then
i=1

@) (B, B) < I < EXCPa(B, ).

%
Proof. Wo . consider isomorphisms J e L(H, I2) with J Zakfk)

(ak %, where {fi}i.; 18 a basis of B. We choose @ = Vw, e; with Jaol} = 1
and |I(«)] = |I]. Then we have =

[l7Y = (1/C) mdx H (Zs, "(1)6*)”

uEI)

=@ /0 max ( Z k 2 ectru e FOP)"

k=1 t=1

) max (1 Ve (Y Z\ 2 518wy 05

self k=1 t=l

Bl

= (1[0
Because of (7) we get
W1 > (1/0K) nmx(z EWRON )"”
i, k=1

Averaging in the same way over D, we get

iJl! (I/OK /Vﬁ) (j lw.‘l2)m(zn’ l<3i;f:>lz)m-
t=l i k=1

Because of |I(#)] = ||| we have

o Wil = ORI Y 1Ko FE)™

1,k=1

On the other hand, we choose @ = Zw ;¢; with Ilwll = land || (m)\ = T4

. We have

1> (LI0) (“‘mHJ ( o)

nel)
= (1/0) (mm 2\21:8 ﬂlm)@ufk)l )1/2)
k=l =l

Now we average in the same way as above over @ and D and obtain

W““MM@WWZMWW)


GUEST


124 C. Schiitt

But because of |I(z)~Y = |[I""| we get

n
— -1/
W= LRI ) Kes 017
k=1
Together with (9) we get the right-hand side inequality of (8). m
COROLLARY 12. Let B and F be Banach gpaces with symmetric bases
{e{},.=l and {f}i, with constant 1 and let 1 e L(B®,F,1,) be the map

Zaﬁe@fj) = (ay)Py2, where @, denotes any tensor product. Then

WEQF, ) = I

Proof. As basis we choose {&@f}i%,. For G we choose the set
{(em)2,| & = &1, 7y = -1} and for D the set {wo¢| = changes rows,
o changes columns}. It is easy to check that (6) is fulfilled. To wverify (7)
we apply the Khintchine inequality for p = 2 [5], [11] twice. 'We have
C=1land K=1.m ~

TEEOREM 13. Suppose that there is a set G such thai {61}4.4 %8 a G- unoon-
ditional basis with constant C of a Bomach space B and .

(10) E@/6) )| 2 2 )

8EG  i=l
Let Te L(E, ) denote the 'isomorphism I( Zatei)
i=1

for all acR™

= (a)r,. Then

mjx ”Zn: + ei” lli_lJi;l < OK yo(B).
i=1 :

The proof is the same as the proof of Theorem 1 in [10].
COROLLARY 14. Let E and F be Banach spaces with unconditional
bases {e}r.. and {f}}iL, and let I e L(BQ,F,1},) be the isomorphism

Cnm

I ( 2 ay eﬁ®fj)

1,4=1

(@),

where ®, denotes any tensor product. Then

mas | 3 48| 7™ < 276 (B, F).
4yf=1

. Proof. As basis we choose {¢,®f;}7/~, and for G the set {Cemp)Ps )
& = 41, n; = +1}. By applying the Khintchine inequality [5], [11]
for p = 1 twice and the triangle mequahty once we get (10) with ¢ =1
and K =2. n
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3. Applications, As applications we want estimate the Banach—Mazur
distance of ¢- and z-tensor products of 17, 1 < r < oo, to Uyforp = 1,2, co.

LemMA 15. Let W denote the Waleh ‘maitrizc of rank n. We consider W
as an element of U®,I, and W = (W,..., W) as an element of I®,IL.. .

Then times
© (11) W< w2 4 1<r<2,
(12) IWEI < (Bm)¥r 4f  2<r< oo.

(11) and (12) for k =1 can be proved by wusing Clarkson’s in-
oqualities [1]. For % 1 we have ||W¥| < ¥ |W]|.
The following estimations are due to Hardy and Littlewood [6].

PROPOSITION 16. Let A = (ay)it, elh®,0r, lja =2/r—1 and 1/8
= 1/r—1/4. Then we have

(i) for L<r<4/3

n,m
( > lay ) < K41,
4,fml

(ii) for 4/3<r<2 -

n

X 3 oy )"

, t=l fm=l1

< K|4],

where K i8 an absolute constant.

PROPOSITION 17. Let I € L(IZ®,IL, 1,,) be an sdentity. Then we have

1/r—1/2 :
(13) "Inl” _ l(""m) if 1<r<2,
1 if 2<€rg
and
(14) (A/E)f(n, m, 7) < I < Ef (0, m, 1),
where
1 if  1<r<4/3,

if 43<r<2,

Finymy9) = | (mingn, mpye-si
if 2<€<r<

(nam)'** (max. {n, m})~*"

and K is an absolute constant.
Proof. By considering the vectors (1,...,1)®(1,...,1) and (1,0, ...
0)®(1,0,...,0) it follows that |I7|| is greater tha,n the right-hand

side expression in (13). On the other hand, 4| <( 3} [a,,l')”’, so that
we get equality in (13). 6=
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. - of course, we have |I|>1. The other left-hand side inequalities for all j =1,...,m. Then
follow from Lemma 15. The right-hand side inequalities for 1 <r< 2 ‘ _
follow from Proposition 16. For 2<r< o we have : a7 ' a(B,1%) < OVm.
_ " 2 ' L NI i . .
|1Au>max(2 4y I)l/r> Y2l 1/2( 2 |a; [2)” - Proof. We consider the isomorphism I e L(H,1I,) with I( ﬁajﬁ)
: i<n =1 = (a;)f~;. We bave |[I""| =1 and =1
We shall need the following funetions: =~ .
wPM i 1< r< 48, ‘ IZ]l = max 2|<y,fj>|
hy(m, r) = o Y =1 35 .
" if 4B8<r< oo, .
w1 r < 43, S _-nwa[Z(y,eQ(e,,f, ’
Iwll=1 3=
hy(n, 1) —ln”’ it 43<r< 2, S '
allr it 2<r< oo, < max Vm(ZlZ(y,e )(e )”2
' liyh=1 =1 i=1
<r<g
g, 7) = » _lf isr<2, Now we put
o if 2 r< oo.
TEROREM 18. Let p € {1, 2, oo} Then . (2[(6,, ml ) e I = 4(<eiy I
(L/E)hy(n, 1) < 7,(1@015) < ARy, 1) < Khy(n, 1), : o =
where K is am absolute constant. and have because of (15)
Proof. The case p = 2 follows from Corollary 12 and Proposition 17, oy =6y for fk=1,...,m

The left-hand side inequality for p = co follows from Corollary 14 and

Proposition 17. In order to prove the right-hand side inequality for 2 < r Therefore we get

< oo we consider the identity I e L(I} ®,1, ). In the cage 1<7n<2 : - mom
we choose & mapping U € L(I, ) such that U] <1 and U~ < OVa M < l/mmaix 2(2 <y, 0:><6i:f1*>)zj L
[4]. Then |UQU[<1 and [(UQU)™| = |U ®@U~!| < C*n. In order to . W= S =
prove the left-hand side inequality for p = 1 we use y, (I ®,1%) = ye (I @, . =1
®.17) and apply Corollary 14. We find that = l/—maxl 2 <7 % (<Y, ef))g”_1>zj”
o =1 lld 2
W < 20, (6.0,1) oo
is valid where I e L(l5®,l;, %) denotes an 1dent1ty. But (I"'Y is an < Vm max max———uz oy (<Y, €)1 25
identity in L(I;®.1;, ;). So we can apply Proposition 17. Now we prove Wii=1 sm |2
the right-hand side eftimation. Tf 1 < r< 43, we congider the identity o
I e L(hQ,l, 1};) and apply Proposition 16. For the cage 4/3 <'r < oo we = Vm max( 1<e; )12) max( 2)
need the fo]lo%ing lemma: = i< 2 s 2 1<y, €0l
Limvoea 19. Suppose {e}in, and {f;}j, are normalized bases in a Bamach And because of (16) we geb
space B with
m
(15) Z(eufb e fyp =0 IZ) < ¢ Vm min (2 [<es5 ¥ )1/2 max(z <y, e )M CVm. m
=1 =1 3= i=
ifj#k and ' ' ‘
We prove that for all n = 2%, m = 2%, {, j € N we have with a constant ¢
(1) (2i<euf]>z "< mim Z Kees 9512 ’ ’
Io*li= (18) AR, L) < OV,
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Suppose we have r < 2 and m = kn, & € N. Then we put
W,y = (w(ais)w(“)ﬂ)w(tyﬂ))::pﬂ I<s,t<m,

where w(a, f) denote the coordinates of the Walsh matrix W of rank #.
Now we pub

Wla.t =(0,...,0, Wa,u 0,..., 0)

I'th coordinate

for

for 1<I<k,

n,m

and applying Lemma 19 we choose as bases {¢;®¢;}72, and {IWI W e
where {e;}7; and {¢}, denote the unit vector bases of I; and I7,. The
dual basis of {|WI; W}, i8 {IWI Wi b, and (15) is easily verified.
We verify (16). The left-hand side expression equals #||W|;7%. By applying
Lemma 15 we get

nl|WIF* < WL (1) < w22,

And the right-hand side expression equals |[I]™* of Proposition 17. Now
suppose =2 and n = km, k = 2}, 1e N. We take W* = (w¥(a, p))m,
a8 defined in Lemma 15 and a Walsh matrix V = (v(a, ﬂ));’fﬁ_l. ‘We put

Uyt = (w(a, 8)w*(a, fv(t, B)Mm,

and choose as bases in Lemma 19 {¢,@¢,}3™, and {|W*|71U, Jo%,. Now

we proceed ag above. Thus we have (18). In order to get estimation (18)
for arbitrary »,m e N we apply an inductive argument used in [1] to
prove a proposition (p. 28). First, we fix # = 2° and apply the inductive
argument to m. Then, having (18) with another constant for arbitrary
m, we fix m and apply the argument to n. m ¢
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