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On the integrability of the ergodic maximal fimction
by
BURGESS DAVIS (West Lafayette, Ind.)

Abstract. Lot f o a nondecreasing integrable function on the Lebesgue unit
interval [0,1], and define

@ 1

M) = [foma+ [ fma, o0<z<ije.
0 -z

It is shown that there is a stationary ergodic sequence f;, f,, ... of random variables
which has integrablo ergodic maximal function, and such that f, has the same dis-
tribution a8 f, if and only if

1/2
J 1M @) wids < oo.
[

For nonnegative fanctions this charactorization reduces to Llog.li, a result of Ornstein.
Related inequalities are proved.

1. Introduction. Let U = {¢”: 0 < 0 < 2=} be the unit circle in the
complex plane, and make U a probability space by equipping its Borel
sets with the measure m given by dm = d6/2=. I f is an integrable function
on any probability space let f be the function on U which is equidistri-
buted with f, and which is not increasing ag 6 goes from 0 to 2x. (Functions

[
equal almost everywhero are identitied.) Define My(0) = M (8) = [ f(¢*)dyp,
b
and let

H(f) = OflM(a)/o;do.

Clesrly, it f wnd -—f arve equidistributed then H(f) == 0, and it is not
difticult to check that, if f is nonnegative, then H(f) is finite if and only
if feLlogl, that is #f|log[max(|f|, 1)] < oo.

Now lot T bo an invertible and ergodic measure preserving trans-
formation of a probability space (2,F,P) onto itself (see [1] for defi-
nitions), Functions defined on £, and subsets of 2, will always be §
meagurable. ¥ fiy a function on 2, the ergodic maximal function f* of f
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is defined by
n—1

= 1m)| 3 |,
n>1 =0

where TFf = f(T¥. The following theorem is proved.

THEOREM 1.1. There is a positive constant ¢, not depending on Q, T,
or f, such that

(L1) Bf* > cH(f).

Tnequality (1.1) may be considered to be an extension of Orngbein’s
theorem, of [5], that if f> 0 then Ff* = co if f ¢ LlogL.

It is also shown that there is an abgolute positive constant ¢ such
that given any function f on £ there is a function ¢ on @ which is equi-
distributed with f satistying

(1.2) By* < O (H(f)-+EB|f)).

Of course H(f) = H(g) and H|f| = H|g|. Inequalities (1.1) and (1.2)
together imply that the distribution of f is the distribution of & function
on 2 which has integrable ergodic maximal function if and only it
H(f) < oo.

It is well known (see [4] for a proof) that f e Llog L implies Bf* < oo,
and it is easily shown that, if f ¢ Llog L, there is a function % on £ which
is equidistributed with f such that Bh* = co. A little more will be said
about this at the end of Section 4. We note that for P > 1 there arve ab-
solute constants 0, such that Tf*? < 0, B|f|7. Sco [3], p. 469.

The quantity H(f) was defined in [2], and it was shown there that
H(f) < o characterized the distributions of funetions in the Hardy
space ReH,(U) as well as the distributions of functions in several spaces
of martingales.

The proof of Theorem (1.1) first uses methods similar to Ornstein’s
in [B] to prove a distributional inequality for f* and then cwmploys argu-
ments like those of [2].

The construction of the function g1 satisfying (1.2) involves a de-
composition. of o function f satistying H(f ) < oo into & bounded function
Plus a countable number of functions f ywhich have digjoint support
agd expectation 0, such that f; takes on only two non-0 values and.

}i' H(f,) < oo. This decomposition could be used to give an alternative
=

construction of the funetion analagous to g in [2].

The proof of Theorem 1.1 goes over almost without change to prove
a theorem involving infinite measurc spaces which. will bo gtated here
but not mentioned further. If f is an integrable function on an infinite

icm
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measure space (X, d, u), let j be the function on (—oo, co) which is
not negative and not decreasing on (— oo, 0), is not positive and not
decreaging on (0, co), and has the same distribution (with respect to

z»\
Lebesgue measure) as f, and define M(e) = [f(y)dy and
—&

H(f) = f°° | M () [0l do.

If 7' is an invertible measure preserving ergodic transformation of X
into itself, then there exists an absolute positive constant %k, such that
if f is an integrable function on X then ;! f* du = BH(f). This immediately

implies  Ornstein’s rvesult ([B]) that if f> 0 and w(f>0)>0 then
[f* dp == oo. Wo have not been able to prove an analogue of (1.2).
X

2. Lower bounds for Ff*. In this section the inequalities (1.1) will
be proved. The symbols ¢, &, ete. will stand for positive absolute constants,
and the same symbol will be used for different constants. Notation will
be as in the introduction except that until further notice it will be assumed
that Bf = 0. If 1> 0, let 0, = sup{0 € [0, 2rc): f(¢™) = 1}. Note 6; < 2=n
sinee Hf = 0. Lot @, be the unigue number in (—2r, 0] satisfying

0
I 6™ am = 1(6,—g,) 27,
Pi

define  w,(f) == 9y = (0,—@,))[2n, and take w, = P(f % 0). First the
ineguality
(2.1) P(f* =1 = w2,
will be proved. The argument resembles Ornstein’s in [8], and it will
be apparent after the proof is completed that it is not always true that
P(f*= 1) = Oy, for any constant ¢ >1/2.
Define, for oe 2,
8o () = (Lm){f (@) (T ) 4. +F(T D)),
For A 0 and k=1L lot
Bpp = A = a8y 3204, 0 L i< b—1, and %Sy < kA}.

>0,

n=1.

Wo say the points in A, iniliate & chain of length k. Lot

I
'Bk == jLJ T—jA“k!
=30

and define ¢, by Oy == Ay,— \J Bj, that is, the points in C initiate
' ot
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a chain of length % and are not part of a longer chain. Then all the sets
in the array

¢, 1710,
C,, T7C,, T-C,

(2.2) .
Gk! T—lolu R T_k(]k

are disjoint. To see this first note that T-*4, and 4, are disjoint since
f=24 on A, while f(T7*z) = kS (2) —(k—1)S,_;(®) <4 if wed, so
f<ion T*4,. Thus T7*C, and O, are disjoint. Secondly mnote that if
0< i< j<Fk, with either ¢ 54 0 or j 5 k, then

THI0AT™0) = 0unT-9-00, = I = @.

This follows since 8,(w), Sy(#), ..., 81 () ave all = 1 if @ e ¢}, s0 that
it #el" then

FI™9790) 4 f(T-9= 90 g) - F(T40) 2 (k—(j —i)+1) 4,
implying
(k1) 841 (3) = (§—4) 84 (@) +F(L~V D) + ... +f(T0) = (k+1)2,

so the points in I' initiate 2 chain of length % -1 and thus cannot be in
O, 80 I' = @ and so the sets Oy, T'C,, ..., T*C, are disjoint.

Now leb m < . If T~7C,,nT*0, + @ for some 0 < k< m, 0<j<m,
J< %, then 0, T~ (@, # &, which cannot happen since the points
in @, do not belong to a chain of length n. To prove I-7¢,, "\T-*(, = &
for 0<k<n, 0<j<m k<7, use an argument similar to that in the
DPreceeding paragraph to show that the points of €,,AT-*-1@,, a set
contained in ¢,,, initiate a chain of length at least m--1, contradicting
the definition of ¢,,. Thus all the sets in (2.2) are disjoint.

0 gl 4
Now let ¢ = UjU T70; and K = \JJT/0,. Then cloarly
i1 f=0 deal ()
(2.3) P0) = 4P (X),

with equality if and only if P(C;) =0 for each ¢>1. Furthermore
{f* = % > ¢ implying

(24) P(f*>2) > P(O).
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Now
I f= [+t 1755 = [ 800D
Iﬂéoquai G G @ i
S A1) P(0) = 2P T-50)),

8o that =
(2.5) ]f f<AP(K),
while clearly '
(2.6) (r>n>00>K.

Any sot 8 satistying (2.5) and (2.6) with K = S must satisty P(8)
=9, Sinco f and f have the same distribution, this statement is equivalent
to the statement that if I'> U satisties I' > {6%: 0 < 0< 6;} and [fdm

7

< Am(I") thep. m(I") 3= m{6": ¢, < 0 6,}, which is not difficult to verify.
Intuitively I' uses tho smallest possible values of f to camcel the large
values of f on {¢”: 0 < 0< 0,}. Thus P(K) > v,, and this together with
(2.3) establishes (2.1).

The rest of the proof of (L.1) is very similar to portions of the paper
[2], and the next two paragraphs ave reproduced, almogt verbatum,
for complotenoss.

Tnoquality (2.1) gives

B = fP(f*;Z)d/‘L}f(wz/z)dl'
0 0
Now let

Dﬂ
a, = (2" [ f(e)am),,
...()n
where @, = max(w, 0) and b, = 27" If a, >0, y, > 2~ Thig is
dear it 0, >b,, while when 0< 0, <b,, f(¢“)<a, if 0&(b,,,b,)
80 that

0“1;. ’{n by,
[ 7 am = [ am— [ F(6)am

b by aan

> 27"y~ oy (b 0,,) @m)™" = (0, —( ~b,)} /27,
implying Pay, S b, )
Now let j, = 1, let j be the first ¢ > 1, if it exists, s,uohlthat a; > 2ay,
and in general, if a;, exists let j;,, be the first & > §q, if it exists, such that
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a, > 2a;,. T {j;: © € A} denotes the finitic or infinite collection of integers
i
obtained in this manner, we have

©

2 9=y < 3 2 2—(f,~+1)aji_

n=0 ied

This, and the fact that y; is non-increasing, give

o0 23
B> [y dr2> > [ wmarp> 0 3 ;270N
0 /2

ied %y ied
(2'7) 0 00 bn’\
>0 0,270 = 2 ( ff(e“’)dm)w
n=0 n=0 —by

Replacing f by —f in this inequality gives
0 by, )
B*z0 Y [ Fe")am)-,
n=0 —by

where z_ = max(—a, 0), and this together with the previous inequality
yields

00 by,
(2.8) =) | [ F(e)dm| = oA (f).
n=0 —b,
Tt is not difficult to show that
(2.9) A(f)= cH(f)—CB|f]

(see [2], Lemma 2.1), and this, together with (2.8) and the fact that
f*= Ifl, gives (L.1), at least in the special case Ef = 0.

To extend (1.1) to the case where Hf 0, we note that if ¢ = If
and g == f—e then, by the ergodic theorem,

ffelim|f +Tf +... + T f|/n = |e| a.e.

o that ¢* < 2f* a.e., s0 we have
A(f) < O(A(g)+ lel) < CA(9)+CBf".
Since Hg =0,
A(g) < CEy*,
and so
A(f) < OBg* +-CEf* < CBf,
which, together with (2.9), proves Theorem 1.1.

3. A decomposition. Thig section is devoted to proving the following
theorem. We will call the set where a function is not 0 its support.

) ©
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TasoreM 3.1. Let f be an integrable function on o non-atomic prob-

ability space. Then f cam be written f = G+ 3 f,, where the f; have disjoint
supporls and i=1

(@) 17lle < BIfI,
(i) each f; takes on only two non-0 values and Bf, =0, and

(i) }f H(f) < O(E(f)+BIf)).

This decomposition will be used to construct the function ¢ of (1.2).
Tt can also bo used to give an alternative construction of the analagous
functions in [2], whore a much more specialized argument was used,
and its counterpart for infinite measure spaces can be similarly used
in the infinite measure cases of [2].

First the following lemma is proved.

Lipvua 3.2. There are absolute constants ¢ and O such that, if Bf = 0,

381)  oH()—OBIfI< [ wi(f)di+ [ p(~Har< C(H(F)+Bf|).
] 0

Proof. The left hand inequality is implicit in the proof of inequality
(2.8). This inequality is only going to be used for functions f taking on
two mnonzero values, and can be verified in this case by direct compu-
tation.

To prove the right inequality we agsume W.1.0.G. that P(f = r) = 0
for each real number ». Then v, (f) is continuous. Now define 4, by v, (1)
=y, =27"n 21, and define 4, =0. Then recalling that b, = 27",
either

bn~l—1 i
9=l 3 f fam it 63, = Bty
bpeg
or
oﬂ% bn,~;.1
W2 = [ fam< [ fam i 6, <Dy
¥, =bpepe1

Thus, since v, is decreasing as 1 increases,

L oo Anp1 © .
Jowdh = ) [t X =), = 3227
0 el dy s N,

0o bnga w0 Dpp1
< ([ fam), +43 [ fam
ne=l —bppg nesl byt g

< 3( [ fam), +2111,

nem0 =y,
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and this inequality together with the amalagous one for —f yields the
right hand side of (2.1).

Next the functions f; and § in the statement of Theorem 3.1 will
be described. Bvidently, it is sufficient to prove this theorem in the case
f =F, so for the remainder of the proof we will make this assumption.
Let 8 = [ |fidm, let b = k6 if kO<f< (B+1)d, —o0 < k< o0, and let
g=F—h-+[hdm, ¢ =h—[hdm. Then |fhdm| < 26807 <38 and(i) i
satistied, while [ gdm = 0, and, noting that both h =% and ¢ =g, it
is not difficult to show

32)  [lgdm<4 [ (fldm, and H(g)<H(f)+0xB|f].

Let 5 = sup{f: ¢(¢*) > 0}, and if 0 < 0 < n lot y(0) be the number

0
n (0 — 2w, 0) which satisties (f gdm = 0. Lot @, = 7, and if »; > 0 define
T = 1nf{0<w q(¢") is constant if 0 e (., #;) and ¢ is constant if
6 e (y (%), ¥(®y,)]. This gives either a finite or infinite collection of
points ;. If the collection is finite the last #; = 0 and if it is infinite
2,~+0. For notational convenience assume thore are an infinite number
of z;,. We write

fi = (@) I(0 & (415 8)V(Y(@), ¥(@10)))-

Everything claimed for the f; in Theorem 3.1 except (iii) is casily checked.
To verify (iii), we will establish the inequality

00

(3.3) 2%(]‘4:) < dyi(0).

g=]

‘When this inequality, and its twin with —f; in place of f; and —gq in
place of g, are integrated from 0 to oo and then added, Liemma 3.2 and
the inequalities (3.2) give (iii).

Let fuy fayrr --- bo those f,, such that the positive value taken on

by f; is > 4. Then 2, Pa(fy) = ) pi(fi). For each ¢ 2= N lot the set D, = {f;
% 0} sa.msiy D;> {f2 > 0} and { fi@m == dm(Dy), so that m(D,) = y,(f).
Noto that U D; containg the mterva.l (0, 0,(¢)). Buppose, temporarily,
that there exmm an integer M such that

«

(3.4) Dlml Df)/4<2m<ff # 0) <3me,(l)
=N

G M dea N
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Then M > N and

M1

J o aim= 3 et 3 [ gam
(u DU, u £ i) =N Dy =0 (f0}
M1 M1
= M [qam = D' im(Dy)
=N Dj i N

>4 2 m(Dy4> A ({_}; mD)+ Y mifr 0)/s,

the next to last inequality following from the right side of (3.4) and thé
fact that D; < {f, 7 0.

Now if 4, = U {f; # 0}y U {fi > 0}, then A, is a single arc, and
the avcmge of ¢ on thls arc is no 1ess than the average of g on (U Dju
U(U {f, # 0}), 5o that =

fgdm (/8)m(4y),

implying
vam (@) = m(d) > > m{f, # 0}
o M
= (1/4) X m(Dy) = (1/4) D) w,(f).
imN i=N

This inequality was proved under the assumption that M existed such.
that (3.4) holds. If it does not, let I" satisty

o o

D m(D;)[k= 3T m(fi0)

=N i=T—1
and

2, D)4 < im(f; 5 0).
o ]V [
Let J bo so large that m(fp 5 0))J < 2, m{D;)[2 and write
Jr = fratfrat. . +frs
where
Srg = @l ®p gy O Hﬂ(?/(”r,la V2 Y (@rpma))s

where the points @, = @p, < ¥y, < ... < &y = @p divide (9p,,, 5,) into
equal arcs. Then w;(fr,;) = yi(fr)/J, and the proof of (3.3) can be carried

6 — Studia Math. 73.2
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out using this and an argument identical to the preceeding one with the
functions {f;, 4 > 1} replaced by

{for 8 < IO {fory 1<e< T}V {f;, 0> T}

4. Construction of g. In this section Q will be decomposed into dig-
joint sets 2 = 4,U4,U ... such that there is a function u; with support
4; and the distribution of f; of Theorem 3.1, and such that By} is not
too large. Once this is done ¢ is easily congtructed.

LeEMMA 4.1. Let a and B be positive numbers and let a, b, and m be
positive integers such that a-+-b<m and (a/m)a—(b/m)p = 0. There is
an integer N such that if n > N, and A is o set such that P(A) = 1jnm
and the sets TFA, 0 <k < (a-b)n are disjoint, then there is a fumction h
with the following properties:

(i) P(h = a) = ajm, P(h = —B) = bm, and P(h =0) =1~ (a-
+b)m,

(a+b)n—-1
i) B £0} = |J T%4, and
k=0

(iii) BA* < O(H (h)-+Hn]),
where € does mot depend on a, B, @, b, or m.

kd
Proof. Let y =n(a+b)—1 and B = | T%4. Let ao, Gyyeory @, DO

Te=0
numbers, an of w]neh are o and bn of which are —f (so 2, ay = 0) and
Joea
which satisfy —p< Z‘ a; < a for each k, 0<% < p. This can be dono by
1=0 [1
choosing @, = a and, it ¢ > 0, picking a, by the rule ¢; = —g if 2, a, = 0,
otherwise a@; = a. Define the function & by Te=0
X4 n
b= Y aI(I4).
i==0
Then —28< h—[—Th-]— AT"h < 20, m 2 0, 50 that if n, is a positive
integer, sup (1/n) ]2 T'h) < 2max(a, f)/ne, and thus
NZng
fg—1 " g1
{W* = 2max(a, B)m}nB < \J I'BaB < | T4,
Tex1 freal

where the ~ denotes complement, a set of probability not exceoding
(no—1)P(A) = (ny—1) nm. Therefore

(4.1) BR*I(B)~0 a8 n->oo.
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Y oeT"A, 0< k< y, lot () = y—k. Then just as above, we have

ng—1

{ sup (1/k-+ 1)|Z (7 (@))] > 2max(a, ﬁ)/fn,o}nB csU 774,
gl

k"PT

go that

(4.2) B sup (1/k-|-1)[z1 WTH@)|I(B)>0 as  n->oo.

k> plz) T0)

Now lo‘nn ~ 1(B) max (1 7o~{ E B(T*(x)). Anargument very similar
05l ()

to the proof of (2.4) gives that if A >0

(4.3) [ ham = 2P (n > 2.

{23}

Now {n= A} o {h= 4} and since {n> 1} = {h 5 0}, (4.3) implies
(4.4) min =z A} < vy (h),

with equality if equality holds in (4.3). Inequality (4.4), its counterpart
for —h, and Lemma 3.2 give

h
BI(B) max (Lfk-+1)| 3BT (@) < O[E (h) +B 1),
Osgloag () =0
and thig together with (4.1) and (4.2) establishes Lemma 4.1,

LemMA 4.2. Let N, < Ny < ... be integers such that N;/N, , > N,_,.
There ewist sels A;, 1= 1, such that P(A;) = 107N, for each i and all
the sets {T%A,, 0 << N;~1, L< i< oo} are disjoint.

Proof. Rbholin’s Theorem (see [6]) says that given &> 0 and any
integer » there is a got 4 with P(A) < ¢, such that 4, T4, ..., T"4 are

=1
digjoint and P( | T'4) > 1.—e. Using this it is easy to show that for
A

each 4 there exist sets B, such that B,, TB,, ..., TV 1B, are disjoint
Ny=1
and P(By) = 21077 [Ny, i3 0. Let ¢; = |J T*B,.

Ie=s0)
Now fix 4 > 1. For each point w in B, let I" be the collection of those

integers % in [0, N;—1] (where [m, #] = {m, m--1,...,n}) which gatisfy
Tw & 0,. Lot ny = 0 if we(,, otherwise let ny =~ min{k > 0: T’“w € B,
and. k= N;—1} it such oxists. X n, == 0 define m, = min{k > 2 Trw
e TM1=1B .}, Tf my = 0 lot my = n, +N;—1 or N;~1, whichever is smaller.
Xt m, < N,—1, let n, be the first integer & greater than m, and not exceeding
N, 1, if it oxists, such that T"w e B, and let m, = n,+N;—1 or N;—1,
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whichever is smaller. Continue like this until cither #, does not exist
or m; = N,—1, and let J be the number of distinet n; found. Then I

J
= U [, m;], and each of the intervals [n;, m;] confains N, integers,
xcept; perhaps the first and the last, which may contain fower. Thus
P(0;) > N, BJ, and gince BJ —1 < P(B,nC;) < BJ, wo have
P(Byn0;) < P(C;) [Ny =210~ [N,.

Now if w ¢ 0; then T*w is not in O; for any ke [1, N, —1] unless
et

wel ) T7%B;, a set of probability at most
=1

(N3 —1)P(B;) < (N /N;)2- 107 < (L[N,) 2107,

Thus if
D; ={w: weB, and Tt ¢ 0, 05i< N;—1}
then
S Nyl
P(D;) 2 P(By) —P(B,n0y)—P( | T*B,)
Toml
> P(By)~2-107%/N, —(1/N,)-2-10*
= 2107} [N; — 4 (10~%) /¥,
and so

P({i D) > (2-10—1—42’10---1)/1\,1 > 101,
e

Pick 4, to be any subset of ﬂ D; of measure exacﬁly 10~'/N,. Then

=g

< N, —1, belongs to U C;. Now construct;

T=2

4, in exactly the same manner 1:0 be a subset of B, such that none of
T*w, 0< & < N,—1 belongs to U,O,L-, and so on.

if we A, none of T*w, 0

LovwA 4.3. Let ¢ > 0 and ?et 7 be a positive mteger There emists an
mteger N(e,n) =N cmd a set A such that A, T4, ..., T4 are drsyomt
N

P(U T'A) > 1—e¢, and U T*A does not intersect any of the sets U T4,

im0
Jj= N, where the A; are as in Lemma 4.2. ~

Prc.)of The proof of this lemma regembloy the proof just given.
Start with a set 4 such that T*4, 0 <k < n are digjoint and

-

P( UT%) >1—(2/2).
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Then we can pick m large enough so
o0 Ng-1
(Am{T”A ¢J U TfAj, <i<n—1}) > (1—e¢)/n,
Aw=m =0
go we pick A to be this intersection.
Before completing the construction of ¢ we remark that there are
many ways to show the existence of a function ¢(z) on (0,1) which is
positive and approaches 0 ag @ approaches 0 such thatb

(4.5) Bf* < p(P(f # 0))If o

Let f ~ g mean that f and g ave oquidistributed. Then, since 2 is
nonatomic, if y is a function with P(y # 0) = @ there is a function 7
equidistributed with y such that {n # 0} = A. Thug if f = g+ 2 fiis

t=1
the decomposition of Theorem 8.1, if we can construct funetions y; sueh
that u; ~fi, tho sets {u; 5 0} are disjoint, and

D But < O(H(f)+Bf1),

gral
then by letting »; be any function such that {v, s 0} < {u; # 0}, »I(x
>0) ~(f=f)I(fi>0), »I(uw<0) ~(f—f)I(f;<0), i>1, and w,
satisfy {ro # 0} < {N'I = 0,121} and v, ~§I(f; =0,i>1), we have

g{; vy ~ Z’/h -+ s’w ~f, and
B (2 it 2"’,3 )* j‘jElLL - ’ Z’"i”m
=1 =0 Tl

= ZIM + 17l < O(H () +BIf1),

(S

80 that Z' i Z”t can be taken for g.
LEYS

Thug to (omplete the construetion of g we need to construet the
funetions u,, 42 1. Assume W.L.0.G. that f is such that ¢ (and thus f;)
takes on only rational values, and write f, = 8,+ 0, where {8, 5 0}
and {0; # 0} are disjoint, where d, satisfies [ 8,dm = 0 and P(é,> 0)
= Jo/m; and P(8, < 0) = j/m, for integers &, 7, and mg, and where

0 < 10:lloop (P(0s > 0)) < B |f |27,
@ is ag in (4.8). Noto H(8;) == (P(d; + 0)/P(f; = 0))H(f,) < H(f,).
Next, lot Ry, B, ... bo sets satistying P (R;) = P(5; # 0)/m;N(8,), N

a8 in Lemma 4.1, and all the sets T*R,, 0 <<k < mN(d;), 1< i< oo,
are disjoint. That this can be done follows without much difficulty from
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the lagt lemma. In this regard we remark that if m € n == m] +r, 0L
< m, and if 4,T4,...,T""*4 are disjoint, a,nd if B == U T™4  then
B, TB,...,T"B are digjoint and P| U T4 — U T’B) = rP(4)

n—1
<P(J TEA).

i=0

Finally, construct a function #; ~ d; such that

N8 ymg—1
##0= U TR,
Jesall

satisfying

Bi; < O(H(8)+H(8:1) < O[H(fo) L-BIfl),
and construct funetions e, 43> 1, such that o; ~ 0;, the o, have dig-
joint supports, and {a,- # 0} o {t; == 0, i3 1L Thtm if we take p; == a;4-1;,
we have Z s NZ fiy and

i=1

o Sl Swei+ 5w

4ma) i=l

<2 16l (P(0; 5 0))-+ 3 O(H (f; )+ If;1)
faml

f=]l

<OE) +B11)),

completing the construction of g¢.
To conclude, we remark that if f> 0 and Eflog"™f = oo, then given
M > 0 there is an integer N (M) = N such that it n > N and if 4 is & set

such that A,TA,...,T*'4 are digjoint and P( U T'A) = P(f > 0),
n-—1

a function kb can be constructed such that b ~ f, {h > 0} = U T4, and

E sup  (L/k+1 (T

2, 04 (Sacria) > 5

where ¢(#) =n~L—Fk on T4, 0 < k< n—1, p(®) = 0 othorwise. This
congtruction is not hard to ma.ke aftor reading [57], and it can bo used,
together with Lemma 4.3, to show that given any f¢ LlogL theroe is
a function % equidistributed with f such that Eh* - co.
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