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STUDIA MATHEMATICA, T. LXXIII. (1982)

On meromorphic functions with values in Iocally convex spaces
by
NGUYEN VAN KHUE (Warszawa)

Abstraet. Meromorphic functions on a complex manifold with values in a se-
quentially complete locally convex space ave investigated. It is shown that each such
meromorphic function on a Stein manifold can be written in the form f/o, where
Jis a veetor-valued holomorphic function and o is & complex-valued holomorphie
funetion. This result is applied to the extending and lifting problem of vector-valued
meromorphic functions. We also investigate Cousin’s First and Second Problem for
vector-valued meromorphic functions.

Meromorphic functions on an open set in € with values in Banach
spaces have been investigated by several authors ([6], [13]). The aim
of this paper is to study meromorphic functions on a complex manifold
with values in a sequentially complete locally convex space.

In § 1 we prove that the pole set of each vector-valued meromorphic
function either is empty or is an analytic set of codimension 1. Section
2 is devoted to proving that each meromorphic function on a Stein
manifold with values in a sequentially complete locally convex space
can be represented in the form f/o, where f is a veector-valued holo-
morphic function and o is a complex-valued holomerphic function. An
application of this result to the extending and lifting problem of vector-
valued meromorphic functions is given in §3. In §4 we investigate
Cousin’s First Problem for meromorphic functions with values in a Fréchet
space and Cousin’s Second Problem in a commutative Banach algebra
with unit clement.

Notations and definitions. Given a locally convex space L. By
% (L) we denote the set of all balanced convex neighbourhoods of zero
in L. For each U e % (L) let L(U) denote the completion of L/p(U)~*(0)
equipped with the norm p(U), where p(U) is the Minkowski functional
of U, and let #(U) denote the canonical map from I into L(U). If U,
Ve#(L) and V < U, then w(V, U) denotes the canonical map from
L(V) into L(U). The strongly dual space of L is denoted by L.

Let X Dbe a complex manifold and let L be a sequentially complete
locally convex space. By ¢F we denote the sheaf of germs of holomorphie
functions on X with values in L, We write ¢ = 0°. Given a connected
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open set U in X, consider the set

AU, L) = {(f, 0) € 0(T, L) x 0(T)\ {0}}

where O(U, L) = H'(U, 0%) and 0(U) = 0(U, C). We define on .£(U, L)
a relation. R(U, L) by

(fi o) B(U, L)(g, f) #E  ff = oy.

Since U is connected, R(U, L) is an equivalent relation on . (U, L)

and, moreover, if (f, o)B(U, L)(gr #), then (f17V, o V)R<V’ L) g1V, B V)
for all connected open sets V in U. Hence the formula

U4 (U, L)/R(U, L),

where U is connected and open in X, defines a sheaf .#" over X. The
sheaf L is said to be the sheaf of germs of meromorphic functions on X
with values in L. An element m e HO(U, #%) is called a meromorphic
function on U with values in L.

Finally we recall that a function f on an open et 2 in a locally convex
space L with values in a sequentially complete locally convex space I
is said to be holomorphic iff f is continuous and f QnL, is holomorphie
for all finite dimensional subspaces L, of L.

§1. The pole set of a vector-valued meromorphic function. Let X
be a complex manifold and let I be a sequentially complete locally convex
space. Let m e H* (X, .#%). Put

P(m) ={zeX: m,¢0".

Then P(m) is called the pole set of m. Let us prove the following
TEROREM 1.1. Let X be a complen manifold and let I be a sequentially
complete locally convew space. Let m e H(X , #E). Then for cach # e P(m)
there ewist o neighbowrhood U of z in X and elements fed(U, L), ¢ €0(0),
such that
WU =flo and Pm)nU ={ecT: o(z) = 0}.

The following is an immediate consequence of Theorem 1.1,

COROLLARY 1.1. Let X be o complex manifold and lot L be a se-
quentially complete locally convew space. Let m e HY(X, #*)\0(X, L)
Then P(m) is an amalytic set in X of codimension 1.

The proof of Theorem 1.1 is baged on the following

Levwma 1.1, Letzy e X and let f e 0, be am irreducible element. Let f < o
such that w'f|V(B) =0 for all v e L', where V(B) denotes the germ of the
@ero set of a representative of § at 2, and L is a sequentially complete locally
convex space. Then there exists a unique eloment ge (ﬁ{; such that f = fg.
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Proof. Let ¢ be a Stein neighbourhood of 2, in X and let f and §
be holomorphic functions on & such that f, =f and f, = . Applying
Theorem A.[5] to the coherent sheaf & over G generated by {u'f: u' e L'},
we find a finite set {u}f}}’;l and a neighhourhood @, of z, in G such that
{u;f|G,} generates H(Gy, &) as a O(G,)-module. Since f is irreducible
and since u;f| V() = 0, it follows that there exists a unique element
a; € 0, such that w;f = a; f. Hence there exist a connected neighbourhood
G, of 2, in G, and holomorphic functions &, j = 1,2,...,m on G such
that u;f = &;f on G,. Whence wf|@, = g( ,u)f|@, for all o eI’ Let
us observe that ¢ is linear in variable %' and holomerphic in variable z.

Let U e#(L). Since

sup{lg(e, w')|: ze X, uw € U°} < oo

where U° denotes the polar of T, for all compact sets K in &\ V(f) and,
since g is G-holomorphic on G, X L(TU), it follows that g|GyxL(TU) is
holomorphic ([10]). Hence, it is easy to see that the map §y: G—>L(U)
induced by ¢ is holomorphic. Since §,(@\V(f)) = L(U) and G <
G,\V{B), we infer that §y (&) < L(U). Obviously =(U)f = ffy=(TU) and
gy = o(V, U)jy for all V,Ue%(L) and V < U. Thus there existf
a unique holomorphic function § on G, with values in the completion L
of L such that f = f§. Since I is sequentially complete and since GN\TV(B)
i dense in @G, it follows that §(&,) < L and hence the lemma is proved.

Lmvma 1.2. Let m e H(X, #%) and let 2, X. If (u'm), €O% for
all w' e L', then m, € 0.

Proof. Select a mneighbourhood G of z, in X such that m|y = f/o,
where f € 0(G, L) and ¢ € 0(@). Since (u'm),, € 07, we have uf' | V (o), =0
for w' € L'. On the other hand, since @, is & unique factorization domain,
by Lemma 1.1 it follows that f, = og for some g e 050. Hence m, & (D{B .

Proof of Theorem 1.1. Let 2z, € P(m) and. let W be a neighbourhood
of #, in X such that

mly =g/f, where ged(W,IL)and fe0(W)\{0}.
Consider the coherent sheaf & over W generated by {u'g: ' € L'}. By

Theorem A [5] we can assume that W is a neighbourhood ¥V of 2, such that
& is generated by {ujg}f.,. Let us prove that

(1.1) P(m) = | Pujm.

J=1

Obviously O Pujm = P(m). Let 2 ¢ ) Puym and let ' eL'. Since
Pt

J=1

(wm), = (Wglp), = 3 a(igIBl+ D, (4918, D ay(wigh + ...,
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where

(w'g), = ,V a;(ug), + V @y (6:0), (W3 9)5 -+ oy @5y 0y .n €0,
it follows that 2 ¢ P(u'm). Thus by Lemma 1.2 we get 2 ¢ P(m) and hence
(1.1) is ploved

Let 8, 22, where f, ..., B, are irreducible elements in 0,
Smce eodunP(m) —1, there exists a subset I = {1,...,q} such ‘rha.b

P(m U V{( ﬁ, )- On the other hand, since g, ]Vi\U VinV; =0 and
since V \U VinV,is dense in V, ([5]) for all ¢ ¢1, by Lemma 1.1 it
” Bf for some clement

n "

follows L]n,t gz, 18 written in the form g,

fe0F. Hence setting o = [ ] B/ we get the relzmom

LN =flo

The theorem is proved.

and  P(m), = V(o).

§ 2. The representative of veetor-valued meromorphic functions. In
this seetion we prove the following

TurorEM 2.1. Let X be a Stein manifold and let L be a sequentially
complete locally convex space. Let me H® (X, M™). Then there existf ¢ 0(X, L)
and o € 0(X) such that m = f/o.

We need the following

Leyma 2.1. Let X be a complew manifold and let L be a sequentially by
complete locally convex space. Let mi € H*(X , M%), Then there emists a divisor
d on X such that d,m, e O for all z ¢ X.

Proof. Let z € X. From the proof of Theorem 1.1 it follows thab
nt, ean be represented in the form h,/e,, where h,e0F and g, €0,
such that

(2.1)y I, 0 on every irreducible branch of P(m), and P(m), = V (CAR

It is easy to sce that if g,/8, is another representative of m, satisfying
condition (2.1), then

Gu/ﬁz € @: = {7 € Oa:

t #€ X} defines a divisor d on X sueh that d,m, e 0F

7(?) # 0}.
Thus the family {o,
for all ze X.

Proof of Theorem 2.1. Let .4#* =.#9\{0}. By 2 we denote
the sheaf of germs of divisors on X. Let v denote the cq.nomesnl map from
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#* onto 2. Consider the exact sequences

{2.2) 0->Z—~0— co*—>1,

(2.3) 10> M* 551

of sheaves of abelian groups over X, where expo = ¢*°. Leb a: H* (X, 0%
—H*X,Z) and §: H(X, 2)~H'(X, ¢*) be canonical maps constructed
from the exact sequences (2.2) and (2.3), respectively. Since H'(X, 0)
= 0, « is injective. Let ¢ = aff and let d be a divisor on X such that
dam, e (UL for all z e X. Select a positive divisor d* on X such that e(d™)
=¢(d™). Since af(dd*) = 0 and Kera = 0, we have f(dd*) = 0. Hence,
by the exactness of the sequence

.o HYX, A SANX, 9)-HY (X, 0%)> ...,

ddt = m for some Tit € A"(X, .#*). Since X is Stein, it = B/o, where
B, 0e0(X) ([5]). On the other hand, since mmz = dfd,m, e 0F for
z2eX, we mfer that mm e (X, L). Hence m = mm/i = otm/B, omm e
€0(X, L), fe0(X). The theorem is proved.

§3. Txlending and lifting vector-valued meromorphic functions. The
aim of this section i3 to apply Theorem 2.1 to the extension and selection
of meromorphic functions with values in Fréchet spaces.

THEOREM 3.1. Let 8 be a submanifold of a Stein manifold X and let
F be a Fréchet space. Then the restriction map Byp: HO(X, 4T)—H(S, #T)
is surjective.

"Proof. Let meHY(S, .#7). By Theorem 2.1, m can be represented
in the form m = jf/o, where fe 0(S,F), oe 0(8). By a theorem of
Bungart ([3]) there exist fe 0(X,F) and & e 0(X) such that f|§ =f
and 6|8 = o. Hence setting ™ = f/¢ we get a meromorphic extension
of m on X.

TusoreM 3.2. Let X be a Siein manifold and let B and F be Banach
spaces. Let J: X xBE—F be a holomorphic map such that J(z, ): BT
48 swrjective and linear for oll z e X. Then the map J: H'(X, #4F)—>
—HY(X, AT) induced by J is surjective.

Proof. Let m e H' (X, .#T). Select a representative fio of m, where
feo(X,n), o€ 0(X). By & result of Leiterer ([7]) there exists a holo-
mozphm function f: X —F such that J (=, 71 f(2)) = f(2) for all z € X. Hence
setting M = flo we get the required selection of .

TuEoreM 3.3. Let X be a complex manifold having a countable topology
and let J be a continuous linear map from a Fréchet space B onto a Frécher
space F. Then the map J: HY(X, 4%)—H" (X, 4F) induced by J is sur-
Jective.
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‘We need the following:

Let M = (¢})°,~; be a matrix of positive numbers. For any Fréchet
space I by (M, F) we denote the Fréchet space of sequences {v,} in
F guch that

27 (o)) = D p(U)v, < 0

n==1

for all Ue(F) and j > 1.

LevmA 3.1. Let J be a continuous linear map from a Fréchet space I
onto a Fréchet space F. Then the map J: UM, B)->1(M,TF) induced by
J s surjective.

Proof. Let {U,}., be a decreasing basis of balanced convex neighs
bourhood of zero in B. Sinee J is open, {J U,} forms a basis of neighbour-
hoods of zero in . Thus, for each m, J induces a continuous linear map
J, from B, = B(U,) onto F, =F(U,). Since F, and F, are Bunuch
spaces, it is easy to see that jn: WM, ®B,)-1(M,F,) is surjective for
all # > 1. On the other hand, since every canonical map from Kerd,,
~>Kerd, has a dense image, it follows that every canonical map from
UM, Rexd,,,) into I(M,XKerd,) also has a dense image. Hence, by
a result of Palamodov ([12]), J is stirjective.

Proof of Theorem 3.3. Let m e H'(X, .#F). Select a countable
open cover {U;} of X such that m|U; = f;/o;, where f; € 0(U,, F) and
0; €0(U)) for all j. Applying a theorem of Bishop ([2]) to the sequence
{fi}, we get a sequence {v,} = F and a sequence {P,} of one-dimensional
continuous linear mutually annihilating projections of F such that

P, =wv, for ax1,
(3.1) (v)el(H,F),
fi(®) = Z_P,,f,.(z) - 2 fM#)w, for all ze U; and for all j
A=l n=1
where M = (¢}), ¢f = sup{|f}(2)|: 2 € V;} < oo and {V,} is an open cover

of X such that V, € U; for j> \ 1. Smce P, P, =0 for n s m, by (3.1)
we have
(3.2) off =off on  UinU; for i,j>1.

Applying Lemma 3.1 to the sequence {v,,}, we find an element (u ip) € LM, B)
such that Ju, = v, for all #. Thus, by (3.1), the formula

= D), for

n=1

2eV;
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defines a holomorphic function fJ V;—»F such that ij f, By (3.2}
we have GJ, = p;fion ¥, NV, for all 'L,j >1. Hence sefting m|V; = f,/a

we get an Tt e HY(X, .#F) such that J () = m. The theorem is proved.
§ 4. Cousin’s Problems for vector-valued meromorphic fumctions.

1. Cousin’s First Problem. Let X be a complex manifold and let T
be a sequentially complete locally convex space. Let {U,: a € A} be an
open cover of X and let m, be meromorphic functions on U, with values

in L such that

(4.1) m,—my e H(U,nT,, 0F) for all o, fed.

Does there exist an element m e H*(X, .#%) such that
(4.2) m—m, e H*(U,, 0%) for all aeA?

A family D = {m,eH(U,, #%)} satistying (4.1) is called a Cousin’s
First Data on X with values in L. A meromorphic function m e H°(X, .#%)
satisfying (4.2) is said to be a solution of D.

Considering the exact sequence

0~ OF > M* T |0F 0,

it follows that if H'(X, 0F) = 0, then every Cousin’s First Data on X
with values in L has a solution.

Let us prove the following

THEOREM 4.1. (i} If X is a complex manifold having a countable top-
ology and if H* (X, 0) = 0, then every Cousin’s First Data on X with values
in o Fréchet space has a solution.

(il If X is a complex manifold having a non-constant holomorphic
Junction and if F is a Fréchet space which does not admit a continuous norm,
then Cousin’s First Problem does not have a solution for some data with
values in F'.

Proof. (i) Consider the Dolbeant complex on X

0—>0—>—Q°—5> Q'

where for each ¢ > 0 and for each sequentially complete locally convex
space L we denote by £4 the sheaf of germs of C%-forms of bidegree
(0,q) on X with values in L. We write 7 = Q% for all ¢ > 0. Let us
note that the sequence
(4.3) 00705, —>-.Q},——>

is exact, where F is a Fréchet space. Since H'(X, @) = 0, the sequence

0>H (X, 0)>H' (X, Q)~>Ker0-+0
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is exact. Hence it follows that the sequence

0-H(X, 0F)—-H'(X, Q) LH(X, OL,)

is exact. Combining this with the exactness of the sequence (4.3), we
infer that H'(X, 0") = 0. Hence statement (i) is proved.

(ii) Let F be a Fréchet space which does not admit a continunous
norm. By a theorem of Bessaga and Pelezyiski ([1]) there exists a com-
plemented subspace B of F which is isomorphic to C®. Without loss of
generality we can assume that C* < F and X is connected.

Let f be a non-constant holomorphic funetion on X. Put ¢ =
sup{|f(z): # e X}. Since X is connected, |f(z)| < a for all ze X. Thus,
considering the function (a—f(2))~%, we can assume that f is not bounded
on X. Take a sequence {z,} = X such that [f(z,)]—~oco and f=) #1(#)
for 4 = j. Select an ¢ € §(0) such that ¢~ (0) = {f(2,)}. Put V = (®f)~4(0)
==jU Vy; where V; = fY(f(2))). Since {f(2,)} is discrete and since f is

=1

continuous, there exists an open cover {U,;}2, of X such that
V,=U; for jz=1,

UynU; =@ for i #j,6,j>1,
and
VAU, = 8.
i
Put ny; = ¢;/p(f) for j > 1 and m, = 0, where ¢y = 0, ¢;= (0, ..., 1) & €.
Let us show that the data {m; e H*(U;, #*)} does not have a solution.

For a contradiction, there exists a meromorphic function m on X with
values in C* such that

hy =m—m; e H'(T;, 0°)  for all j 0.
Since ;—h; = (e;—e;)lp(f) on U;n U;, we have
P(Nhi—e; = p(flly—e¢; on  U,nU; for all 5,5 > 0.

Thus the formula h(z) = ¢( J2)hi(2) —¢; on U, defines a holomorphic
function on X with values in € such that

(4.4) hiz) =e¢ for all j>1.

On the other hand, by the connectedness of X and by the relation C*
@ Ce; it is easy to see that h(X) = Ce,d ... @®Ce, for some n. This con-
tradicts (4.4). Hence (ii) is proved.

CoROLLARY 4.1. Let X be o complen manifold having a non-constant
Lkolomorphic function and let T be a non-zero Fréchet space. If H/(X, 0%y = 0,
then O(X,T) cannot be complemented in C>(X, I.
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Proof. For a contradiction, by an argument as in ([9]) we have
HY(X, 0780y = 9.

Since I # 0, it follows that H*(X, (DC‘”') = 0. This is impossible by The-
orem 4.1. The corollary is proved.

Remark 4.1. Let us note that, when X is Stein and F = C, Corollary
4.1 has been established by Palamodov ([11]).

Remark 4.2. In [8] we have proved that if X is a locally irreduc-
ible complex space having a countable topology and if 0(X, F) is com-
plemented in C°(E(X), F) for some non-zero Fréchet space F, where
E(X) denotes the regular part of X, then @(X) ~ C™ for some m < oo.

2. Cousins’s Second Problem. All algebras in this section are assumed
to be commutative with a unit element. Let B be a Banach algebra and
let G(B) denote the Banach-Lie group of invertible elements in B. By
G,(B) we denote the component of G(B) containing a unit element. Put
8(B) = B\G(B). Let X be a complex manifold. By .#5® we denote
the sheaf over X given by the formula

U {me BY(U, #%): m{z) e §(B) for all z ¢ P(m)},

where U is a connected open subset of X.
Let {U,: ae4} be an open cover of X. Suppose that, for every
aed, we are given an element

ma € HD(UA’ "”B)\HO(UEU "”S(B))

such that

(4.5) m, =mgfey on U,nUg for o, fed,

where f,; € H'(U,n Uy, 6%, Does there exist an m e H'(X, #%) such
that

(4.6) m|U, =m,f, forall acd,

where f, € H'(U,, 0%®)? Tet us note that if (4.6) holds, then (4.5)
holds also with f,; = ffs'. A family

D = {m, e H(U,, #%)\NE"(T,, #5P)}

satisfying (4.5) is called a Cousin Second Data on X with values in B.
A meromorphic function on X with values in B satistying (4.6) is said
to be a solution of D. Consider the exponent homomorphism expy:
B—>@,(B), b > (2mib)"/n!. Let us note that expy is an analytic cover.
Hence the sequence

. @,
(4.7) O»NBawaL(U—LB)—)-G
is exact, where N7 = Kerexpy for all z ¢ X.
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The exact sequence (4.7) induces the exact cohomological sequence

(4.8) o HY (X, 0B)>H (X, ¢%4%) ;—;H*(X, By ...

Let us prove the following

THEOREM 4.2. Let X be a complex manifold having o countable topology
and let B be a Bamach algebra. If HY (X, 0) = H*(X, %) =0, then every
Cousin Second Data on X with values in B has a solution.

Proof. (a) Since if V is a non-empty open subset of & connected
open set U < X and it m e H(U, .#%), m|V e H'(V, #5"), then me
e HY(U, #5®), the formula

UsHY (U, #P)NH (U, 455

defines a sheat ¥ over X. It is easy to check that % is a sheaf of abelian
gemigroups.
(b) Consider the exact sequence

(4.9) e0%P 5y BEGB Lo gF = yB %)

of sheaves of abelian semigroups over X. Let d e H°(X, 2%). Select a
simple cover % = {U,},.q of X and m, e H(U,, #5)NH(U,, #5P) such
that zzm, = &| U, for a € 4. Since % is simple, it follows that for o, fe4,
U,nU,; + @ there exists a unique element 0, € H*(T,nTj,, 09P) such
that m, = O,ymz on U,nU,.

Since 0,505, 0,, = ¢ for o B,y €4, U,nUpynU, # @, the formuls

Be(@)(Uss Up) = e

defines an element fg(d) e H*(X, 0%®). It is easy to see that fp(d)
is independent of the choice of {m,, U,} and thus depends only on d.
Let us note that fz is a homomorphism and

(4.10)

for o,fed, UnU, #@

Kerfy = Imzy.

(¢) Since HY(X,0) =0, we have HY(X, 0%) = 0. Hence by tho
exactness of the sequence (4.8) and by the hypothesis H(X, N%) = 0
it follows that (X, ¢7®)) = 0. By (4.10) wo infer that v, is surjective.
This completes the proof of theorem.

COROLLARY 4.1. Let X be a complen manifold having a countable top-
ology and let B be a Banach algebra which has a locally connected closed
boundary. Let H (X, 0) = H*(X, Z) = 0. Then every Cousin Second Data
on X with values in B has a solution.

Proof. By Theorem 4.2 it suffices to check that H*(X, §%) = 0.
Since B has a locally connected compact boundary and since Kerexpzn
NR(B) = 0, where R(B) denotes the radical of B, it follows that Kerexpy
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= Z" for some n. Hence
X, N =H'(X,2") =@ H*(X, Z) = 0.
The corollary is proved.

ExAmMPLE 4.1. Let £ be a connected relatively compact open subset
of C" and let A(RQ) (vesp. H*(Q)) denote the Banach algebra of con-
tinuous functions on £ which are holomorphic on 2 (resp. of bounded
and holomorphic functions on Q). Let B e (C(Q), H*(2), A (2)). Since
0 is connected, Kerexpy = Z and thus H*(Q, N¥) = H*(Q, Z). Hence
it HY(Q, 0) = H*(2,Z) = 0, then every Cousin Second Data on Q with
values in B has a solution.

ExAMPLE 4.2. Let X be a contractible Stein manifold. Then H*(X, 0%)
= 0 for every Banach-Lie group @ ([4]). Hence every Cousin Second
Data on X with values in a Banach algebra has a solution.
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