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On Peano’s theorem in locally convex spaces

by
KARI ASTALA (Helsinki)

Abstract. In this paper we consider ordinary differential equations in locally
convex gpaces. We show that Peano’s theorem holds in the spaces B = (X', 7), where
X’ is the dual of a barrelled normed space X and 7 is any locally convex vector top-
ology of X’ that is stronger than the w*-topology but weaker than the topology of
Precompact convergence; o(X’, X) < v A(X, X). Such spaces F are the only se-
quentially complete locally convex spaces that contain a compact barrel.

On the other hand, we prove that Peano’s theorem does not hold in non-semi-
reflexive quasi-complete spaces or in nonreflexive Banach spaces equipped with
the weak topology. In particular, this yields a new characterization for reflexivity
in Banach spaces: A Banach space F is reflexive if and only if Peano’s theorem holds
in the space (E, o(E, E)). :

1. Introduction. In this paper we study ordinary differential equa-
tions defined in a real locally convex vector space. We present some answers
to the question:

1) Which locally convex spaces have the Peano property?

1.1. DerINITION. Let B be a topological vector space. We say that

E has the Peano property (or that Peano’s theorem holds in E) if for each

-continuous mapping f: R xE—E and for each point (t,, x,) € R X the

Cauchy problem
wl(t) =f(t’ m(t))y @(ty) = %o,

has a solution defined in some neighbourhood of %,.

‘We shall mostly consider sequentially complete spaces; only to such
spaces can integral caleulus be applied.

Some results concerning problem (1) are already known. For instance,
Godunov [4] has proved that a Banach space B has the Peano property
if and only if ¥ is finite-dimensional. On the other hand, in [11] Szép
showed that Peano’s theorem holds in every reflexive Banach space.
equipped with the weak topology.

After the preliminaries of Chapter 2 we shall prove that if a sequen-
tially complete locally convex space B satisfies the condition

(2) E contains a compact barrel,
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then ¥ hag the Peano property. This result contains the theorem of Szép
a8 o special case. In fact, we shall see that F is a sequentially complete
locally convex space satisfying (2) if and only if

= (X', 7),

where X’ is the dual of a barrelled normed space X and = is any topology
of X', which is stronger than the w*-topology but wealker than the topology
of precompaet convergence; briefly

o X, X) s v s AX, X).

It remains open, whether there exists a sequentially complete locally
convex space F, which has the Peano property but not property (2).

Finally, in Chapter 4 we generalize the construction of Cellina [1]
and show that a quasi-complete locally convex space I must be semi-
veflexive if it has the Peano property. We also prove the converse to
Szép’s theorem and thus find a new characterization for reﬂexuuty in
Banach spaces: A Banach space ¥ is reflexive if and only if (¥, o(#, B')
has the Peano property. This result was con]ectured in [2].

2. Preliminaries.

NoTAaTIONS. We ghaill alwmys agsume that the topological vector spaces
considered are Hausdorff spaces and that their scalar field iz R.

‘We use the notations of Horvath [7], to which we refer for the
basic concepts of topological vector spaces. Especially, if I is a locally
convex space, o(H’, F) denotes the w*-topology, A(B', B) the topology
of precompact convergence, and B(E’', E) the strong topology of B

Further, coB stands for the closéd convex hull of a subset B « B
‘and O([a, b], B) for the space of all contintous functions f: [a, b]—H.

The Riemann integral. For completeness we recall the basic properties
of the Riemann integral. Let D = {#}i", be a partition of [a,b] = R
(that is @ =4, < ¥ <...<t, =b). The norm of D is |D| = max {}f,—
_ti—oll}' jE ST

2.1. DurFINITION. Let # be a locally convex vector ﬁp:we A mapping

i [@, b]—F is (Riemann) integrablc if there is a vector f f#)dt e B such

- that
lim 2 Fls)(

D110 21

By —ty) = f Fyds

in the topology of H. Here D = {l =o and s, € [t,_;, t,] is arbitrary.
The following facts are easily established:

It feO(la, b], B) and Co{f[a, b]} is sequentially complete, then
f is integrable.

(3.2)
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b —
(3.b) [f@®)dte(b—ayco{fla,b]}
(3.¢) If f is continuous and integrable and F (¢ f f(s)ds, a <<t b,

then F'(t) = f(t) for each t e [a, b].

It is not d].fﬁcult to construct a non-sequentially complete locally
convex vector space B and a continuous g: [a, b]—F that is not integrable.
Such a mapping ¢ hasno primitive, i.e. a differentiable mapping #: [a, b]—~
—F such that

o' (1) = g(1).

Hence in spaces F that are not sequentially complete there can exigt
this kind of trivial counterexamples to Peano’s theorem. In other words,
sequentially complete spaces is the appropriate class of locally convex
spaces for the study of the Peano property.

3. Existence theorems. The standard proofs of the classical Peano’s
theorem cannot be generalized as such to an infinite-dimensional vector
space since they are based on the local compactness of R™ (see e.g. [6],
p. 10). However, the ideas of these proofs can be applied in spaces that
contain “large” compact sets.

The following form of the Banach-Mackey theorem will be usefull.
For a proof see [9], p. 91.

3.1. TurorEM (Banach, Mackey). Suppose F is locally convex, B =« B
a barrel and K o closed, conves, bounded, balanced and sequentially complete
subset of H. Then B absorbs K. .

3.2. THEOREM. Suppose B is locally conves, B = B a barrel, 1, € [a, )
c R, w,e E and let f: RXE—-FE be any mapping. Denote by S the set 8

= [a, b] X (,+B) =« RxHB.

If flg is continwous and co{f(8)} is compact, the dszer&ntwl equation

@' (1) :f(t: m(t))y #(ty) = %o,
has a solution defined on [ty, 1,4 6] for some & > 0.

Proof. As the balanced hull of a convex compact set is convex
and compact, B absorbs co{f(S)} by Theorem 3.1. So we can choose
a 8 > 0 such that [y, %+ 6] = [a, b] and Sco{f(S)} < B.

For brevity we denote I = [y, t,+ 6]. Let ¢ be any real number

such that 0 < e< 4. Set
Zo, 0<i—t<e,
_ s
(4) () = B+ [ fls,uls))ds, e<i—t,< 8
‘o
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Then u,: I->F is well definied and continuous. The integral in (4) exists
by (3.2). According to formula (3.b) each u, satisfies the conditions

u.(i(l) = Ty,
(5) %, (t) €@y 4-(E—e—t) 0 {f(8)} = w,+B Viel,
U (t) —u,(s) € t—8)eo {f(8)} Vs,tel.

Let 8 = e(1) >e(2) > ¢(3) > ... > 0 be a decreasing sequence with
lime(n) = 0. As co{f(8)} is compact, the family of continuous mappings
H = {Uy -1 18 equicontinuous and the set H(?) = {u,, (0}, i3 re-
latively compact in E for every ¢ e I. Now, according to Ascoli’s theorem
([9], p. 81), H is relatively compact in the space C(I, ) if we equip
C(I, By with the topology of uniform convergence.

Let w e C(I, B) be any cluster point of the set H. Then the con-
tinuous mapping i—f{t, u(t)), t eI, is integrable. We claim that

¢
(6) u(t) = @+ ff(s, u(s))ds Viel.
to

Suppose U = F is a barrelled neighbourhood of 0. If D denotes
the balanced hull of co{f(8)}, the set G = I X (w,~ D) is ecompact and
hence the restriction of f to G is uniformly continuous. Choose a barrelled
neighbourhood V of 0 such that f(s, «) —f(s,y) € U, whenever v—y eV
and (s, @), (s,¥) €@.

There exists a natural number # € N satisfying e(m)co{f(8)} = U
and u(s) — Uy, (s) e VAU for every s e I. Then, by the above facts,

i
% () — @y — ff(s, u(s))ds
to

' ¢
= () — Uy () + _”f(s: Ungny (8)) —f(55 w(s))]ds — f s, ue(n)(s))ds
to

1—s(n}

e U+ (t—1t) U—e(n)eo {f(8)} = (2+6)U.

As U is arbitrary, equation (6) is proved. Finally, the theorem follows
from (6) and from (3.c). m ’

Remark. It is possible to show that in the hypotheses of Theorem 3.2
the compactness of o {f(8)} can be replaced by the sequentially compact-
ness of co{f(S)}.

Assume that the locally convex space B is sequentially complete
and that B contains & compact barrel. Then, by Theorem 3.1, the closed
and bounded subsets of B are compact. Moreover, every continuous
mapping f: RxXE-E satisties the hypotheses of Theorem 3.2. Con-
sequently, E has the Peano property.
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3.3. LeMma. Let B be a topological vector space. Then E is a sequen-
tially complete locally convex space containing a compact barrel if and only
if

B =(X,1),
where X' is the dual of a barrelled normed space X and the locally convex
topology © of X' satisfies

%) o(X, X) st s AX, X).

Proof. Suppose X' is the dual of a normed and barrelled space X
and = a topology of X’ satisfying (7). Denote by B, the closed unit ball
of X', By = {&' e X'| |lo'}| <1}. By the theorems of Banach—Alaoglu ([7],
p. 201) and Banach-Dieudonné ([7], p. 245) B, is compact in the space
(X', 21X, X)). Thus B, must be compact also in the space (X', ¥). Obvi-
ously B, is a barrel in (X’ 7).

Let K = X’ be bounded in the z-topology. Then K is o(X’, X)-
bounded and so, X being barrelled, it is norm bounded ([7], p. 212). As
K < B, for some r e R, K must be z-relatively compact. Hence (X', 7)
is sequentially complete; the space (X’,z) is, in fact, quasi-complete.

Conversely, suppose F is a sequentially complete locally convex
space, which contains a compact barrel B. We shall denote the topology
of B by z,. According to Theorem 3.1 B absorbs all the bounded sets
of E. So each closed and bounded subset of £ must be compact. In par-
ticular, ¥ is semireflexive (cf. [7], p. 227).

For the space X we choose

X =¥, ¥, B).
As B absorbs all the bounded sets of F, its polar B°®is a bounded neigh-

bourhood of 0 in X ;in other words, X isnormable. Now X' = (B, B(E", B
is a Banach space and from the semireflexivity of E we deduce

(By ) = (X', 1),

where the topology v is weaker than the norm topology of X'

Wo shall show that = satisties (7). First,  is stronger than o (X', X),
since X is the dual of (X', 7) = (B, 7,). Next, using the theorem of Banach—
Dieudonné ([7], p. 245) we see that 1(X’, X) is the strongest of those
topologies of X' that induce the same topology as ¢(X’, X) on the hipolar
B*® = B. Therefore we must prove that the restriction of the identity
mapping id: (X', 7)->(X’, ¢(X’, X)) to the set B is a homeomorphism.
But by the above id |y is a continuous bijection and as B is compact,
id|; is, in fact, a homeomorphism.

Tt remains to show that X is barrelled. From the fact (X', 7)’ = X
we see that every o(X’, X)-bounded subset of X' is z-bounded. Moreover,
the sequentially completeness of (X', r) together with Theorem 3.1 imply
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that z-bounded sets are absorbed by B; that is, v-bounded sets are norm

bounded. Therefore strong and ¢(X’, X)-boundedness coincide in X
which proves the last of our assertions ([9], p. 171). &

It is well known that every Banach space is barrelled. Note, however,
that there are noncomplete barrelled and normed spaces (see e.g. [B],
p. 109).

3.4, THEOREM. Let X be a barrelled normed spase, v a locally convex

topology of X' satisfying (7) end B = (X', 7).

If (toy @) eBXE and f: RxBE-~B is continuous, the differential
equation
(8) @' (1) =:=f(t, m(t));
has a local solution. In other words, B has the Peano property.

Proof. The theorem follows immediately from Theorems 3.1 and 3.2
and from Lemma 3.3. m

3.5. COoROLLARY (Peano). If (ty, &) e R xR™ and f: RXR"->R" s
continuous, the differential equation

o' (1) = flt, w (1),
has a local solution.

Let B = (X', 7) be as in Theorem 3.4 and denote by {+|| the norm
of X' It (4, %) e RxE and f: RxI-F is continuoug, then by the
Banach-Mackey theorem there is a real number M, 1< M < oo, such
that

2(ly) = @y,

o{ty) = g,

Ifg, e < 20 it

It is easy to see that every solution of (8) can be extended (if necessary)
to the interval I = [t,, t,+1/M7]. o

It is interesting to note that in the spaces of Theorem 3.4 also the
Kneser’s theorem holds:

3.6. TaworEM. Lot B = (X', )y (ty, To)y f: RXE—~E, I and I be as
above. Then the set S of all solutions x: I—>I of the differential equation (8)
is compact and conmected in (I, ). In partioular, the sets

8(t) = {o(t)| w8}, tel,
are compact and conncoted subsets of I

In the special case, where H is a reflexive Banach space equipped
with the weak topology o(X, B'), the theorem has been proved by Szufla
[12]. However, the method of Szufla applies equally woll to the general
case and therefore we shall omit the proof of Theorem 3.6.

=t <L, Jo—u<1.

4. Semireflexivity and the Peano property. Prior to Godunov’s paper
[4] Oglhna, [1] proved that Peano’s theorem canmot hold in any non-
reflexive Banach space (see also [2]). We ghall generalize Cellina’s con-
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struction to all quasi-complete locally convex spaces that are mot semi-
reflexive. Also, a slight modification shows that Peano’s theorem does
not hold in any nonreflexive Banach space equipped with the weak top-
ology. This gives a positive answer to the conjecture in [2].

The construction is based on the following

4.1. TarorEM (James, [8]). Let B be a Banach space and D a bounded
and weakly closed subset of B. If D is not weakly compact, there is a wvector
ve B such that

sup{w, v) ==1; weD.

ael

(o, 9><1 if

4.2, CoroLLARY. Let B be a quasi-complete locally conves space and D
a closed, convex and bounded subset of E which is not weakly compact. Then
there s a vector » € B' and a continuous function g: B—[0,1] such that

(a) sup<w, vy =1; {w,v> <1 if xeD;
xeD

(b) gl@) =1 if weD; g(w) =0 if <{@,»>>1L.

Proof. Let {g,| o € &} be a family of continuous seminorms gener-
ating the topology of B and let E,, a € o, denote the completion of the
quotient space H/g;'(0). Then F can be indentified with a subspace of

the product [] E, of the Banach spaces B, (see [9], p. 46). Denote by P,
agd
the canonical projection Pg: [] BB, fe .
aesd

As D is complete, D is closed also in the product of the spaces Z,

a.E & . Moreover, P,(D) is a convex, closed and bounded subset of H, for
each a € o. If P (D) were weakly compact for every a € «, the Tychonotf
theorem and the Theorem 17.13 (iit) in [9] (p. 160) would imply the weak

compactness (in E) of the set

De [[P.D).
gl
Thus there must exist an index o € o such that P (D) is not weakly com-
pact in H,.

By Theorem 4.1 we can find a vector u e B, such that {z, u> <1
for cevery EFZ’;(D) even though sup{lz,u>| z e P (D)} =1. Now
the closed sets I, (D) and G = {» e B,| (&, p> > 1} are disjoint. As B, is
normal, there is & continuous function f: #,~[0, 17 such that f(w) =0
if wed and f(o) =1 if © e P, (D).

‘Finally, the mappings » = uoP, and g =JfoP, satisfy the ve-
quirements (2) and (b). = )

4.3, Tunormm. Let B be a locally comvew quasi-complete vector space.
If B is not semireflemive, there is a continuous mapping f: RxBE~>E such
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that the Cauchy problem
) o' (1) = f{t, 2(0)), =(0) =0,

admits no solution on any nonvanishing interval [a, b] containing the origin.,
Proof. As I is not semireflexive, there is a weakly closed and bounded
set D < H, which is not weakly compact ([7], p. 227). We can asswne
that D is convex and balanced; then .D is closed also in the original top-
ology of E.
Let » € B’ be a vector satisfying condition (a) of Corollary 4.2. Choose
a sequence {w,};., D such that 0 < <m,,»> < {1y >y n e N, and
{&uy ¥)—1 a8 m~>oco. Denote by V the open set V = {z € I| (&, »> < 1}
There is a partition of unity {¢,}3., in V subordinate to the covering
{Un}ies
Uy ={zeB| {0, < 2-{w,,»»—1},
‘Un = {w EEI 2'<wn—17 ’”>——1 < <9.7, '”> < 2‘<m1l.+17 1’>—'1}7 " > 27
of V. This can be seen easily: Set
W, ={seR| s <2-{&y, »D~1},
Wy ={seR| 2:<@,_1, "> 1 <8< 2:<0 1, D1}, n>2.
Then {W,}r_, is an open covering of (—co,1). If {P.}2.1 is a partition
of unity in (- oo, 1) subordinate to {W,}_,, we may simply take Gn = D0,
ne N. Note that for each z eV, g, (x) vanishes for all but at most two n e N.
The continuity of the mapping F: V—F

F(a) = 3(<2, 9> +1) Y’ 4,(2) By [<Bpgrs 9

=]
is obvious. Let p,, be the Minkowski functional of D (we set pp(y) = oo,
it y ¢1D for any teR). If weV, we choose an index % e N such that
2¢U, if n 5=k k-+1. Then
PD(F (w)) < 3 K&y D 1] {g, (2)/ pys ¥+ Gpr (8) [ <Bppq5 D}
< Max(®) 2 @y W[ Bpgry ¥+ Gy ()2 popas ¥D [{Bppgy ¥D} = L.
In other words F(V) c D. Moreover,

(10) F @), =3(<o, ) +1) D) g,(@) = 3(<w, 9> +1).

Nmsl

Let g: B—~[0,1] be a continuous mapping having properties (b)
of Corollary 4.2. We set

o) - {JOF@ 2eT,

z e E\V.
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Because I is bounded, ¢ is continuous in the whole space E. In addition
Fl, = @lp. Finally, we define

26 (#f1?), wel, t+£0,
0, zel, t =0.
By the boundedness of & f: R xE-F is continuous.

Let us now assume that : [0, 6]+H, 6 >0, is a solution of the
differential equation (9). First, we claim that

(11) z()ireD, te(0,d].

In fact, by the separation form of the Hahn-Banach theorem D is the
intersection of all the barrelled neighbourhoods of 0 containing D. There-
fore it suffico.si_‘r.o show that ®(t)/i*e U whenever U is a barrelled neigh-
bourhood of 0 and D < U.

I py denotes the Minkowski functional of T, (@) <1 as
G(zftt) e D = U. Since py is a coutinuous seminorm, this yields

£ty @) = {

4 i
Polo®) < [po{fls, o(s))ds < [2sas = &,
[ 0
which proves formula (11). Further, as #(t)/1* e D, f(t, o (1)) = 2t (x (1) /12).
Now, by (10),
a[dtm(t), v) = 2 H(w (8 112), v>

1
= 2t-H{<o ()12, vy +1) = 7 @)+t
which leads to

4 [<w(t), v>] K (8), vy —Lm(t), >
dt o

; 7 =1.

Since [<z(t), v>| < ¥, we get <{@(),> =1 or {w(f)/f*, ») = 1. This, how-
ever, is in contradiction with formula (11) and Corollary 4.2(a). m

4.4. TaeorEM. Let B be o Banach space. Then B is reflewive if and
only if the space (B, o(H, ")) has the Peano property.

Proof. The “only it”-part follows from Theorem 3.4 (or from [11]).
To show the converse it suffices by the proof of Theorem 4.3 to find for
every nonreflexive Banach space B a vector » ¢ B' and a weakly con-
tinnous function g: H-[0, 1] such that

(12.2) Pl =1; Coyp<l H |2l <3
(12.b)  g@) =1 i [wi<l; g@) =0 i# <Lz, >1.

Now, let Z be a nonreflexive Banach space. If M is a closed, separable
and nonreflexive subspace of #, then there exists a norming sequence
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{z,}7>, in the closed unit ball of M", i.e.

(13) sup [{w, 2,5 = |z| for every ze M.
neN

Algo, the linear mapping 1t B->1®, w—(<z, 2, )2, is continuons; in
fact, |7 = 1.

Let By, and By, stand for the closed unit bulls of the Banach gpaces
M and B, respectively. Since the restriction of T to M is an isometry
(ef. (13)), T(By;) is closed and convex bubt not weakly compact in I,
Denote by N the closure of 7 and by D the closure of TBy, in I®, As
T(By) = N, N is a closed nonreflexive subspace of I° having D ag its
closed unit ball. Thus wo may apply James’ theorem and obtain a norm-one
vector 4 € N’ that does not attain its maximum on D.

The definition

h: N>R, a—sup{0,1—<{w, ud}

gives a weakly continuous mapping h that vanishes exactly on the sef
{we N| {&, u> = 1}. Moreover, let a, stand for the nth coordinate func-
tion a,: (w,)7., >, and write §,(x) = sup {|<z, a,»|—1,0}, wel.
Obviously D equals the intersection of the sets B (0), m =1,2,8,...
Then, according to [3], 1.14 (a) and [3], Theorem 1.15, there exists a weakly
continuous mapping §: N—[0, 1] such that j(s) = 0 if o, py =1, and

g(@) =1 if w eD. It is immediately seen that the mappings g and »,
g=4gol: B-[0,1]; v=Tyueckl
satisfy conditions (12). m
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