

References

- E. Bishop, Holomorphic completions, analytic continuations, and the interpolation of seminorms, Ann. of Math. 78 (1963), 468-500.
- [2] R. M. Brooks, On the spectrum of an inverse limit of holomorphic function algebras, Advances in Math. 19 (1976), 238-244.
- [3] H. Cartan, Séminaire Cartan (1951/52 and 1953/54), W. A. Benjamin, Inc., New York 1967.
- [4] Quotients of complex analytic spaces, Contributions to Function Theory, Tata Institute, Bombay 1960.
- [5] A. G. Dors, A Fréchet algebra example, Proc. Amer. Math. Soc. 64 (1977), 62-64.
- [6] J. Dugundji, Topology, Allyn and Bacon, Boston 1966.

200

- [7] H. Grauert and K. Fritzsche, Several Complex Variables, Springer-Verlag, New York 1976.
- [8] R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, New Jersey 1965.
- [9] J. G. Hocking and G. S. Young, Topology, Addison-Wesley, Reading, Mass. 1961.
- [10] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Van Nostrand, Princeton 1971.
- [11] W. Hurewicz and H. Wallman, Dimension Theory, rev. ed., Princeton University Press, Princeton 1948.
- [12] E. A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952).
- [13] R. Narasimhan, Introduction to the Theory of Analytic Spaces, Springer-Verlag, New York 1966.
- [14] Several Complex Variables, University of Chicago Press, Chicago 1971.
- [15] H. Rossi, Analytic spaces with compact subvarieties, Math. Ann. 146 (1962), 129-145.

Received July 17, 1979 (1562)

STUDIA MATHEMATICA, T. LXXIII. (1982)

On meromorphic functions with values in locally convex spaces

b

NGUYEN VAN KHUE (Warszawa)

Abstract. Meromorphic functions on a complex manifold with values in a sequentially complete locally convex space are investigated. It is shown that each such meromorphic function on a Stein manifold can be written in the form f/σ , where f is a vector-valued holomorphic function and σ is a complex-valued holomorphic function. This result is applied to the extending and lifting problem of vector-valued meromorphic functions. We also investigate Cousin's First and Second Problem for vector-valued meromorphic functions.

Meromorphic functions on an open set in C with values in Banach spaces have been investigated by several authors ([6], [13]). The aim of this paper is to study meromorphic functions on a complex manifold with values in a sequentially complete locally convex space.

In § 1 we prove that the pole set of each vector-valued meromorphic function either is empty or is an analytic set of codimension 1. Section 2 is devoted to proving that each meromorphic function on a Stein manifold with values in a sequentially complete locally convex space can be represented in the form f/σ , where f is a vector-valued holomorphic function and σ is a complex-valued holomorphic function. An application of this result to the extending and lifting problem of vector-valued meromorphic functions is given in § 3. In § 4 we investigate Cousin's First Problem for meromorphic functions with values in a Fréchet space and Cousin's Second Problem in a commutative Banach algebra with unit element.

Notations and definitions. Given a locally convex space L. By $\mathscr{U}(L)$ we denote the set of all balanced convex neighbourhoods of zero in L. For each $U \in \mathscr{U}(L)$ let L(U) denote the completion of $L/p(U)^{-1}(0)$ equipped with the norm p(U), where p(U) is the Minkowski functional of U, and let $\pi(U)$ denote the canonical map from L into L(U). If U, $V \in \mathscr{U}(L)$ and $V \subset U$, then $\omega(V, U)$ denotes the canonical map from L(V) into L(U). The strongly dual space of L is denoted by L'.

Let X be a complex manifold and let L be a sequentially complete locally convex space. By \mathcal{O}^L we denote the sheaf of germs of holomorphic functions on X with values in L. We write $\mathcal{O} = \mathcal{O}^C$. Given a connected

open set U in X, consider the set

$$\tilde{\mathcal{M}}(U, L) = \{ (f, \sigma) \in \mathcal{O}(U, L) \times \mathcal{O}(U) \setminus \{0\} \}$$

where $\mathcal{O}(U,L)=H^0(U,\mathcal{O}^L)$ and $\mathcal{O}(U)=\mathcal{O}(U,C)$. We define on $\tilde{\mathcal{M}}(U,L)$ a relation R(U,L) by

$$(f, \sigma)R(U, L)(g, \beta)$$
 iff $\beta f = \sigma g$.

Since U is connected, R(U,L) is an equivalent relation on $\tilde{\mathcal{M}}(U,L)$ and, moreover, if $(f,\sigma)R(U,L)(g,\beta)$, then $(f|V,\sigma|V)R(V,L)(g|V,\beta|V)$ for all connected open sets V in U. Hence the formula

$$U \mapsto \tilde{\mathcal{M}}(U, L)/R(U, L),$$

where U is connected and open in X, defines a sheaf \mathscr{M}^L over X. The sheaf \mathscr{M}^L is said to be the sheaf of germs of meromorphic functions on X with values in L. An element $\mathfrak{m} \in H^0(U,\mathscr{M}^L)$ is called a meromorphic function on U with values in L.

Finally we recall that a function f on an open set Ω in a locally convex space L with values in a sequentially complete locally convex space F is said to be *holomorphic* iff f is continuous and $f | \Omega \cap L_0$ is holomorphic for all finite dimensional subspaces L_0 of L.

§ 1. The pole set of a vector-valued meromorphic function. Let X be a complex manifold and let L be a sequentially complete locally convex space. Let $\mathfrak{m} \in H^0(X, \mathscr{M}^L)$. Put

$$P(\mathfrak{m}) = \{ z \in X \colon \mathfrak{m}_z \notin \mathcal{O}_z^L \}.$$

Then $P(\mathfrak{m})$ is called the *pole set of* \mathfrak{m} . Let us prove the following

THEOREM 1.1. Let X be a complex manifold and let L be a sequentially complete locally convex space. Let $\mathfrak{m} \in H^0(X, \mathcal{M}^L)$. Then for each $z \in P(\mathfrak{m})$ there exist a neighbourhood U of z in X and elements $f \in \mathcal{O}(U, L)$, $\sigma \in \mathcal{O}(U)$, such that

$$\mathfrak{m} \mid U = f \mid \sigma$$
 and $P(\mathfrak{m}) \cap U = \{z \in U : \sigma(z) = 0\}$.

The following is an immediate consequence of Theorem 1.1.

COROLLARY 1.1. Let X be a complex manifold and let L be a sequentially complete locally convex space. Let $\mathfrak{m} \in H^0(X, \mathscr{M}^L) \setminus \mathscr{O}(X, L)$. Then $P(\mathfrak{m})$ is an analytic set in X of codimension 1.

The proof of Theorem 1.1 is based on the following

LEMMA 1.1. Let $z_0 \in X$ and let $\beta \in \mathcal{O}_{z_0}$ be an irreducible element. Let $f \in \mathcal{O}_{z_0}^L$ such that $u'f \mid V(\beta) = 0$ for all $u' \in L'$, where $V(\beta)$ denotes the germ of the zero set of a representative of β at z_0 and L is a sequentially complete locally convex space. Then there exists a unique element $g \in \mathcal{O}_{z_0}^L$ such that $f = \beta g$.

Proof. Let G be a Stein neighbourhood of z_0 in X and let \tilde{f} and $\tilde{\beta}$ be holomorphic functions on G such that $\tilde{f}_{z_0} = f$ and $\tilde{\beta}_{z_0} = \beta$. Applying Theorem A [5] to the coherent sheaf $\mathscr S$ over G generated by $\{u'\tilde{f}\colon u'\in L'\}$, we find a finite set $\{u'_j\tilde{f}\}_{j=1}^m$ and a neighbourhood G_0 of z_0 in G such that $\{u'_j\tilde{f}\mid G_0\}$ generates $H^0(G_0,\mathscr S)$ as a $\mathscr O(G_0)$ -module. Since β is irreducible and since $u'_jf\mid V(\beta)=0$, it follows that there exists a unique element $a_j\in \mathscr O_{z_0}$ such that $u'_jf=a_j\beta$. Hence there exist a connected neighbourhood G_1 of z_0 in G_0 and holomorphic functions $\tilde{a}_j,\ j=1,2,\ldots,m$ on G_1 such that $u'_j\tilde{f}=\tilde{a}_j\tilde{\beta}$ on G_1 . Whence $u'\tilde{f}\mid G_1=g(\cdot,u')\tilde{\beta}\mid G_1$ for all $u'\in L'$. Let us observe that g is linear in variable u' and holomorphic in variable z.

Let $U \in \mathcal{U}(L)$. Since

$$\sup\{|g(z,u')|\colon z\in K,\, u'\in U^{\mathbf{o}}\}<\infty$$

where U° denotes the polar of U, for all compact sets K in $G_1 \setminus V(\tilde{\beta})$ and, since g is G-holomorphic on $G_1 \times L(U)'$, it follows that $g \mid G_1 \times L(U)'$ is holomorphic ([10]). Hence, it is easy to see that the map $\tilde{g}_U \colon G_1 \to L(U)'$ induced by g is holomorphic. Since $\tilde{g}_U(G_1 \setminus V(\tilde{\beta})) \subset L(U)$ and $G_1 \subset G_1 \setminus V(\tilde{\beta})$, we infer that $\tilde{g}_U(G_1) \subset L(U)$. Obviously $\pi(U)\tilde{f} = \tilde{\beta}\tilde{g}_U\pi(U)$ and $\tilde{g}_U = \omega(V, U)\tilde{g}_V$ for all $V, U \in \mathcal{U}(L)$ and $V \subset U$. Thus there exists a unique holomorphic function \tilde{g} on G_1 with values in the completion \hat{L} of L such that $\tilde{f} = \tilde{\beta}\tilde{g}$. Since L is sequentially complete and since $G_1 \setminus V(\tilde{\beta})$ is dense in G_1 , it follows that $\tilde{g}(G_1) \subset L$ and hence the lemma is proved.

LEMMA 1.2. Let $\mathfrak{m} \in H^0(X, \mathcal{M}^L)$ and let $z_0 \in X$. If $(u'\mathfrak{m})_{z_0} \in \mathcal{O}^L_{z_0}$ for all $u' \in L'$, then $\mathfrak{m}_{z_0} \in \mathcal{O}^L_{r_0}$.

Proof. Select a neighbourhood G of z_0 in X such that $\mathfrak{m}|_G = f/\sigma$, where $f \in \mathcal{O}(G, L)$ and $\sigma \in \mathcal{O}(G)$. Since $(u'\mathfrak{m})_{z_0} \in \mathcal{O}_{z_0}^L$, we have $uf' \mid V(\sigma)_{z_0} = 0$ for $u' \in L'$. On the other hand, since \mathcal{O}_{z_0} is a unique factorization domain, by Lemma 1.1 it follows that $f_{\varepsilon_0} = \sigma g$ for some $g \in \mathcal{O}_{z_0}^L$. Hence $\mathfrak{m}_{z_0} \in \mathcal{O}_{z_0}^L$.

Proof of Theorem 1.1. Let $z_0 \in P(\mathfrak{m})$ and let W be a neighbourhood of z_0 in X such that

$$\mathfrak{m}|_{W} = g/\beta$$
, where $g \in \mathcal{O}(W, L)$ and $\beta \in \mathcal{O}(W) \setminus \{0\}$.

Consider the coherent sheaf \mathscr{S} over W generated by $\{u'g\colon u'\in L'\}$. By Theorem A [5] we can assume that W is a neighbourhood V of z_0 such that \mathscr{S} is generated by $\{u'g\}_{i=1}^g$. Let us prove that

$$(1.1) P(\mathfrak{m}) = \bigcup_{j=1}^{s} Pu'_{j}\mathfrak{m}.$$

Obviously $\bigcup_{j=1}^s Pu'_j\mathfrak{m} \subseteq P(\mathfrak{m})$. Let $z \notin \bigcup_{j=1}^s Pu'_j\mathfrak{m}$ and let $u' \in L'$. Since

$$(u'm)_s = (u'g/\beta)_z = \sum \alpha_j (u'_jg/\beta)_s + \sum (u'_jg/\beta)_z \sum \alpha_{ij} (u'_ig)_s + \ldots,$$

where

$$(u'g)_z = \sum \alpha_j (u'_j g)_z + \sum \alpha_{ij} (u'_i g)_z (u'_j g)_z + \ldots, \quad \alpha_j, \, \alpha_{ij}, \, \ldots \in \mathcal{O}_z,$$

it follows that $z \notin P(u'\mathfrak{m})$. Thus by Lemma 1.2 we get $z \notin P(\mathfrak{m})$ and hence (1.1) is proved.

Let $\beta_{z_0}=\beta_1^{n_1}\dots\beta_q^{n_q}$, where β_1,\dots,β_q are irreducible elements in θ_{z_0} . Since $\operatorname{codim} P(\mathfrak{m})_{z_0}=1$, there exists a subset $I\subset\{1,\dots,q\}$ such that $P(\mathfrak{m})_{z_0}=\bigcup_{j\in I}V(\beta_j)$. On the other hand, since $g_{z_0}|V_i\bigvee\bigcup_{j\neq i}V_i\cap V_j=0$ and since $V_i\bigvee\bigcup_{j\neq i}V_i\cap V_j$ is dense in V_i ([5]) for all $i\notin I$, by Lemma 1.1 it follows that g_{z_0} is written in the form $g_{z_0}=\prod_{j\in I}\beta_j^{n_j}f$ for some element $f\in \mathcal{O}_z^L$. Hence setting $\sigma=\prod_{i\in I}\beta_j^{n_j}$ we get the relations

$$m_{z_0} = f/\sigma$$
 and $P(\mathfrak{m})_{z_0} = V(\sigma)$.

The theorem is proved.

§ 2. The representative of vector-valued meromorphic functions. In this section we prove the following

THEOREM 2.1. Let X be a Stein manifold and let L be a sequentially complete locally convex space. Let $\mathfrak{m} \in H^0(X, \mathcal{M}^L)$. Then there exist $f \in \mathcal{O}(X, L)$ and $\sigma \in \mathcal{O}(X)$ such that $\mathfrak{m} = f/\sigma$.

We need the following

LEMMA 2.1. Let X be a complex manifold and let L be a sequentially complete locally convex space. Let $\mathfrak{m} \in H^0(X, \mathscr{M}^L)$. Then there exists a divisor d on X such that $d_z\mathfrak{m}_z\in \mathcal{O}_z^L$ for all $z\in X$.

Proof. Let $z\in X$. From the proof of Theorem 1.1 it follows that \mathfrak{m}_z can be represented in the form h_z/σ_z , where $h_z\in \mathcal{O}_z^L$ and $\sigma_z\in \mathcal{O}_z$ such that

(2.1) $h_z \neq 0$ on every irreducible branch of $P(\mathfrak{m})_z$ and $P(\mathfrak{m})_z = V(\sigma_z)$.

It is easy to see that if g_x/β_z is another representative of \mathfrak{m}_z satisfying condition (2.1), then

$$\sigma_z/\beta_z \in \mathcal{O}_z^* = \{ \gamma \in O_z : \ \gamma(z) \neq 0 \}.$$

Thus the family $\{\sigma_z\colon z\in X\}$ defines a divisor d on X such that $d_z\mathfrak{m}_z\in \mathcal{O}_z^L$ for all $z\in X$.

Proof of Theorem 2.1. Let $\mathcal{M}^* = \mathcal{M}^{\mathbb{C}} \setminus \{0\}$. By $[\mathcal{D}]$ we denote the sheaf of germs of divisors on X. Let τ denote the canonical map from

 \mathcal{M}^* onto \mathcal{D} . Consider the exact sequences

$$(2.2) 0 \rightarrow Z \rightarrow \mathcal{O} \xrightarrow{\text{exp}} \mathcal{O}^* \rightarrow 1,$$

$$(2.3) 1 \rightarrow 0^* \rightarrow \mathcal{M}^* \stackrel{\tau}{\rightarrow} \mathcal{D} \rightarrow 1$$

of sheaves of abelian groups over X, where $\exp \sigma = e^{2\pi i \sigma}$. Let $\alpha \colon H^1(X, \mathscr{O}^*) \to H^2(X, Z)$ and $\beta \colon H^0(X, \mathscr{Q}) \to H^1(X, \mathscr{O}^*)$ be canonical maps constructed from the exact sequences (2.2) and (2.3), respectively. Since $H^1(X, \mathscr{O}) = 0$, α is injective. Let $\alpha = \alpha \beta$ and let $\alpha \in A$ be a divisor on $\alpha \in A$ such that $\alpha \in A$ for all $\alpha \in A$. Select a positive divisor $\alpha \in A$ on $\alpha \in A$ such that $\alpha \in A$ since $\alpha \in A$ and $\alpha \in A$ such that $\alpha \in A$ by the exactness of the sequence

$$\cdots \to H^0(X, \mathcal{M}^*) \xrightarrow{\tau} H^0(X, \mathcal{D}) \to H^1(X, \mathcal{D}^*) \to \cdots$$

 $dd^+ = \tau \tilde{\mathfrak{m}}$ for some $\tilde{\mathfrak{m}} \in H^0(X, \mathscr{M}^*)$. Since X is Stein, $\tilde{\mathfrak{m}} = \beta/\sigma$, where $\beta, \sigma \in \mathscr{O}(X)$ ([5]). On the other hand, since $\tilde{\mathfrak{m}}_z \mathfrak{m}_z = d_z^+ d_z \mathfrak{m}_z \in \mathscr{O}_z^L$ for $z \in X$, we infer that $\tilde{\mathfrak{m}} \mathfrak{m} \in \mathscr{O}(X, L)$. Hence $\mathfrak{m} = \tilde{\mathfrak{m}} \mathfrak{m}/\tilde{\mathfrak{m}} = \sigma \tilde{\mathfrak{m}} \mathfrak{m}/\beta$, $\sigma \tilde{\mathfrak{m}} \mathfrak{m} \in \mathscr{O}(X, L)$, $\beta \in \mathscr{O}(X)$. The theorem is proved.

§ 3. Extending and lifting vector-valued meromorphic functions. The aim of this section is to apply Theorem 2.1 to the extension and selection of meromorphic functions with values in Fréchet spaces.

THEOREM 3.1. Let S be a submanifold of a Stein manifold X and let F be a Fréchet space. Then the restriction map $R_F\colon H^0(X, \mathcal{M}^F){\to} H^0(S, \mathcal{M}^F)$ is surjective.

Proof. Let $\mathfrak{m} \in H^0(S, \mathscr{M}^F)$. By Theorem 2.1, \mathfrak{m} can be represented in the form $\mathfrak{m} = f/\sigma$, where $f \in \mathcal{O}(S, F)$, $\sigma \in \mathcal{O}(S)$. By a theorem of Bungart ([3]) there exist $\tilde{f} \in \mathcal{O}(X, F)$ and $\tilde{\sigma} \in \mathcal{O}(X)$ such that $\tilde{f} | S = f$ and $\tilde{\sigma} | S = \sigma$. Hence setting $\tilde{\mathfrak{m}} = \tilde{f}/\tilde{\sigma}$ we get a meromorphic extension of \mathfrak{m} on X.

THEOREM 3.2. Let X be a Stein manifold and let E and F be Banach spaces. Let $J: X \times E \to F$ be a holomorphic map such that $J(z,): E \to F$ is surjective and linear for all $z \in X$. Then the map $J: H^0(X, \mathcal{M}^E) \to H^0(X, \mathcal{M}^F)$ induced by J is surjective.

Proof. Let $\mathfrak{m} \in H^0(X, \mathscr{M}^F)$. Select a representative f/σ of \mathfrak{m} , where $f \in \mathscr{O}(X, F)$, $\sigma \in \mathscr{O}(X)$. By a result of Leiterer ([7]) there exists a holomorphic function $\tilde{f} \colon X \to E$ such that $J(z, \tilde{f}(z)) = f(z)$ for all $z \in X$. Hence setting $\tilde{\mathfrak{m}} = \tilde{f}/\sigma$ we get the required selection of \mathfrak{m} .

THEOREM 3.3. Let X be a complex manifold having a countable topology and let J be a continuous linear map from a Fréchet space E onto a Fréchet space F. Then the map $\hat{J} \colon H^0(X, \mathcal{M}^E) \to H^0(X, \mathcal{M}^F)$ induced by J is surjective.

We need the following:

Let $M=(e_i^n)_{j,n=1}^\infty$ be a matrix of positive numbers. For any Fréchet space F by l(M,F) we denote the Fréchet space of sequences $\{v_n\}$ in F such that

$$p_{j}^{U}(\{v_{n}\}) = \sum_{n=1}^{\infty} c_{j}^{n} \, p\left(U\right) v_{n} < \, \infty \quad \text{ for all } \, U \in \mathcal{U}(F) \, \text{ and } \, j \geqslant 1 \, .$$

LEMMA 3.1. Let J be a continuous linear map from a Fréchet space E onto a Fréchet space F. Then the map $\hat{J}\colon l(M,E){\to}l(M,F)$ induced by J is surjective.

Proof. Let $\{U_n\}_{n=1}^{\infty}$ be a decreasing basis of balanced convex neighbourhood of zero in E. Since J is open, $\{JU_n\}$ forms a basis of neighbourhoods of zero in F. Thus, for each n, J induces a continuous linear map J_n from $E_n = E(U_n)$ onto $F_n = F(U_n)$. Since E_n and F_n are Banach spaces, it is easy to see that \hat{J}_n : $l(M, E_n) \rightarrow l(M, F_n)$ is surjective for all $n \geq 1$. On the other hand, since every canonical map from $\ker J_{n+1} \rightarrow \ker J_n$ has a dense image, it follows that every canonical map from $l(M, \ker J_{n+1})$ into $l(M, \ker J_n)$ also has a dense image. Hence, by a result of Palamodov ([127]), \hat{J} is surjective.

Proof of Theorem 3.3. Let $\mathfrak{m}\in H^0(X,\mathcal{M}^F)$. Select a countable open cover $\{U_j\}$ of X such that $\mathfrak{m}\mid U_j=f_j/\sigma_j$, where $f_j\in \mathcal{O}(U_j,F)$ and $\sigma_j\in \mathcal{O}(U_j)$ for all j. Applying a theorem of Bishop ([2]) to the sequence $\{f_j\}$, we get a sequence $\{v_n\}\subset F$ and a sequence $\{P_n\}$ of one-dimensional continuous linear mutually annihilating projections of F such that

$$P_n v_n = v_n$$
 for $n \geqslant 1$,

$$(3.1) \quad (v_n) \in l(M, F),$$

$$f_j(z) = \sum_{n=1}^{\infty} P_n f_j(z) = \sum_{n=1}^{\infty} f_j^n(z) v_n \quad \text{ for all } z \in U_j \text{ and for all } j$$

where $M=(c_j^n), c_i^n=\sup\{|f_j^n(z)|: z\in V_j\}<\infty$ and $\{V_j\}$ is an open cover of X such that $V_j\subseteq U_j$ for $j\geqslant 1$. Since $P_nP_m=0$ for $n\neq m$, by (3.1) we have

(3.2)
$$\sigma_i f_i^n = \sigma_i f_i^n \quad \text{on} \quad U_i \cap U_i \quad \text{for} \quad i, j \geqslant 1.$$

Applying Lemma 3.1 to the sequence $\{v_n\}$, we find an element $(u_n) \in l(M, E)$ such that $Ju_n = v_n$ for all n. Thus, by (3.1), the formula

$$\tilde{f_j}(z) \stackrel{\scriptstyle \perp}{=} \sum_{n=1}^{\infty} f_j^n(z) u_n \quad \text{ for } \quad z \in V_j$$

defines a holomorphic function \tilde{f}_j : $V_j \rightarrow E$ such that $J\tilde{f}_j = f_j$. By (3.2) we have $\sigma_i \tilde{f}_j = \beta_j \tilde{f}_i$ on $V_i \cap V_j$ for all $i, j \ge 1$. Hence setting $\tilde{\mathfrak{m}} \mid V_j = \tilde{f}_j / \sigma_j$ we get an $\tilde{\mathfrak{m}} \in H^0(X, \mathscr{M}^E)$ such that $\hat{J}(\tilde{\mathfrak{m}}) = \mathfrak{m}$. The theorem is proved.

§ 4. Cousin's Problems for vector-valued meromorphic functions.

1. Cousin's First Problem. Let X be a complex manifold and let L be a sequentially complete locally convex space. Let $\{U_\alpha\colon \alpha\in A\}$ be an open cover of X and let \mathfrak{m}_α be meromorphic functions on U_α with values in L such that

(4.1)
$$\mathfrak{m}_a - \mathfrak{m}_\beta \in H^0(U_a \cap U_\beta, \mathcal{O}^L) \quad \text{for all } a, \beta \in \Lambda.$$

Does there exist an element $m \in H^0(X, \mathcal{M}^L)$ such that

(4.2)
$$\mathfrak{m} - \mathfrak{m}_a \in H^0(U_a, \mathcal{O}^L) \quad \text{for all } \alpha \in \Lambda^{\mathfrak{R}}$$

A family $D = \{\mathfrak{m}_a \in H^0(U_a, \mathscr{M}^L)\}$ satisfying (4.1) is called a *Cousin's First Data on X with values in L*. A meromorphic function $\mathfrak{m} \in H^0(X, \mathscr{M}^L)$ satisfying (4.2) is said to be a *solution of D*.

Considering the exact sequence

$$0 \rightarrow \mathcal{O}^L \rightarrow \mathcal{M}^L \rightarrow \mathcal{M}^L / \mathcal{O}^L \rightarrow 0$$

it follows that if $H^1(X, \mathcal{O}^L) = 0$, then every Cousin's First Data on X with values in L has a solution.

Let us prove the following

THEOREM 4.1. (i) If X is a complex manifold having a countable topology and if $H^1(X, \emptyset) = 0$, then every Cousin's First Data on X with values in a Fréchet space has a solution.

(ii) If X is a complex manifold having a non-constant holomorphic function and if F is a Fréchet space which does not admit a continuous norm, then Cousin's First Problem does not have a solution for some data with values in F'.

Proof. (i) Consider the Dolbeaut complex on X

$$0 \rightarrow \mathcal{O} \rightarrow \Omega^0 \stackrel{\bar{\partial}}{\rightarrow} \Omega^1 \rightarrow \dots$$

where for each $q\geqslant 0$ and for each sequentially complete locally convex space L we denote by Ω^q_L the sheaf of germs of C^∞ -forms of bidegree (0,q) on X with values in L. We write $\Omega^q=\Omega^q_C$ for all $q\geqslant 0$. Let us note that the sequence

$$(4.3) 0 \rightarrow \mathcal{O}^F \rightarrow \Omega_F^0 \stackrel{\bar{\partial}_F}{\rightarrow} \Omega_F^1 \rightarrow \dots$$

is exact, where F is a Fréchet space. Since $H^1(X, \mathcal{O}) = 0$, the sequence

$$0 \rightarrow H^0(X, \mathcal{O}) \rightarrow H^0(X, \Omega^0) \rightarrow \operatorname{Ker} \overline{\partial} \rightarrow 0$$

is exact. Hence it follows that the sequence

$$0{
ightarrow} H^0(X,\,{\mathscr O}^F){
ightarrow} H^0(X,\,{\varOmega}_F^0) {\stackrel{{ar\partial}_F}{
ightarrow}} H^0(X,\,{\varOmega}_F^1)$$

is exact. Combining this with the exactness of the sequence (4.3), we infer that $H^1(X, \sigma^F) = 0$. Hence statement (i) is proved.

(ii) Let F be a Fréchet space which does not admit a continuous norm. By a theorem of Bessaga and Pełczyński ([1]) there exists a complemented subspace E of F which is isomorphic to C^{∞} . Without loss of generality we can assume that $C^{\infty} \subset F$ and X is connected.

Let f be a non-constant holomorphic function on X. Put $a = \sup\{|f(z)|: z \in X\}$. Since X is connected, |f(z)| < a for all $z \in X$. Thus, considering the function $(a-f(z))^{-1}$, we can assume that f is not bounded on X. Take a sequence $\{z_n\} \subset X$ such that $|f(z_n)| \to \infty$ and $|f(z_n)| \neq f(z_j)$ for $i \neq j$. Select an $\varphi \in \mathcal{O}(\mathcal{O})$ such that $\varphi^{-1}(0) = \{f(z_n)\}$. Put $V = (\varphi f)^{-1}(0) = \bigcup_{j=1}^{\infty} V_j$, where $V_j = f^{-1}(f(z_j))$. Since $\{f(z_j)\}$ is discrete and since f is continuous, there exists an open cover $\{U_j\}_{j=0}^{\infty}$ of X such that

$$egin{aligned} V_j \subset U_j & ext{ for } j \geqslant 1, \ U_j \cap U_j = \emptyset & ext{ for } i
eq j, i, j \geqslant 1, \end{aligned}$$

and

$$V \cap U_0 = \emptyset$$
.

Put $\mathfrak{m}_j = e_j/\varphi(f)$ for $j \geqslant 1$ and $\mathfrak{m}_0 = 0$, where $e_0 = 0$, $e_j = (0, \ldots, 1) \in C^{\infty'}$. Let us show that the data $\{\mathfrak{m}_j \in H^0(U_j, \mathscr{M}^{F'})\}$ does not have a solution.

For a contradiction, there exists a meromorphic function m on X with values in $C^{\infty'}$ such that

$$h_j = \mathfrak{m} - \mathfrak{m}_i \in H^0(U_i, \mathcal{O}^{c^{\infty'}})$$
 for all $i \ge 0$.

Since $h_i - h_j = (e_i - e_j)/\varphi(f)$ on $U_i \cap U_j$, we have

$$\varphi(f)h_i - e_i = \varphi(f)h_j - e_j$$
 on $U_i \cap U_j$ for all $i, j \ge 0$.

Thus the formula $h(z) = \varphi(fz)h_j(z) - e_j$ on U_j defines a holomorphic function on X with values in $C^{\infty'}$ such that

$$(4.4) h(z_j) = e_j \text{for all } j \geqslant 1.$$

On the other hand, by the connectedness of X and by the relation $C^{\infty'} \cong \bigoplus Ce_j$ it is easy to see that $h(X) \subset Ce_j \oplus \ldots \oplus Ce_n$ for some n. This contradicts (4.4). Hence (ii) is proved.

COROLLARY 4.1. Let X be a complex manifold having a non-constant holomorphic function and let F be a non-zero Fréchet space. If $H^1(X, \mathcal{O}^F) = 0$, then $\mathcal{O}(X, F)$ cannot be complemented in $C^{\infty}(X, F)$.

Proof. For a contradiction, by an argument as in ([9]) we have

$$H^1(X, \mathcal{O}^{F \hat{\otimes} C^{\infty'}}) = 0.$$

Since $F \neq 0$, it follows that $H^1(X, \mathcal{O}^{C^{\infty'}}) = 0$. This is impossible by Theorem 4.1. The corollary is proved.

Remark 4.1. Let us note that, when X is Stein and F = C, Corollary 4.1 has been established by Palamodov ([11]).

Remark 4.2. In [8] we have proved that if X is a locally irreducible complex space having a countable topology and if $\mathcal{O}(X,F)$ is complemented in $C^{\infty}(R(X),F)$ for some non-zero Fréchet space F, where R(X) denotes the regular part of X, then $\mathcal{O}(X) \cong C^m$ for some $m \leqslant \infty$.

2. Cousins's Second Problem. All algebras in this section are assumed to be commutative with a unit element. Let B be a Banach algebra and let G(B) denote the Banach-Lie group of invertible elements in B. By $G_{\epsilon}(B)$ we denote the component of G(B) containing a unit element. Put $S(B) = B \setminus G(B)$. Let X be a complex manifold. By $\mathcal{M}^{S(B)}$ we denote the sheaf over X given by the formula

$$U \mapsto \{\mathfrak{m} \in H^0(U, \mathcal{M}^B) : \mathfrak{m}(z) \in S(B) \text{ for all } z \notin P(\mathfrak{m})\},$$

where U is a connected open subset of X.

Let $\{U_{\alpha}: \alpha \in \Lambda\}$ be an open cover of X. Suppose that, for every $\alpha \in \Lambda$, we are given an element

$$\mathfrak{m}_a \in H^0(U_a, \mathcal{M}^B) \backslash H^0(U_a, \mathcal{M}^{S(B)})$$

such that

$$\mathfrak{m}_{a} = \mathfrak{m}_{\beta} f_{a\beta} \quad \text{on } U_{a} \cap U_{\beta} \text{ for } \alpha, \ \beta \in \Lambda,$$

where $f_{\alpha\beta} \in H^0(U_\alpha \cap U_\beta, \, \mathscr{C}^{G_e(B)})$. Does there exist an $\mathfrak{m} \in H^0(X, \, \mathscr{M}^B)$ such that

(4.6)
$$m \mid U_{\alpha} = m_{\alpha} f_{\alpha} \quad \text{for all } \alpha \in \Lambda,$$

where $f_a \in H^0(U_a, \mathcal{O}^{G_c(B)})$? Let us note that if (4.6) holds, then (4.5) holds also with $f_{a\beta} = f_{\beta} f_a^{-1}$. A family

$$D = \{ \mathfrak{m}_a \in H^0(U_a, \mathcal{M}^B) \setminus H^0(U_a, \mathcal{M}^{S(B)}) \}$$

satisfying (4.5) is called a Cousin Second Data on X with values in B. A meromorphic function on X with values in B satisfying (4.6) is said to be a solution of D. Consider the exponent homomorphism $\exp_B: B \to G_e(B), \ b \mapsto \sum (2\pi i b)^n/n!$. Let us note that \exp_B is an analytic cover. Hence the sequence

$$(4.7) 0 \to \tilde{N}^B \to \mathcal{O}^B \xrightarrow{\exp_B} \mathcal{O}^{G_e(B)} \to e$$

is exact, where $\tilde{N}_z^B = \text{Ker} \exp_B$ for all $z \in X$.

The exact sequence (4.7) induces the exact cohomological sequence

$$(4.8) \hspace{1cm} ... \rightarrow \hspace{-0.1cm} H^1(X,\, \mathscr{O}^B) \rightarrow \hspace{-0.1cm} H^1(X,\, \mathscr{O}^{G_c(B)}) \mathop{\to}\limits_{a_B} H^2(X,\, \tilde{N}^B) \rightarrow ...$$

Let us prove the following

THEOREM 4.2. Let X be a complex manifold having a countable topology and let B be a Banach algebra. If $H^1(X, \emptyset) = H^2(X, \tilde{N}^B) = 0$, then every Cousin Second Data on X with values in B has a solution.

Proof. (a) Since if V is a non-empty open subset of a connected open set $U \subset X$ and if $\mathfrak{m} \in H^0(U, \mathcal{M}^B)$, $\mathfrak{m} \mid V \in H^0(V, \mathcal{M}^{S(II)})$, then $\mathfrak{m} \in H^0(U, \mathcal{M}^{S(B)})$, the formula

$$U \mapsto H^0(U, \mathcal{M}^B) \setminus H^0(U, \mathcal{M}^{S(B)})$$

defines a sheaf \mathscr{V}^B over X. It is easy to check that \mathscr{V}^B is a sheaf of abelian semigroups.

(b) Consider the exact sequence

$$(4.9) e \to \mathcal{O}^{G_e(B)} \to \mathcal{V}^B \xrightarrow{\tau_B} \mathcal{D}^B \to e, \mathcal{D}^B = \mathcal{V}^B / \mathcal{O}^{G_e(B)}$$

of sheaves of abelian semigroups over X. Let $d \in H^0(X, \mathcal{D}^B)$. Select a simple cover $\mathcal{U} = \{U_a\}_{a \in A}$ of X and $\mathfrak{m}_a \in H^0(U_a, \mathcal{M}^B) \setminus H^0(U_a, \mathcal{M}^{S(B)})$ such that $\tau_B \mathfrak{m}_a = d \mid U_a$ for $a \in A$. Since \mathcal{U} is simple, it follows that for $a, \beta \in A$, $U_a \cap U_\beta \neq \emptyset$ there exists a unique element $\theta_{a\beta} \in H^0(U_a \cap U_\beta, \mathcal{O}^{G_e(B)})$ such that $\mathfrak{m}_b = \theta_{ab} \mathfrak{m}_\beta$ on $U_a \cap U_\beta$.

Since $\theta_{\alpha\beta}\theta_{\beta\gamma}\theta_{\gamma\alpha} = e$ for $\alpha, \beta, \gamma \in \Lambda$, $U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \emptyset$, the formula

$$\beta_{\mathcal{B}}(d)(U_a, U_b) = \theta_{ab}$$
 for $\alpha, \beta \in A, U_a \cap U_b \neq \emptyset$

defines an element $\beta_B(d) \in H^1(X, \mathcal{O}^{G_e(B)})$. It is easy to see that $\beta_B(d)$ is independent of the choice of $\{\mathfrak{m}_a, U_a\}$ and thus depends only on d. Let us note that β_B is a homomorphism and

(4.10)
$$\operatorname{Ker} \beta_B = \operatorname{Im} \tau_B.$$

(c) Since $H^1(X, \mathcal{O}) = 0$, we have $H^1(X, \mathcal{O}^B) = 0$. Hence by the exactness of the sequence (4.8) and by the hypothesis $H^2(X, \tilde{N}^B) = 0$ it follows that $H^1(X, \mathcal{O}^{G_c(B)}) = 0$. By (4.10) we infer that τ_B is surjective. This completes the proof of theorem.

COROLLARY 4.1. Let X be a complex manifold having a countable topology and let B be a Banach algebra which has a locally connected closed boundary. Let $H^1(X, \mathcal{O}) = H^2(X, \mathbf{Z}) = 0$. Then every Cousin Second Data on X with values in B has a solution.

Proof. By Theorem 4.2 it suffices to check that $H^2(X, \tilde{N}^B) = 0$. Since B has a locally connected compact boundary and since $\operatorname{Kerexp}_B \cap R(B) = 0$, where R(B) denotes the radical of B, it follows that Kerexp_B

 $= \mathbb{Z}^n$ for some n. Hence

$$H^{2}(X, \tilde{N}^{B}) = H^{2}(X, Z^{n}) = \bigoplus H^{2}(X, Z) = 0.$$

The corollary is proved.

EXAMPLE 4.1. Let Ω be a connected relatively compact open subset of C^n and let $A(\Omega)$ (resp. $H^{\infty}(\Omega)$) denote the Banach algebra of continuous functions on Ω which are holomorphic on Ω (resp. of bounded and holomorphic functions on Ω). Let $B \in (C(\Omega), H^{\infty}(\Omega), A(\Omega))$. Since Ω is connected, $\operatorname{Kerexp}_B = \mathbb{Z}$ and thus $H^2(\Omega, \tilde{N}^B) = H^2(\Omega, \mathbb{Z})$. Hence if $H^1(\Omega, \mathcal{O}) = H^2(\Omega, \mathbb{Z}) = 0$, then every Cousin Second Data on Ω with values in B has a solution.

EXAMPLE 4.2. Let X be a contractible Stein manifold. Then $H^1(X, \mathcal{O}^G)$ = 0 for every Banach-Lie group G ([4]). Hence every Cousin Second Data on X with values in a Banach algebra has a solution.

References

- C. Bessaga and A. Pelczyński, On a class of B₀-spaces, Bull. Acad. Polon. Sci. 5 (1957), 375-377.
- [2] E. Bishop, Analytic functions with values in a Fréchet space, Pacific J. Math. 12 (1962), 1177-1192.
- [3] L. Bungart, Holomorphic functions with values in locally convex spaces and applications to integral formulas, Trans. Amer. Math. Soc. 110 (1964), 317-343.
- [4] On analytic fiber bundles. Holomorphic fiber bundles with infinite dimensional fibers, Topology 7 (1) (1968), 55-68.
- [5] R. Gunnig and H. Rossi, Analytic Functions of Several Complex Variable, Prentice-Hall, Englewood Cliffs, N. J. 1965.
- [6] J. Leiterer, Local and global equivalence of meromorphic operator functions I and II, Math. Nachr. 83 (1978), 7-29, 84 (1978), 145-170.
- [7] Banach coherent analytic Fréchet sheaves, ibid. 85 (1978), 91-109.
- [8] Nguyen van Khue, Extensions of continuous linear maps in locally convex spaces and their applications, preprint.
- [9] On the cohomology of sheaves $\mathscr{S} \in L$, Studia Math. 72 (1982), 183-197.
- [10] Ph. Noveraz, Pseudo-Convexité, Convexité Polynomial et Domaines d'Holomorphie en Dimension Infinie, North-Holland, 1973.
- [11] P. V. Palamodov, On Stein manifold Dolbeaut complex splits at positive dimension, Math. Sb. 88 (1972), 287-315.
- [12] Homological methods in theory of locally convex spaces, Uspehi Mat. Nauk 1 (1971). 3-64.
- [13] M. G. Zajdenber, S. G. Krej, P. A. Kusment, A. A. Pankov, Banach bundles and linear operators, ibid. 5 (1975), 101-157.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES

> Received February 19, 1980 Revised version May 26, 1980