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On the spectra of holomorphic function algebras
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WILLIAM D. EMERSON (Salt Lake City, Utah)

Abstract. Let (I, p) be a Riemann domain where M = Nx Q for Q a Stein
domain and N the set of natural numbers. Lot 4 be a closed subalgebra of (M)
such that 0(2)op = 4. Let B denote the equivalence relation defined on M by 4.
The spectrum 4(4) with the compactly generated Gelfand topology kG is homeomor-
phic to the quotient space M/BE with the quotient topology @. Also, under certain
conditions, the Gelfand topology & agrees with kG on A (4).

Let (M, p) be a general Riemann domain and let 4 be a closed subalgebra of
O(HM) containing the coordinate functions. Let M* be the spectrum of the stable

algebra B generated by 4. Let B be the Gelfand transform of B and let A* be the
image of 4 under the map taking B to B. The algebras A* and A are topologically
isomorphie. Furthermore, .4 is more properly viewed as the algebra A* on' I*.

. It is known that if M is A-convex, then A(4) is an analytic space such that
4 = 0(4(4)). In general M may not be A-convex oven though A(4) is an analytic
space with 4 < 0(4(4)). Under certain hypotheses, M* is A*convex whenever
4(4) is an analytic space such that 4  0(d(4)).

1. Introduction. A Riemann domain is a pair (M,p), where M is
& topological space, and p: M—CY i a local homeomorphism. For » e I
and e sufficiently small, we denote by 4(z,¢) the neighborhood of
‘which is mapped homeomorphically by p onto the polydise A(p(w), g).
A complex-valued function f defined on the Riemann domain (M, p) is
sald to be holomorphic if, for all A(x,s) < M, fop™ is holomorphic on
Alp (@), ¢) ([8], pp. 43—44). We denote by @(I) the set of all holomor}r)hic

functions on M. If p = (Py;..., Dy)y & = (Gq, ..., ay), and |a] =E oy
we may define the differential operator D® on O(M) by =1

lal
Doy O
ap ... Op3y
for all f in O(M) ([8], p. 47). :

Let X and Y be two topological spaces and let f: X—¥ be a con-
tinuous map. We say that f is a proper map it for every compact set K
of ¥, f~1(K) is a compact subset of X.

Let A Dbe a uniform algebra on a complex manifold M. Let
4(4) be the set of nonzero continmous homomorphisms- from

A to C. We call 4(4) the specirum of 4. We lot A = {f: fe A} where
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f(qy) = @(f) for all p € 4(4). We call A the Gelfand transform of A. We
let ¢: M—>A(A) be the evaluation map given by e(xz)(f) = f(x), for all f
in A and all # in M. The Gelfand topology @& on A(4) is the weakest
topology on 4(4) such that f is continuous for every f in A.

Let (X,T) be a Hausdorff space. We generate a mew topology,
called the compactly generated topology kT, by letting U e kT if, and only
if, for any T-compact set K in X, there is & T-open set V such that UnIC
= VnK. If kT =T, then we say (X, T) is a k-space. We note some facts
about compactly generated topologies: the compact sets of (X, 7) and
(X, kT) are exactly the same, and any first countable or locally compact
topological space is a k-space ([6], p. 248). We let kG be the compactly
generated Gelfand topology on 4(4).

The following theorem is due to Rossi ([15], p. 144).

THEOREM 1. Let M be an analytic space, and A o wniformly closed
algebra of holomorphic functions on I such that M is A-convex. Then
(A(4), k&) can be given the structure of a Stein space so that 4 = 0(4).

Cartan has proved the following two theorems. (We note that Cartan
defines a proper equivalence relation to be an equivalence relation suech.
that X /R is locally compact and the quotient mayp is proper.)

THEOREM 2. If f i3 a proper, holomorphic mapping of an analytic
space X into an analytic space Y, and if R denotes the equivalence relation
defined by f, then the quotient space X [R is an analytic space whose holo-
morphic functions are given by {g € C(X[R): gom € 0(X)} ([4], p. 5).

TaEOREM 3. Let X be an analytic space and let R be the equivalence
relation on X defined by a family of amalytic mappings. If R is proper,
then X [R is an analytic space ([4], p. 8).

We refer the reader to [8] for the statement of Cartan’s Theorems
A and B, the Proper Mapping Theorem, and the Direct Image Theorem.

Let 2 be a Stein domain in CV for some natural number N. Let
M = Nx$£, where N is the set of natural numbers. Let p: M—Q be
given by p (¢, 2) = x. We will call the pair (M, p) a stacked domain. We
note that (M, p) may be viewed as a special example of a Riemann do-
main. Let {z;: 1<j<< N} be the set of coordinated functions in C¥.
Let p; = z0p, 1<j< N. We shall refer to the p,/s as the coordinute
functions on (M, p).

Let A be a closed subalgebra of ¢(M). We say that A is o nontrivial
algebra if 0(Q)op= {fop: feO(Q)} = A. If Q is polynomially convex,
then this is just the requirement that p,e.4, 1<j< N. Throughout
the second and third sections we will assume that (M, p) is a stacked
domain and that A is a nontrivial algebra on M. For fe (M) we will
sometimes write f = ({:,fz, ...) where f; = fl;xo. Thus, we may think

of A as a subset of [ 0(¢ xRQ).
i=1
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Sections 2 and 3 are concerned with the spectrum 4(4) of a non-
trivial algebra on a stacked domain. In Section 2 we show 4(4) = M/E.
In Section 3 we investigate the relationships among various topologies
commonly associated with 4(4).

Let M be any Riemann domain and let A be any closed subalgebra
of O(M). As noted above, if M is A-convex, then A(4) may be given
the structure of an analytic space. A natural question arises as to whether
the presence of an analytic structure on 4(4), such that every function
in 4 is holomorphic, necessarily forces M to be A-convex. The following
example shows that the answer to this question is, in general, no.

ExAMPLE. Let M = NxQ be a stacked domain. Let 4 = 0(Q)op
= {fop: fe 0(Q)}. By the results of Seection 2, A(4) = Q. Clearly,
(2, 50) is an analytic space. However, M is not A-convex. If K is any
compact set in M, then

he(E) = {we M: [f(@) < Iflg, for all e 4} = Nxp(K).

Since N xp(K) is not compact, M is not 4-convex.

In examining this example, we note that A is topologiecally isomorphie
to 0(R), and that A does not distinguish between levels of M. Therefore,
we may view 4 and M more “naturally” as ¢(2) and 2. Since 2 is
holomorphically convex, it appears that we have been asking the wrong
question. We should be concerned with the holomorphic convexity of
0, instead of the A-convexity of M. We extend this basic idea to stacked
domains and nontrivial algebras in Section 4 and to Riemann domains
and algebras containing the coordinate functions in Section 5. In both
cases, we obtain a new domain M* and a new algebra A*, related in
a natural way to M and A, such that the analyticity of 4(4) forces m*
to be A*-convex. However, in Section 5 we require the additional hy-
potheses that the evaluation map from M*to A4(A) is surjective and that
the quotient and kG topologies agree on A(A). We showed in Sections 2
and 3 that these hypotheses are always satisfied for nontrivial algebras
on stacked domains. Also, in Section 4 we will provide a complete de-
scription of the analytic structure of 4(A), including the decomposition
of 4(4) into its irreducible branches.

These results provide a partial converse to a theorem of Rossi [15]
and answer partially a question of Cartan [4].

2. The spectrum A(A). We begin by stating the following lemma.

LemMA 1. Let X be a locally compact, o-compaot space. Let A be a closed.
subalgebra of C(X). Let A(A) be the set of all conlinuous nontrivial homo-
morphisms of A endowed with the Gelfand topology. Let e¢: X—>A(4) be
the evaluation map. The following are equivalent:

(1) e is a proper map.

(2) X is A-convex.
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(8) Given o discrete sequence {w;} in X, there is a function fe A such
that the sequence {f(w;)} is unbounded.

We make several definitions. We define an equivalence relation R
on M as follows: s Ry if, and only if, f(2) = f(y) for all fe A. We let
M, ={1,2,...,n}x2. We let A, be the closure (in the topology of
uniform convergence on compact subsets of 3,) of the restriction of 4
to M,. We let B, be the equivalence relation defined on M, by A,: for
and y in M,, sR,y if, and only if, f(x) = f(y) for all fe 4,,.

We note that if  and y are in M, then oR,y if, and only if, 2.Ry.
In other words, B, is just the restriction of R to M,. This follows im-
mediately from the fact that A [y, is dense in A4,.

We let M, /R, be the quotient space of M, with respect to &,, @, be
the quotient topology, and s, be the quotient map. We let 4(4,) be the
spectrum of A4, endowed with the Gelfand topology &,.

Our next objective is to show that (M., /R,,@,) and (4(4,),&,)
are homeomorphic. Because we will use the following lemma at a later
point, we separate it from the proof that (M, /RE,,@,) == (4(4,),§,).

LeMMA 2. The space M, is A,-conves.

Proof. We will use Lemma 1 ((3) implies (2)). Let {»;} be a discrete
sequence in M,. We may assume, by taking a subsequence if necessary,
that there is a discrete sequence {y;} such that x; = (i,y;) for some
t€{l,...,n}. By Lemma 1, there is a function f e 0(R2) such that {f(y,)}
is unbounded. Let kb = fop |y, . Clearly, ke 4, and {h(z)} = {f(y;)} is
unbounded.

ProPOSITION 1. The spaces (M, |R,,Q,) and (4(4,),
morphic.

Proof. By Lemma 2 we know that M, is A,-convex. Therefore,
we may apply a theorem of Rossi ([15], p. 143) to conclude that 4(4,,)
= M,/R,, at least as sets. Thus, we may use the maps e, and =z, inter-
changeably. To conclude the proof it suffices to ghow that e,:
~(4(4,), &,) is an identification ([6], p. 130). Let U be a set in 4(4,,)
such that (e,)™(U) is open in M, . We must show that U is a @,-open
set in A(4,). Let y € U and let {wy, ..., #,} = ()" (¥). If k< n, then
leb {1y vy B} = [[D7 0 (@) 0 ML {4, - ,'v,c} Choose f e 4,, s0 that
fl@) = ... =f(w,) =0 and |f(z,)| > 1, k417 n Choose a posutlvo
number & so small that A(m;, s) < (¢,)"(T), ~\1,<" k and inf{|f(x)
vedw,e)}>1/2 k+l<<i<n I k =mn, thcn let f =0 and choose
% positive number & so wmall that A(z;, &) < (6,)"HT), LK< n.
Then y e {p e 4(4,): lpP;)—y(p)l <s 1 <9’<N and lp(f)l < s} sU.
Hence U ig a G,-open set. ]

We obtain more information about (4(4,),
proposition.

@,) are homeo-

@,) after the following

M,
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ProrosITION 2. Let X and X be topological spaces such that X and ¥
are Hausdorff and X is a k-space. Let f: X—>Y be a proper, continuous
identification. Then f is a closed map.

Proof. Let F be a closed set in X. Because f is an identification,
S(F) will be closed if, and only if, f~*(f(F)) is closed in X. Since X is a k-
space, f!(f(TF)) is closed if, and only if f~(f(F))nK is closed in K for
every compact set K in X. Because X is Hausdorff, f“l(f(F))nK will
be closed in K whenever f™(f(¥F))nK is compact. But f~(f(F)|nK
will be compact if, and only if, each net in f*(f(F))nK has a cluster
point in f~(f(F))nK. Let {2,} be a net in f~*(f(F))nK. Since K is com-
pact, {#,} has a cluster point » in K. Tt suffices to show = ef~(f(F)).
Leti {xs} be a subnet of {z,} converging to #. Because {z} is a net in f~(f(#)),
there is a met {y,} in F such that f(ws) = f(y,). Because {f Y(f(p)} is
contained in f~)(f(K)), we know that {f~(f(y,))} is contained in f~*(f(XK))
and, in particular, {y,} is a subset of f~*(f(K)). The properness of f assures
us that f~(f(K)) is compact. Therefore, {y,} has a cluster point y in
FHf(K)). Let {y,} be a subnet of {y;} converging to y. Because f(y,)
=f(y), f(®,) =f,), and f(x,)—f(), we have f(zx) =f(y). Therefore,
@ ef~Yf(y)). But F is closed and {¥.} is & convergent net in F, so y must
be in F. Therefore, x eff(F)) K.

PrOPOSITION 3. The space (M, [R,,Q,) is locally compact.

Proof. We know =, is 2 continuous surjection such that (m,) (%)
is compact for each e M, /R,. Proposition 2 shows that =, is closed.
Therefore, 7, is a perfect map ([6], p. 235). Because =, is perfect,
(M,/R,,Q,) is locally compact if, and only if, M, is locally compact ([67,
P. 240). Tt is clear that M, is locally compact.

PROPOSITION 4. The quotient space (M, /Rn, Q,.) can be given the structure
of an analytic space such that every f eA 48 holomorphic.

Proof. By Theorem 3, it suffices to show that (M, (R, , @,) is locally
compact and that the map =,: M,—(M,/R,, Q,) is proper. These facts
were shown in Proposition 3 and Lemma 2.

We conclude this section by showing that A(4) and M /R may be
viewed as the same set.

PROPORITION 5. As sets, 4(4) = M/R.

| Proof. Since A = limA,,, we know that ag sets 4(4) = hmA(A 2]
But 4(4,) = M,/R,, s0 A(A = hm M, |R,. Clearly, as sets, llm M, IR,
= M/R.

3. Topologies on the spectrum A(A4). This seetion will be concerned
with various topologies on 4(4). We begin with a lemma.

LemMA 3. Let X and Y be topological spaces such that X is o-compact
and locally compact and X is Hausdorff. If f: XY is an identification
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and L is a compact subset of X, then there is a compact subset K of X such
that f(K) = L. :

Proof Because X is o-compact and locally compact, we may write
X = U K,, where K, is compact and K, IntK,,,. Since f is a con-

tmuous sur]ecmon, we may write ¥ = U L,, where L, = f(X,) is & com-
pact subset of Y.

T L < f(X,) for some n, let K = f~'(L)nXK,. Because L is compact
and Y is Hausdorf, we know that L and (thercfore) f~'(L) are closed.
But K, is compact, so K = f"HL)nkK, is & compact gubset of X. It is
clear that f(K) = L. To show L < f(K), we let y € L and choose » eXK,
such that f(x) =y. Clearly, » € K,nf '(L) = K. Therefore, f(X) =

It L & f(K,) for every n, then we may choose a ¥, € INf(K,) for
each n. Let 8 = {y;, ¥s, --.}. By choosing a subsequence, if necessary,
wWe Tnay assume Y, # ¥, whenever n % m. Since L is compact, {y,} has
a cluster point. Tf § is closed, this cluster point must be some ¥, & 8.
Replacing S by 8\{y,.}, if necessary, we may assume that § is not closed.
Becamse f is an identification, f~*(S) is not closed. Let z, € FTHUSINFUS)
be a cluster point of f~1(8) not eontained in f*(8). Then there is & net
{»,} contained in f~*(8) which converges to @,. Further, =, 5 @, for
=|J K, and K, < IntK,, ,,, there

=1

is some k such that x, ¢ Int K,. By dropping to a subnet, if necessary,
we may assume that x, eIntK,G for all a. The conti.nuity of f implies
that {f(z,)} converges to y, = f(w,) & f(Ky). Since x, &f7(8), f(#.) =Y
for some m. But there are only a finite number of ¥,, contamed in f(E).
Hence, f(w,, =y, for a sufficiently large. This implies that @, €f™ (¥,)
= fY(f(».) = f1(8). This contradicts the fact that z, ¢ f~*(S). Therefore,
L < f(K,) for some .

The next proposition is a list of statements that are equivalent to
the statement that M, is 4,-convex. In Lemma 2 we showed that M, is
A, -convex; therefore, these statements are always true. However, since
the proof involves showing the equivalence of these statements, we state
the proposition in this form. We note that one particular result of this
proposition is that (4(4), kG) and (M/E, @) are homeomorphie.

Before stating the proposition, we establish some notation. Since

every a, since @, ¢ f~'(8). Because X

is a Stein domain, we may write Q = U L,, where L, < Int L.,

h@m)(L ) = L,, and each I, is & compaet subset of Q. Let K, ={1,2,...

w0}y XL, "

K = K,u{y e M: yRo for some » e K},
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and let
= {z € Q: fi(x) = f;(x) for all feAd}.

PROPOSITION 6. The following are equivalent to M, being A -convex.
1 If p>0 and w e n-+p}x(Q\J V,1p.4)s then there ewists a fune-
j=1
tion fe A such that f(z) =1 and fly, =0.
(2) For all w, hy(K,) = K.
3) If o(K) ={ped4(4): p(f)I<
= ¢(K,), for all n.
(4) For each n, there exisis a compact L; = M such that e(L}) = o(K,)-
(8) The spaces (A(A), k@) and (M|R,Q) are homeomorphic.
Proof. We will prove this proposition in a number of steps.

Step 1. (1) implies (2). If © e b (E,)N\Ky, then |f(#)|< ”f“x,, for
all fed. By (1) this is not possible. Hence K1 = hA (K,).

Step 2. (2) implies (1). Let @ e {n-+p}x( Q\U Vpipii)

¢ h,(XK,), there is a g € A such that |g(»)] > HgllKn We note that [lgllx,
= I!gllijn, 1<j<n Leb gy = g—(glxp,0p)- Then g;(@) # 0 and g;ljxr,
= 0. By the identity theorem ([8], p. 6), g;l;x0 = 0. We may assume,

Ifliz, for all feA}, then e(K,)

Since =

by multiplying g; by 1/g;(#) if necessary, that g;(z) = 1. Let f= ” ;-
Then f(z) =1 and flz, =0.

Step 3 (2) is eqmva,lent to (3). We know that o(K,) = ¢(K,) if
and only if ¢ Yo(X,)) = e Y(e(K)). But, ¢ Yo(K,))=hy(E,) and
Y e(K,) = K.

Step 4. (3) implies (4). Let L) = K,,.

Step 5. (4) implies (5). We know that kG = @ because e: M»(A(A),
kG) is continuous. Let U €@. Then ¢ *(U) is open in M. To show that
U € kG, we must show that U nH is relatively G-open for every kG-compach
set H in 4(4). Since A(4) = o(K,), every compact H in A(4) is

n=1
contained in o(K,) for some n. Thus, it sutfices to show that Uno(K,)
is relatively G-open for each . By (4), it suffices to show that if L is
2 compact set in M, then Une(L) is relatively G-open. Let ¢, € Une(L).
We wmust find fy,...,f; in 4 and an & > 0 such that

lo(fi) =g (Sl <&, 1< i<t < Une(L).

Let e N gg)nL = {®y, ..., #,} and let p‘l(p(e“ tpn)))r’\L = {®yy erey By -

, @} Choose fy, ..., f_, such that f;(2,,;) = Land fi(z) =0, 1<j< s,
1/z<l—s Choose &> 0 so small that ¢<<1/4, lllem E)<1/4 1<)
<8, 1<iKl—s, A(z;,8) = e H(U), 1<i<s, and

inf{|fy(®)]: @ e (v, €), 1<i<l—s}> 3/4.

po € {p € e(L):
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Then
{el: |po)—pilm)l <e 1<K N
and |fi(@)—fim)| <e, 1<j<I—s} = Lne ™ (T).
This implies that

poef{pee(l): p(@)—po(p)l <e, L<ig N,
and |p(fi)—go(f) <&, 1<j<T—8} € Une(L).

Siep 6. (5) implies (4). Since the @ and kG topologies agree on 4(4),
o(K,) will be @-compact for each #. The map e: M ~{4(4), Q) is an
identification map. By Lemma 3, there is a compact L) such that e(L)
= o(K,).

Step 7. M, is A,-convex implies (3). Because M, is A,-convex,
A(An> = In/Rn' N0W7

4(4,) =jU o({L,...,n} xLy)
=1
g0 o(K,) = o({L,...,0} xL,) = M,/R,. Because L, is 0(f2)-convex,
o(Ka)n (M, /R,) < 6(E,). Clearly, e(K,)< o(K,). Thercfore, e(K,)
= o(K,).

Step 8. (4) implies M, is 4,-convex. In order to show M » 18 4 -convex
#or every = it is sufficient to show that for any j, by, ({1, ..y 0} X Ly)
1s a compact subset of A, . There is a compact set H; in M such that
e(H;) = o({1,...,n} XI;). Therefore, e e(Hy)) M, =h,({L,...,n}x
ij)nMu'= hy,({Ly ..., n} xL;) is & compact subset of M.

At this point we are ready to consider the relationship between the
& and %G topologies on A(4). We have not been suceossful in showing
that (4(4), &) and (4(4), k@) are always homeomorphic. However, we
have been able to show this for a large number of cases. Tn order to de-
scribe these we meed to make some definitions.

_DEI«‘INI(L.‘ION. We say that A is mawimal with respect to R, if the fol-
lowing condition holds: if f € 0(M)and filyij = filp, for all ¢ and j, then
fed.In other words, 4 is maximal with respect to Rif 4 = {fe 0(M): f
respects the equivalence relation R defined by A4}.

DerrNirroN. Let {W,: 2 ed} be a collection of subvarietios of Q.
Suppose that gi.vgn any # € £, there is an ¢ > 0 such that 4(w, e)-mWA =@
for all but a finite number of 1 4. In this case, we say the collection
{Wi: Aed} is locally findte.

-D.EFINITION. Let {W;: 2e4} be a locally finite collection of sub-
varieties. Suppose that, for each pair (¢,4) of natural numbers, there

is a collection #;; of subsets I of A such that V,, = J M W;. In this
IeF el
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case, we say that the V. are globally given by a locally finite collection
of subvarieties of Q.

PROPOSITION 7. Suppose that A is maximal with respect to R. Suppose
SFurther that the V,; are globally given by a locally finite collection of sub-
varieties of Q. Then (4(4), @) = (4(4), k6).

Proof. It suffices to show that given an open set U = M such that
¢ (e(U)) = U and an @, ¢ U, there exist a finite number of functions
Fiyeesfs in A and an e> 0 such that o, e{weM: |fi(2)—fi(z)<e,
1< i< s} = U. We shall assume o, € 1 X 2. We let 4, = p(xy), 2; = (j, @)
and § = {i e N\{1}: z;Rz,}. We must consider two ecases.

Case 1. § = . This case occurs whenever »; is not identified with
any other point of M. Let V, = (J Vy;, then

J#1

Vo =U LU0 T

i#1 Tesfy del
Since the collection {W,: A € A} is locally finite, ¥, must be a subvariety.
If V, =0, then V; =@ for all j # 1. Therefore, the function
f=1(0,1,...,1,...) is an element of A. Since #; € U and U is an open
set, we can choose an ¢ < 1/4 so that 4(w,, ) = U. For this ¢ and f we
have v, e {w e M: |p;(z)—p:;(z)]l <e L<i< N, and |f(»)| < e} = T.
We now suppose that V, # @. If x,e V;, then #, e V,; for some
J, . BRw; and jefS. But § =@ so »,¢V,. Therefore, we may choose
g€ #£(V,) such that g(x,) # 0 ([8], p. 245). We also choose £ > 0 such
that e < 1/4, A(xy, &) < U, and g(z) % 0 for all 2 € 4(»,, 2¢). If necessary,
multiply ¢ by a sufficiently large constant such that nf{g(x)|: =
€ Ad(xy, &)} >1. Let f=(0,g,...,9,...). By the maximality of 4 and
the fact that g e £(V,) = #(J Vy;) we know that f is an element of
j#1

A. For this ¢ and f we have ]ml e{wedM: [p;(x)—p;(2)) <& 1<ISN
and |f(z)| < et = U. .

Case 2. 8 5 @. The collection {W,: 1 e} is locally finite, s0 we
may choose an ¢ > 0 such that W,nd(z,, ¢’) = @ for all but a finite
number of Aed. If W AHAW; ) #= @ and x, ¢ W,, then we may find
g < ¢ such that W,nd(zy, ¢) = B. We let

&' = jmin{e’, &;: @, ¢ W,, Wind (2, &) = O}.
Thus, if W,nd(z,, &) # @, then s,e W;,. We let I, = {Aed: W,n

nA(g,, &) # O} and let It = ANI,. We now choose s’ < & so that
Amy, &) = U.

I Vynd(m,, ') # @, then
V2 () Wi
Aely
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hence, #, & V;. This implies that »;Bwz;. Let 8* = SU{l}. If i e 8* and
J ¢ 8% then V (g, &) = B. Otherwise, #; would be identified with
@;, and @, a,nd 2; would necessarily have to be identified. Lot
Y=Uv,
TeS*
jes*
Then ¥ nA(x,, &"') =@. Further, ¥ is a subvariety, since it is a locally
finite union of subvarieties. Choose g € #(¥) such that g(@) =0 ([8],

P- 245). Choose ¢ << &'’ such that ¢ < 1/4 and g(») # 0 for all # € 4 (,, 2a)

Throughout the rest of this section, welet 4 = A(x,, &) and 4 = A (.po, )
We multiply ¢ by an appropriate constant, if necessary, so that inf{(g(x)|:
zed}>1. Let f =(f;) where

0 if
-

jesy,
it j¢st
It 5 and j are both contained in §* or N\S*, then it is clear that fily

=filp;- I ¢e8" and j¢8% then V,;< ¥. Therefore =glp.
7 ¥ ] 1‘Vj g[)‘

= filvy = 0. Since filvy =5l  for all ¢ and j, the maximality of A
mplies that fed. We now have
weM: |pi(0)—pi(z1)| <& L<I< N, and [f(2)] < e} = 8*x Q.

We establish more notation. For I < I, let I' = I,\I. Tor I < I,

let
(U Wl)u(U W,uY

ZEI

and let W7 = ﬂ W, Let W = U W,.
Because Q 1s a Stein domam, there are functlons g, IcI,, 1<i
<, and b, 1< i<, such that
ny
Wy = n Z(g7)
and -
r
W=MN2Zm)
i=l
([T - 94). Wo let g; = (g], ..., g% ): @~C" and |g;| = sup{lgl(x
1< z<n1} Snmlarly, we let ho=(hy,...,h): 2-C" and [|h(x )|
= sup{|k;(®)]: 1<i<r}. Let I I,. For & e 8 we define constants
¢(I, k) by
N i
oL, By :{0 it Wy,
1 i wrgv,.
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Fork ¢ S welet ¢(I, k) = 0. Finally, we let X, = le(I, k)gr(x)
=0, I < I}
We claim that X, < V,, for all ke 8* If k = 1, then V. ,c = 0 and
the claim is elear. Suppose that &k = 1andletz e X,.. Welet I(x) = {Ael,:
2 ¢ Wt and I'(w) = INI(2). If I'(z) = I,, then

{wednW:

ey W,c Vy.
eIy

Suppose now that I'(x) is strictly contained in I,. Then I(x) 7 @ and
x¢ W“) Consequently, |9z, (®)| # 0. It oI(2), k) =1, then |o(I(w),
k) sy (®)| % 0. This would imply @ ¢ X,. Therefore, ¢ e(I(z), k) = 0. But
this implies W¥® < V.. By the definition of I’(z) we have ®x e W'®,
Thus, X, c Vy;, for a.ll kel

Now let j and & be elements of S* such that j # k. We claim that
it W'e Vy,, then ¢(I,j) = ¢(I, k). If j = 1 or k = 1, then this is clear
by the deﬁmmon of ¢(Z, k) So we may suppose j and k = 1. If ¢(I, k) =0,
then WY < V,, and W < V,,nV;,. This implies that W' < V;; rever-
ging the 101es of j and % finishes the argument.

Now let j and & be elements of 8* such that j< %k We claim that
o(I, ic)g_,[,r = ¢(L, k)grlp,, for all T < I,. Let w € V. If e Wy, then
gr(@) =0 cnnd the result is clear. Thus, we may assume ¢ W;.
Then g (@) 5 0. It W¥ < Vy,, then ¢(I,]) = o(I, k) and o(I,j)gr(w) =

¢(I, k)gr(x). The only other possibility is that »¢ Wy, v eV and
W & Vix- We show that this eannot happen. Since # ¢ Wy and z e Vy,
we know that z € WY for some J < I’. We suppose that J is maximal
in the sense that J is the largest subset of I’ such that € W7. If WX ¢ Vy,
then WY & V, (J < I’ implies W¥ = WY). But
Vﬂc = U ﬂ Wi,
LeSj, deki
8o it W/ & Vyy, then J ¢ #,;,. Since @ € Vy,, there is some 4, 4 ¢J such
that @ e W,. I Ael’, then 4 ¢ WV¥W and Ju{i} = I'. The maximality
of J implies that this cannot happen. Therefore, i ¢ I'. Thus, it must
be the case that 4 e TUIy. But this implies that # € Wy, a contradiction
to owr assumption that o ¢ Wi,
Now let j € 8* and & ¢ §* We claim that c(I,j)gII,ﬂ
It je 8" and k¢ 8%, then Vy < ¥ < W,. Therefore, g;ly,,
We define additional constants by induction. Let j = m:f S Since
X; s Vyy, it is clear that jxX; < U. Because 4 is a compact set, there
i a §; such thatb

(I k) gIIV

ix{wedaW: [e(I, Do (@<, Iclics U.

Let 6(I,j) = & for all I < I,. Now let 1€ 8. Suppose that for all k < 1,

JxX} =
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kel, and for all I = I,, §(I,%) has been defined so that
kxXy =kx{we AaW: |o(I, k)g, (@) < 8(I, %), Ic I} < U.

We also suppose that if & and m are distinet elements of S lesg than 1,

then 8(I, k) = 6(I, m) whenever W' < V,,,. Ik e 8,k < l,and W' < V,,,

we let 6(I,1) = 8(I, k). Let k and m be elements of § such that & = ™,

k<landm <1.HEW'< Vyand W< V,,, then W' s VynV,, < V,,.

Hence, 6(I, m) = (I, k), so no ambiguity is present in this definition.
We let

S ={I =1, there is a k<1, ke and WX < V,}.
Let
Xi={wednW: le(I, Vg ()| < 8(I,1) for I .5’
and le(L, 1) g;(®)| = 0 for I = I,, I ¢s%.

We claim that IxX; < U. Let (I, #) be an element of IxX;, let
J' ={led: xe Wy}, and let J = {Ael,: 2 ¢ W,}. Now, @ € X, implies
that © e AnW. Therefore, J' = I, and

z¢ (U Wil U WIUY = W,.

eIy AN

We consider two possibilities: cither J’ < #* or J' ¢ 5%

It J' ¢ then |o(I,l)g;(@)] =0. Tf o(I,1) =0, then W < Vs
hence, (I,2) € U. Tt o(I,1) = 1, then |g;(w)] = 0. Hence, © € W ;. This
is a contradiction.

If J'e s, then there is a k€& such that k<1, W' < ¥V, and
(k, ®)R(1, #). We will show that (k, z) € U. This will imply that (I, ») e U.
It suffices to show that (k,z) ek x Xy, since, by our agsumption, k x X,
S U.XI < I,,theneitherI < JorI & J. It T & J, then thereisa A e IN\J.
Now, 1ed’, so zeW, < W;. Therefore, g;(z) =0 and |e(I, k)g, ()]
=0<4(L, k). X I < J, then J' < I' and W' < W”' < V. Thus, I e 4
and 6(I, %) = §(I,1). But (I, %) el x X}, so le(I, kyg ()| = |e(I, g ()}
< O(I,1) = 8(I, k). For all I <I,, we have shown that le(X, k)g, (x)]
< (I, k). Therefore, (k, ) € o x X}.

We may now find a §; such that

Ix{we dnW: |e(I, g ()| < 8(I,1) for I < &
and |o(I, g, (e)| < & for I< I,, I¢ S < U.

We define 8(I,1) = 8, for every I <1, such that I¢s. By our
choices of 6(I,1) we have

IxX; =1x{n eAnW:le(I, g, ()] < oI,h, IcI}<cU.
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We define some more functions. For I < Iy, we define G; e ¢(M)™T

by G;(k, ) = G(I, k) (») where
(1, k) .
S ir(e) it

G, k) (@) =] 6(I,k)
0 i kés.

We claim that ¢, € A™. This will be the case i G(I, By = @I, )y,
forall jand k. It j ¢S and k ¢ 8, then this is clear. If ) ejS* and % ¢ 8%,
then Vy, € ¥ = W;. Therefore, 91ly;, =0. Finally, we assume that j
and % aro elements of 8* and that J < k. We have shown above that if
@ € Vi, then ¢(I, jg;(2) = ¢(T, E)gr(o) for all T < I,. If e(I,j)gz(®). # 0,
then wo must show o(I, j) = 8(I, k). We do this by showing WZ < Vik-
Sinee  ¢(I, §)g,(®) = o(I, k)g;(v) # 0, ¢(I,j) =e¢(I, k) =1. Therefore,
W5 Vyy and W& V. Let I = {A: e W,}. Because x¢ Wy, we
have J' = I' and W¥ < W/, Now,

VJ'T:: = U PVLi
Le.ﬁjk .
g0 there is some L such that o e W& = () W,. Further, Ls J' = I,

AeL
because, if @ e W,, then 1leJ'. Therefore,E W'e W's Wre v, and
oI, 4) = o(I, k).
Sinee jxX < U for all je8, we know that
{4, 2): [2:(5, %)~ 23 (1, @,)| <& 1<iKN, Ifd, 2) <e,
G4, 0)| <&, I Iy, and |h(z) =0} = U.

keS8,

For jelS choose #; such that
Jx{wed: |G:(j,n)<e, I I, [hx) < 7t s U.
We define a function H e 0(M)" by
&
H(k, 0) = {m,
0 it ke¢S.

We claim that I € A", This is clear, since V;; = W for every % and I
and I e S (W)
Lot

h(z) # ked,

U = {(71 z)e M: [2:(5, @) —0:(J, %) <&y LI W,
flg, o) <ey (G, a) <e, TSIy, |H(j,s)| <&}

We know that U’ < U and that all components of the vector-valued
functions are functions in A. Therefore, (4(4), kG) = (4(4), &).
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4. Stacked domains and montrivial algebras. We begin by making
several definitions. Let ¢(1) = 1 and for j > 1 let i¢(j) =inf{k: 1 <k <§
and Vy; = 2 Let 8 = {i(j): je N}, let M* =8 xQ, let n*: M-M*
be given by z*(j, @) = (i(j), @), let p* = po(x*)~", and let A* = {fo(n*):
feA). Clearly, (M*, p*) is a Riemann domain, and A" is a nontrivial
algebra on M*.

We will be working with M* and A" for the rest of this section.
This is equivalent to dealing with A and A under the assumption that
Vi # Q for any ¢ and j, ¢ % j. In order to simplify notation, we will
make this assumption throughout the rest of this seetion. We will also
use (X, T') to refer to the homeomorphic spaces (4(A), kG) and (MR, Q).

We will say that (X, T') has an analytic structure if there is o structure
sheaf x@ such that ((X,T), £0) is an analytic space, and such that 4
is contfained in the algebra I'(X, x0) of global seetions of @. The ulti-
mate goal of this section is to show that if (X, T') has an analytic structure
(and V;; = 2 for any distinet ¢ and j), then M is A-convex. We will
do this by first showing that the map »: M—(X, T) is proper and then
appealing to Lemma 1.

We note some facts about Fréchet algebras and their spectra. If A
is any Fréchet algebra and K is a subset of 4(4), then K is compact
in the G topology if and only if K is compact in the %G topology. For
any uniform algebra A, (4(4),@) is A-convex. Therefore, for any
uniform algebra 4, (4(4), k@) is A-convex.

For the rest of this section, we will assume that there isa sheaf o
on X such that (X, T'), =) is a Stein analytic space and that 4 = I'(X, ).
The following proposition will show that we ean make this assumption
without any strengthening of our current hypothesis.

PROPOSITION 8. Suppose that A is a uniform algebra. If ((4(4),
xq), A(“,)@) is an analytic space and A < T(A(A), 40), then there is
a sheaf o on A(A) such that ((A(A), k@), .pf) i8 a Stein analytic space
and 4 = I(4(4), ).

Proof. Sinee 4 is a uniform algebra, (4(4), k@) is A-eonvex. By
Theorem 1, we know there is a sheaf o on 4(4) such that (4(4), «)
is a SPein space and A = I’(A(A), o). But A is a uniform algebra, o
A =4 and A(4) = A(4). Therefore, we may view ((A(A), k&), .91) a8
a Stein space such that 4 = I'(4(4), ).

We establish some notation. Let Q; =§x 2, X; = a(2)), n; = a|y,,
and T; be the relative topology on X, inherited from 7. We will show
that each X; is an irreducible branch of (X, T), ). Then, using the
local finiteness of the irreducible branches of an amalytic space, we will
show that = is a proper map.

PROPOSITION 9. The map m;: Q;—(X;, T,) is a homeomorphism.

icm

On the spectra of holomorphic function algebras 191

Proof. The map =; is clearly injective, surjective, and continuous.
‘We need only show it is open. Let U = ©; be open. Then #;(U) = VnZX;
where V = n(NxU). S8ince NxU is open and NxU = a~Yn(NxU)),
we know V eT. Therefore, 7;(U) € T}.

PRrROPOSITION 10. The set X; is closed in (X,T) and the map m;:
0Q,—(X, T) is proper.

Proof. Sinee x is an identification, it suffices to show that =~ (X;)
is closed. This follows immediately from the fact that = (X;) = ({J i x
X Vy)luey. b

Let K be a compact set in X. Since X; is closed in (X, T), KnX; is
compact. By Proposition 9, (s;)! (K n.X;) is compact. Therefore, (m;)™" (K}
= (m;) (K nX;) is compact and =;: 2;,—(X,T) is a proper map.

In order to proceed, it is necessary to show that the @ topology and
the kG topology agree on A(4). To do this we must first prove the fol-
lowing proposition.

ProrosiTioN 11. The analytic space ((X T, ) is of dimension less
than or equal to N.

Proof. The space {(X,T), &) is of dimension less than or equal
to N if the dimension of each of its irreducible branches is less than or
equal to N. The dimension of an irreducible branch is determined by
the dimension of the set of its regular points. Let #£(X) be the regular
points of ((X,T), o). Since (#(X), o |gx) is & complex manifold, it
suffices to show that the topological dimension of X is less than or equal
to 2N.

‘We must first show that (X, 7) is a separable metric space in order
that the topological dimension of (X, 7') may be defined. Because (X, T')
is the continuous image of a separable space, it must be separable. Because
(X, T) is the spectrum of a Fréchet algebra, it is Hausdorff and it is
the union of a countable number of compact sets. Because ((X , T, 471)
is an analytic space, (X,T) is locally metrizable and locally compact.
Any locally compact, Hausdorff space that is the union of a countable
number of compact sets is paracompact ([9], p. 79). A locally metrizable
Hausdorff space is metrizable if and only if it is paracompact ([9], p. 81).
Therefore, (X, T) is metrizable.

A separable metric space has topological dimension less than or
equal to 2V if it is the countable union of closed sets, each of topological
dimension less than or equal to 2N. Since (X;, T;) is homeomorphic to
£;, the topological dimension of (X;, T;) is 2N. Further, each X; is a
cloged subset of X since n~'(X;) = QjU(szjr i X V)

€.

ProrosirioN 12. The G and k@ topologies agree on A(A).
Proof. By the previous proposition, ((A (4y, kG), .y/) is a Stein gpace
of dimension less than or equal to N. Therefore, the k@ topology must
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be the weakest topology such that every f in I'(4(4), o) is continuous
([81, p. 222). But this is exactly the definition of the & topology on A(4).
Therefore, the two topologies must agree.

ProposITION 13. Each point of (X, T) has a neighborhood basis {Un}
of open sets such that each U, is A-convew.

Proof. This is a well-known theorem.

PROPOSITION 14. The maps n: (M, 3,0)— ((X T), o) and m;: (9, 0,0)
(X, T), ) are holomorphic. Further, X; is a subvariety of X, and
((X;, T, A |x;) is a Stein analytic space.

Proof. We first show that w: (M, 50)—~((X, T), &) is holomorphic.
Let e M, y = n(z), and h e ,. We must show home 5,0,. Choose
a neighborhood W of y and & e I'(W, &) such that W is A-convex and
(hy W) is a representative of the germ h. Because (X, T), ) is Stein
and W is A-convex, we may approximate h on compzbch subsets of W
by global sections of .7 ([8], p. 214). Choose %, € A such that {ﬁm} con-
verges uniformly to % on compact subsets of W. If we let h, = ko,
then h, € A. Let K be a compact subset of »~*(W). Then #(K) is a com-
pact subset of W. The uniform convergence of {h,} on n(K) forces the
uniform convergence of {%,} on K. Bach h, iy holomorphic on = (W),
80 f =limh, i8 also a holomorphic function on =~ (W). If f is the germ
of f at @, then f = home,0,. -

To see that m;: (Qj, a,0)->{(X,-T) , of) is holomorphie, we note that
7; is just the composition of m: (M, M@) -((X,T), )Wlth the embedding
of (&, 90) is (M, 50).

We showed in Proposition 10 that =;: 2;—(X, T) is a proper map.
Thus, by the Proper Mapping Theorem, X is a subvariety of (X, T), #).

Since X; is a subvariety of (X, T), &) and (X, T),
space, it follows that ((X;, T;), M[Y) is also a Stein. space ([8], p. 210).

At this point we prove a genoral proposition. about mappings of
analytic spaces.

ProposrrioN 15. Let (X, x0) and (Y, ,0) be analytic spaces such
that (Y, 0) is o Stein space. Let f: (X, x0)—>(Y, »0) be a holomorphic
homeomorphism (onto). Suppose further that the induced map f*: I'(Y, ,0)
~I'(X, x0) given by f*(h) = hofis surjective. Then f is am isomorphism
of analytic spaces.

Proof. Let &# be the direct image sheaf on Y generated by the pre-
sheaf {#(U)} where #(U) = {g e 0(U): gofe I'(f~1(1), X@)} Sinee f is
one-to-one, the fibers of f are diserete and x0 is a coherent sheat of 4 0-
modules. Applying the Direct Image Theorem we conclude that & is
& coherent sheaf of y@-moedules. We note that & and 0 have the samo
global sections; I'(Y, #) = I'(Y, y0) because f* is surjective, and I'(Y, )
< I'Y,#) because f1is a mapping of analytic spaces. Now & is a coherent

e e

o) is a Stein

icm°

On the spectra of holomorphic function algebras 193

sheaf on ¥ and (Y, y0) is a Stein space; hence, by Cartan’s Theorem
A, F, is generated by I'(Y, »0) for all y € Y. Since the global sections
I'Y, y0) and I'(Y,%#) are equal, we may conclude that the sheaves,
Z and 0, are equal. Let I € x0,. In order to show that f is an isomorphism
of analytic spaces, it suffices to show that hof e 7. Clearly, hofle
€ F 1 DY the definition of the direct image sheaf. Since Fy,y = yOp, We
have fof~! € y0y,.

‘We are now ready to show that (( » Ty, .MIY ) is a complex manifold
and that X; is an irreducible branch of (X, T), )

ProposITION 16. The analylic space ((X;, T, ,emx) is a conmecled
complex manifold of dimension N.

Proof. We have shown in Proposition 14 that ((X;, T}), & L“i) is
& Stein space and that

(£, nj@)‘*((xjy Ty, dlxj)

is a mapping of analytic spaces. We have shown in Proposition 9 that
w0 2j—(X;, T;) is & homeomorphism. We observe that the induced
mapping (m;)*: I'(X; d[x)él’(Qg, Qj(D) is surjective. Thus, by Prop-
osition 15, =t (Q,, o —>((X,, o, ) is an isomorphism of ana-
Iytie spaces. Smce (£2;, 2;0) is a complex manifold of dimension N, it
must also be the case that (X, T;), .sa{]xj) is a complex manifold of
dimension N.

PROPOSITION 17. For all j, X; is am irreducible branch of (X, T), o).

Proof. It suffices to show that X; is a maximal irreducible sub-
variety of X. From Proposition 14 we know that X; is a subvariety of
X. From Proposition 16 we know that (( Ty, d[x) is a complex
manifold. Thus, X; must be an irreducible subva,nety of ((X,T), ).

If Y is a subvariety containing X;, then U X,nY) is an irreducible

decomposition of ¥ (unless, of course, ¥ = X ) Therefore, X; is a maximal
irreducible subvariety of X.

The following two propositions will establish the properness of =
and the A-convexity of M.

ProrosirioN 18. If @ € X, then there is an open set U e T such that
we U and n~'(U) is a compaoct set in M.

Proof. Choose an open neighborhood D about z such that DnX; is
empty for all but a finite number of X;’s. We can {ind such a nelghbmhood
because the family {X;} of irreducible branches of X is locally finite ([8],
P. 155). The inverse image of D is an open set contained in a finite number

of levels of M, say, (D)

n
< | (4, x Q). Since x € D, ™ (x) must consist
k=1 .
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of a finite number of points. Denote these by j, X ¥, ...
&> 0 so small that j; x 4(y, &) € 71 (D), L<I< m. Let

y Jm X 9. Choose

=ILJ1 ichA(?h €)

and let D™ = D*na~1(D). Since D* is a compact subset of M and ™
is a closed subset of D, we know that D** is a compact subset of M. We
want to show that n~'(m(D*)) = D**. One inclusion ig obvious. To sce
the other one, let x,e n“l(n(AD”‘*))‘ Becausoe p( Ym (.D*"))) < Ay, e),
(%) € A(y, 8). Further, »,ea"'(D), s0 @,€4,x4(y,e) for some &,
1< k< n. Thus, #, € D* and , € n~* (D). This implies that z, € D** = D*n
na” (D). We let U = n(D"). Since n~(U) = o~} m(D™)] = D* is an
open set, U is an open set. Furthermore, = 2(U) = D*, so w~(U) = D™
is & compact set in M.

ProposiTioNn 19. The map w: M—(X,T) is a proper mopping and
M is A-convew.

Proof. Let K be a compact set in (X, 7). We must show that =~ (K)
is compact. By Proposition 18, for » € K, we may find an open set U(x)
about @ such that z~'(U(«)) has compact closure. Since K is compact
and {U(»): € K} is an open cover of K, we may find a finite subeover
{U(#,), (#,}}. Thus,

7 = (U e0) € 70 )).

Because Un“l (T (=) is compact and »~*(K) is closed, we know that

aNK)1i 1s compact ‘We conclude that M is A-convex by applying Lemma 1.

5. Riemann domains and algebras containing the coordinate functions.
Throughout this seetion we assume that (M, p) is a Riemann domain
spread over C¥ and that 4 is a closed subalgebra of O(M) containing
the coordinate functions p;, 1 <j < N.

We let (X, T') be the spectrum of .4 endowed with the %@ topology
We agsume that there is a sheaf 0 on X such that (X, T), 0) is an (m(ulytlo
space and 4 = I'(X, 0). By Proposition 8, we may assume that there
is o sheaf o on X such that (X, T), o) is a Stein analytic space and
4 =IX, o).

The example in the beginning of this chapter indicates that these
assumptions do not imply that M is A-convex. As in Section 4, we will
find a new domain M* and a new algebra A* closedly related to JI and
A. After adding the hypotheses that the evaluation map from M* to
4(4) s surjective and that the k¢ and quotient topologics agree on A (4),
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we will be able to show that M* is A*-convex. In order to describe M*
and A* we must make several definitions and prove some propositions.

DErNITION. Let B be a closed subalgebra of O(M). If B is closed
under differentiation, then we say B is a stable algebra. If A is a subal-
gebra of 0( M) and B is the closure of the algebra generated by {D*f: f e 4},
then we say that B is the stable algebra generated by A.

We will need the following lemma in the proof of Proposition 20.

LeMMA 4. Let X be a Stein manifold and let A be a closed subalgebra
of 0(x) such that A separates poinis of X, A provides local coordinates for
X, ond X is A-convex. Then A = 0(X).

Proof. The proof may be found in Cartan’s Séminaire ([3], Théoréme 4,
p. 9-10).

The following proposition is essentially due to Bishop [1].

ProrosirioN 20. Let (M, p) be a Riemann domain. Let B be a stable
algebra on M. Then the spectrum of B endowed with the Gelfand topology,
{4(B), @), can be given the structure of a complew manifold in such o way
that

(1) the evaluation map eg: M->A(B) is a complex analytic mapping
and has open image in A(B),

(2) the functions D; € B are the global local coordinates of A(B),

(8) A(B) is a Stein manifold and every component of A(B) intersects
ep(M),

(4) B = 0(4(B)), and

(6) the G, k@, and manifold topologies all agree on A(B).

Proof. The proof of (1), (2), and Bc 0(11 B)) may be found in the
proof of Corollary 1 to Theorem 2 in Bishop’s paper on holomorphic com-
pletions [1].

Since 4(B) is the spectrum of the uniform algebra B, we know that
B sepamtes points of A(B), and that 4(B) is B-convex. By (2), we know
that the p, are local coordinates for A(B). Therefore, the containment
of B in 0(4(B)) implies that 4(B) is a Stein manifold. Since B = 0(4(B))
and A4( ) is a Stein manifold, we may apply Lemma 4 to conclude that
B = 0( B)). Because B = Q(A(B)) and B is a uniform algebra, we
know that every component of A(B) intersects ez(M). Thus, we have
(3) and {4).

To show (5), we note that the G and manifold topologies agree. Since
the manifold topology is locally eompact, the & and kG topologies agree.

Tor simplicity in notation, we let ¢; = §;, 1 <4< N, and let ¢ = .
We are now ready to define several equivalence relations on M.

DrerINITION. We say that 2R,y if, and only if, f(z) = f(y) for all
fed. We say that 2 Rpy if, and only if, f(x) = f(_j for all f e B. Let
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(w, ¢) be the restriction of p to 4(«, ¢). Then p(z, &): 4(, 5)->4(p(2), ¢)
is a homeomorphism. We define B, by saying that aR,y if, and only
if, there is an &> 0 such that

P, e () Bup(y, )7 (2) for all ze Alp(a), ¢).

We note B, ¢ B, and Rz R,.

Prorostrron 21. The relations B, and Ry are the same.

Proof. We first show that B, = Ry. If #R,y, then there is an &> 0
and neighborhoods A(x,s) and A(y,s) which are “totally identified”
by A. Thus.

fld(w,z)op(w’ 8)“1 Ef'zl(;/,s)o.p(y7 8)_1 for all fE' -A'
Therefore, if D°f is any derivative of f, then

(D°F a2 (% 8) ™ = (Df) g, q0p(y, &)™ for all fed.

Therefore the algebra of functions generated by {Df: f € A} “totally
identifies” 4(z, ¢) and 4(y, ). Clearly, taking limits preserves the total
identitication of 4(x,s) and A(y, ¢). Therefore, rRpy.

For the other inclusion, we will show that if # nonR,y, then snonkRyy.
We know that Bz < B, so we assume o nonR,y and ol y. Choose an
&> 0 so that 4(w,¢) and 4(y, ¢) are homeomorphic to A{p(»), &). Since
wnonk,y, there is a sequence {2,} A(p (%), &) such that {&,} converges
to p(w) and p(w, &) (z,)nonR P (Y, &) (2,). Therefore,

plw,e)! (2z)nonEgp(y, &)™* (2a).
This implies

e(p (7, &)1 (2,)) # ex(D(y, &)7N(z,)),

where ¢ is the evaluation map, e5: M ->4 (B). Since B is a stable algebra
we know there exists a 6 > 0 and a neighborhood U of ez (2) such that
q: U-A(p(w), 5) is a homeomorphism. We assume that ep(®) = egp(y)
and obtain a contradietion. Sinee z, e Alp (), é‘) for some %, we know
that (¢1y)™*(¢,) € U. Theretore, ex(p (@, 8)7(2,)) and gD (y; 6)7*(2,)) are
both mapped to 2, by ¢ly. Sinco (D (@, 8)7*(2,)) and ex(®(y, 8)"1(%,)
are distinet points in 4(B), we have a contradiction to the fact that
qlB. i§ a homeomorphism. Thus, it must be the case that ex(®) % eg(y).
This implies that there is an fe B such that f(®) # f(y). Therefore,
znonRyy.

PROPOSITION 22. Let Qp be the quotient topology on M[R, and let T,
be the manifold topology of A(B) restricted to en(M). Then (M /Ry, QF)
s homeomorphic to (e (2M), T1).

Proot. Since By is precisely the equivalence relation determined by
the map ez, we may view M[Ry and ep(B) as the same set. A set U is
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Qp-open if, and only if, for every » eez'(U), there is a 6 = 8(z) >0
such that p(z, 6): A(», §)->4(p(s), 6) is & homeomorphism and. A(wz, )
< e5'(U). Bub this is true if, and only if, for every ey(z) e U there is
a & = d(#) > 0 such that ¢: ez(4(w, 8))>4(p(s), 6) is a homeomorphism
and eg(4 (2, 6)) = U. This can occur if, and only if, U is an open seb
in the manifold topology. Therefore, the topologies agree.

We let 4 be the image of A under the Gelfand transform which takes
B to B. We let ¢;: A(B)—»>X be the evaluation map given by ez (x)(f)
= f (=)

7 We are now able to state precisely the hypotheses that we will be
assuming for the rest of this section. The first hypothesis is that the map
¢7: A4(B)—~X is surjective. The second is that the quotient topology de-
termined by ez and the topology 7 agree on X. :

We have obtained the domain J* and the algebra A* namely 4(B)
and A. The rest of this section will be devoted to showing that 4(B)
is A-convex by showing that ey is a proper map.

At this point we are ready to define some equivalence relations on
4(B).

DermmioN. Let #R, y if, and only if, f(z) = fly) for all f in 4.
Let » Ry if, and only if, f (2)=7 (y) for all eB. Letg(x, £) be the restric-
tion of ¢ to A(x, &). Let xR,y if, and only if, there is an & > 0 such that
q(%, &) () R4q(y, &) (2) for all z e Aq(w), &).

ProrosirioN 23. The relation Ry is the identity relation. The algebra
B = @(A(B)) is the stable algebra on A(B) generated by A. The relation
R, is the identity relation.

Proof. Since B = @(A(B)) and 4(B) is a Stein manifold, we have
separation of points of 4(B) by funetions in B. Therefore, B3 is the ident-
ity relation. ~ R A

Bishop has shown that D°f = D% for every fe B [1]. Therefore, B
is the stable algebra generated by A.

I B, = Ry, then B, must be the identity relation. The proof that
R, < Rp follows exactly the proof that R, < R; in Proposition 21.

In Section 4 we showed that = was proper by using the fact that
each X; = #(£;) is an irreducible branch of X. In our more general situ-
ation, we are unable to determine the irreducible branches of X. However,
this information is wnnecessary, since we will be able to use the local
finiteness of germs of irreducible subvarieties to show that ey is a proper
map.

PRrOPOSITION 24. For every & such that 4(x, &) << (A(B), q) the map

€3 Lirg 4@, e)e(cz(d(cc, &), T)

% a homeomorphism.
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Proof. It is clear that ez 44,y is one-to-one, onto, and continuous.
It remains to show that it is an open map. If y e 4(», &) and 4(y, )
< A(e, £), then

eq |A(a:,a)(A(y7 6))
=er(d@, &) n{pe A(4): |p(g)—es ) (@) <& L<i< N}

Therefore, ¢ | sm.q(4 (¥, £)) is open in the relative topology of ¢ (4 (w, )
and 65 |z, I8 a0 open map.

At this point we recall Propositions 11, 12, and 13 from Section 4.
We note that their statements and proofs carry over exactly to our current
situation. The following proposition and its proof are similar to Prop-
osition 14 and its proof. Because the statement is somewhat different
from Proposition 14, we list it here as a new proposition.

ProrosITION 25. The map
oz (4(B), 4 0)((X,T), )
is holomorphice.

PROPOSITION 26. For any A(x, &) = A(B) there is an open set D(z, &)
< X such that if W(z,e) = ez(d(w, &), then W(x, £) is closed in D(w, ).
@4 Proof. This follows from the fact that W (z, ¢) is a locally compact
subspace of the locally compact space (X, T) ([6], p. 239).

PROPOSITION 27. For any A(w,s) = A(B), the map

63 |ame* (A(ma &), A(B)@]A(x,s))—*(p(wy &), Ml])(a:,e))

is holomorphic.
Proof. We know that

€5 |la@e: (A (», 3)74(3)0 ia(z,s))%'((xy ), -9[)

is holomorphic and that ez(d(z,e)) = W(»,¢) < D(,s); hence, the
result follows.
PROPOSITION 28. For any A(w, &) £ A(B) the map

(4 IA(::,«): 4 (m7 6)—>.D($7 6)

is a proper map. Further, the st W (x, ¢) is an irreducible subvariety of
(D (w7 8)7 4 1]3(«:,0))'

Proof. Let L be a compact subset of D(x, ¢). Since W(w, ¢) is a closed
subset of D (@, &), W (@, 6) nL is & compact subset of W (=, ¢). Since .7 [4,q
is a homeomorphism and (e lag,qy) " (L) = (€5 lag,q) (W (@, &)nL),
(61 lu,y) (L) is & compact subset of A(w, e). Therefore, 7 |4y, 4(#, ¢)
-»D(x, &) is & proper map.

By the Proper Mapping Theorem, W (x, ¢) is a subvariety of D(z, ).
Suppose now that W(z, ) is not irreducible. Let W(#, &) = V,uU... UV,
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be the decomposition of W (z,e) into irreducible branches. Because
€7 |i(z,9 18 holomorphic and fhe inverse image of a subvariety in W (z, ¢)
must be a subvariety in A(z,s), we know that (e | A(x,e))‘l(Vl)u [P
U637 |u,q) " (V,) 18 a decomposition of A(w,s). Since manifolds are
necessarily irreducible and A4(z, &) is a manifold, this is not possible.
Therefore, W(w, ¢) is an irreducible subvariety of D(x, e).

The lagt two propositions of this section correspond to Propositions
18 and 19 in Section 4.

PrOPOSITION 29. If » € X, then there is an open set U €T such that
zeU and (e7)*(U) is & compact set in A(B).

Proof. Let # € X and suppose that (e3) ' (2) = {®y, s, ...}. Let
U, = A(x;, &;) where the ¢; are sufficiently small that =; ¢ 4(x;, &;) for
any distinet ¢ and j. We may choose such &’s because ¢~'(g(x;)) must
be a discrete set in (4(B), ¢) for any ¢ (otherwise ¢ would not be
a local homeomorphism). Let W; = e;(U;). By Propositions 26 and
28, we may find an open set D; in (X, T) such that W; is an irreducible
subvariety of D;. Let Wi, be the germ of W; at » Then Wi, is the
germ of an irreducible subvariety at . T
We claim that if ¢ = j, then Wi, # Wij,. If it were the case that
Wi, = Wi,, then there is an open neighborhood D of # such that DWW,
= DnVWThis implies (63 ) " (D)nTU; and (e;)~" (D) nU; must be “totally
identified” by A. Hence, ®; and «; are in the same equivalence class of
R,. This contradicts Proposition 23 which states that R, is the identity
relation. w
Therefore, we know that | J Wi, is the decomposition of X, into
i=1 -
germs of irredueible subvarieties at #. Since (X, T), &) is an analytic
space, there can be at most a finite number of such germs, Wi, ..., Wn,.

Let U be an open neighborhood of # such that UnX = (UnWy)U...

n
<. Y(UNnW,). Then (e;)""(U)= |J U; and so must be relatively compact.
i=1
PropostrioN 30. The map eg: A(B)—>(X,T) is o proper map.
Further, A(B) is A-convesz.

Proof. The proof is exactly the proof of Proposition 19.

It should be noted that there is a correspondence between the results
of this section and those of Section 4. Tt turns out that the domain M™*
and the algebra A* in Section 4 are, in fact, the spectrum A4(B) of the
stable algebra B generated by 4 and the image 4 of 4 under the Gel-
fand transform. The facts that B, = Ry and that R, is the identity re-
lation correspond to the fact that all of the “total collapsing” of
levels of the stacked domain oceurs in passing from M to M*.
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On meromorphic functions with values in Iocally convex spaces
by
NGUYEN VAN KHUE (Warszawa)

Abstraet. Meromorphic functions on a complex manifold with values in a se-
quentially complete locally convex space ave investigated. It is shown that each such
meromorphic function on a Stein manifold can be written in the form f/o, where
Jis a veetor-valued holomorphic function and o is & complex-valued holomorphie
funetion. This result is applied to the extending and lifting problem of vector-valued
meromorphic functions. We also investigate Cousin’s First and Second Problem for
vector-valued meromorphic functions.

Meromorphic functions on an open set in € with values in Banach
spaces have been investigated by several authors ([6], [13]). The aim
of this paper is to study meromorphic functions on a complex manifold
with values in a sequentially complete locally convex space.

In § 1 we prove that the pole set of each vector-valued meromorphic
function either is empty or is an analytic set of codimension 1. Section
2 is devoted to proving that each meromorphic function on a Stein
manifold with values in a sequentially complete locally convex space
can be represented in the form f/o, where f is a veector-valued holo-
morphic function and o is a complex-valued holomerphic function. An
application of this result to the extending and lifting problem of vector-
valued meromorphic functions is given in §3. In §4 we investigate
Cousin’s First Problem for meromorphic functions with values in a Fréchet
space and Cousin’s Second Problem in a commutative Banach algebra
with unit clement.

Notations and definitions. Given a locally convex space L. By
% (L) we denote the set of all balanced convex neighbourhoods of zero
in L. For each U e % (L) let L(U) denote the completion of L/p(U)~*(0)
equipped with the norm p(U), where p(U) is the Minkowski functional
of U, and let #(U) denote the canonical map from I into L(U). If U,
Ve#(L) and V < U, then w(V, U) denotes the canonical map from
L(V) into L(U). The strongly dual space of L is denoted by L.

Let X Dbe a complex manifold and let L be a sequentially complete
locally convex space. By ¢F we denote the sheaf of germs of holomorphie
functions on X with values in L, We write ¢ = 0°. Given a connected
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