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Applications of ultrapowers to the umiform and Lipschitz
classification of Banach spaces*
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Abstract. Using differentiation techniques and methods from model theory,
we study uniformly continuous and Lipschitz mappings, the connection between
them and their linearization. Applications to the problem of uniform and Lipschitz
clagsification of Banach spaces arec given. For example: A Banach space which is
Lipschitz homeomorphic to a reflexive Orlicz space Lz;i[0, 1] is isomorphic to it.
Or: If two superreflexive Banach spaces, isomorphic to their respective squares,
are uniformly homeomorphie, then they have isomorphic ultrapowers.

Introduction. In this paper we shall study the interrelation between
the uniform structure, the Lipschitz structure and the linear-topological
structure in Banach spaces. The typical problem in this area can be
described ag follows:

(P) Let X and Y be Banach gpaces and agsume that there is a uni-
formly continuous (or Lipschitz) mapping f from X into ¥ with some
additional property (e.g., homeomorphism, embedding ete.). Does this
imply the existence of a linear continuous mapping ¥: X—Y with the
same property (i.e., isomorphism, linear embedding etc.)?

The first results of this kind were obtained by Lindenstrauss in [21].
He proved, for ingtance, that under some additional assumption the
existence of a uniformly continuous projection implies the existence of
@ linear one. We shall be mainly interested in the uniform and Lipschitz
classification, that is in the question whether every two uniformly (or
Lipschitz) homeomorphic Banach spaces are isomorphic. In view of the
resulty of Lindenstrauss [21], Bessaga [5], Enflo [12] and the beautiful
theorem of Enflo [13] — “a locally convex space uniformly homeomorphic
with a Hilbert space is isomorphic to it” — one could expect that the
answer to the latter question is positive. Other results supporting this
conjecture have been obtained. Namely, in [27], [28] the second named

* This paper was written during the first named author’s stay at the Institute
of Mathematios of the Polish Academy of Sciences.
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author established that reflexivity and RNP arc invariant under Lipschitz
embeddings. Finally, Ribe [34] used some sophisticated combinatorial
argument to prove that uniformly homeomorphic Banach spaces have
the same local subspace structure and that superreflexivity and “heing
an &,-space for given p e(l, o0)” are invariant under uniform ho-
meomorphisms [35]. But in 1978 came the surprise —Aharoni and Linden-
strauss [2] produced a striking example of two nonisomorphic Banach
spaces (both of them nonreflexive and nonseparable) which were Lip-
schitz homeomorphic. On the other hand, it is known [297] that a locally
convex space uniformly homeomorphic to a Montcl-Fréchet space is
isomorphic to it. In our paper we shall show that, in spite of the example
of Aharoni and Lindenstrauss, under some natural assumption on the
Banach spaces X and Y, the existence of a Lipschitz homeomorphism
between X and Y implies that X and ¥ are isomorphic. Combining this
with some modél-theoretic techniques, we find that under some natural
assumption on X and ¥ the existence of a uniform homeomorphism
between X and Y implies that they have isomorphic ultrapowers.

The standard way of solving problem (P) usually consists of two
steps (cf. [21], [13], [14], [27], [28], [29], [34], [357, [31]). Namely, step
A —using some kind of “compactness” and a diagonal procedure to replace
the uniformly continuous mapping by a Lipschitz one (by means of the
Corson-Klee Lemma) and step B ~ linearizing the Lipschitz mapping
(using either differentiation or some averaging techniques).

An essentially new feature is the use of ultrapowers snd model-
theoretic techniques. Methods from nonstandard analysis and model theory
have been applied to various linear problems in Banach space theory
(cf. works by Dacunha-Castelle, Krivine [9], [10], Henson [17], [18],
Hensqn, Moore [19], Stern [36], [37], and the first named author [15],
[16]). It turns out that these methods are also suitable for the investi-
gation of nonlinear questions. In the present context, ultrapowers establish
4 direet commection between uniform and Lipschitz maps (step A) as
well as between the infinite dimensional and local linear structures in-
Volvedk(the outcome of step B). In order to exploit this connection prop-
erly, a detailed analysis of the resulting structures (altrapowers) is
required. The machinery for this is supplied by model theory.

In Section 2 we study the differentials of Lipschitz homeomorphisms
to prove that in some cases the range of such a differential is comp-
lemented (Th. 2.4). This, combined with Pelezyriski’s Decomposition Method,
shows that if X is u superreflexive rearrangement invariant function
space on [0, 1] (for-ex. L,[0, 1] for p e (1, o) or 4 reflexive Orlicz space
on'[() »1]), then every locally convex space Lipschitz homeomorphic to
X is isomqrphic to it (Cor. 2.10). Also, we solve the problem of Lipschitz
classifieation within some clagses of Banach spaces.
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- In Section 3 we investigate the w*-differentials in dual spaces. We
prove that in some cases the w*-differentialy of a Lipschitz embedding
are igsomorphic embeddings a.e. (Th. 3.2). Thig together with the Loe-
wenheim-Skolem Theorem shows that if a separable Banach space is
Lipschitz embeddable in a dual space Y, then it is isomorphic to a sub-
space of ¥ (Th. 3.5). Let us mention that, as a byproduct, we also obtain,
the following result —every dual Banach space with density character
greater than 2% contains a nontrivial complemented subspace (Cor. 3.8).

In the mnext section we first prove that uniformly homeomorphic
spaces have Lipschitz homeomorphic ultrapowers and next use the results
from Section 2 and the Keisler-Shelah Isomorphism Theorem to deduce
that under some matural assumptions on the Banach spaces X and ¥
the existence of & uniform homeomorphism between X and Y implies
that the ultrapowers of X and ¥ with respect to some ultrafilter are
isomorphic (Th. 4.5). Using a result of Lindenstrauss, we also prove
that a Banach space which is uniformly homeomorphic to an & _-space
is an %, space itself (Th. 4.9). -

Finally, in Section 5, we show that from the theory developed in
this paper one can, in a natural way, obtain both theorems of Ribe [34],
[35], whereas the last section containg remarks, comments and problems —
the solution of which could be, in our opinion, essential to the progress
in the field of uniform and Lipschitz classification of Bamnach spaces.

Since we are using methods from theories distant from one another
(Banach space theory, differentiation and model theory), in order to
make the paper more selfcontained we provide the reader with rather
extensive preliminaries.

1. Preliminaries. We shall consider Banach spaces over the field
of reals only and our terminology and notation will be standard, the same
as that used, for example, in [25], [26]. The capital letters X, ¥ and Z
will always denote Banach spaces. We shall mainly deal with nonlinear
maps, but when speaking of an isomorphism or an isometry we always
mean linear isomorphism or linear isometry. Also “complemented” means
“linearly complemented”, while the'analogous nonlinear situations are
marked ag “being the range of a uniform (Lipschitz) projection”. The
notation X =~ ¥ means: X and Y are isomorphic.

“Subspace” stands for closed linear subspace and X « Y denotes
that X is a subspace of Y. With a slight abuse of notation, X <, ¥ means:
X is isomorphic to a complemented subspace of Y. ,

A mapping f from a Banach space X into a Banach space ¥ is said
to be uniformly continuous iff for every ¢ > 0 there is a J > 0 such that
for all @, w, € X with |l — || < ¢ the inequality

1f (@) —f (@) < &
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holds. Such a mapping f is said to be a wniform embedding iff it is one-to-
one and both f and f~' are uniformly continuous. The mapping f is called
a uniform homeomorphism it it is & surjective uniform embedding. Finally,
if Z is a subspace of X and f is a uniformly continuous mapping of X
onto Z such that f restricted to Z is the identity on Z, then f is called
a umiform projection and Z is said to be the range of a uniform projection
tn X. In the sequel we shall need the following famous result of Linden-
strauss [21]; for another proof of it see [31].

TegorzM 1.1 (On uniform projections). Let Z be the range of & uniform
projection in X. Assume that Z is complemented in its second dual, Then
Z is complemented in X.

A mapping f from a subset 4 of a Banach space X into a Banach
space Y i3 said to be Lipschitz iff there is a constant K > 0 such that
for all #, 2,4

[f (1) ~ f(@a) | < K [loy — 4]

The smallest K satisfying the relation above is called the Lipschite constant
of f, in the sequel usually denoted by K;. A one-to-one mapping f from
a subset 4 of X into Y iy said to be a Lipschite embedding iff both Jf and
f~! are Lipschitz. The Lipschitz embedding constant is the product of the
Lipschitz constants of f and f~*. Obviously a Lipschitz homeomorphism
means a surjective Lipschitz embedding and the meaning of the Lipschitz
homeomorphism consiamt of such a map is also clear. We 8ay that a subset
A of X is the range of a Lipschite projection in X iff there is a Lipschitz
mapping f of X onto A such that f restricted to 4 is the identity on A.

A mapping f from X onto Y is said to be Lipschite on large distances
iff for every & > 0 there exists a K > 0 such that for all @y, @, € X matis-
fying |lw, —a,| > 6 we have

17 (@) —f (@) < K [0y — 4.

One of the crucial tools in the problem of uniform classification of Banach
spaces is the following

Lmyya 1.2 (Corson, Klee [8]). Hvery uniformly continuous map
between Bamach spaces is Lipschitz on large distamces.

In the sequel we shall need 2 generalization of the well-known theorom
of Rademacher [33] on differentiation of Lipschitz mappings. Since in
infinite dimensional Banach spaces there is no canonical measure, we
begin with introducing a notion of zero-sets in an arbitrary separable
Banach space. Similar but different notions can be found in [4], [7]
and [32].

For a separable Banach space X denote by o (X) the family of all
lineaxly independent, linearly dense, bounded sequences in X. Let Q be
the Cartesian product of a sequence of disjoint copies of the interval
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[0,1] endowed with the measure u being the product of the Lebesgue
measures on corresponding intervals. Let X be a separable Banach space.
For every (#;) € o/ (X) and @, € X define Tyt @—>X by the equality

T(a!i),mo((ti)) = %o+ 22_%% for (t;)e@
i=1
and leb gy, . be the Borel measure on X defined for every Borel subset
A of X by

Pieizy(A) = u(Tih (AT, (e (@)))-
A Borel subset A of X is said to be a zero-set iff Ky, (A) = 0 for all
(#;) € o (X) and @, € X. It can easily be seen that a zero-set cannot con-
tain an open set and therefore any complement of a zero-set is a dense
subset of X. Also, it is obvious that zero-sets form a countably additive
ideal of subsets of X.

Let f be mapping from X into ¥. We say that f is Gateaus differen-

tiable at the point @, € X itf for every x € X the limit

Him S (@0 + Aw) —f (w,) = £ (@)

a0 i
exigts and the mapping (Df)yy: XY defined by (Df Jay(®) = fr(o) is
linear (in a).

Finally, let us recall that a Banach space X is said to have the Radon—
Nikodym Property (shortly the RNP) iff every Lipschitz mapping from
the interval [0, 1] into X is almost everywhere differentiable. Note that
this definition is different from the classical one but it is equivalent and
suits our purposes best. It easily follows from the definition that the
RNP is invariant under isomorphisms and that every subspace of a Banach
space with the RNP has the RNP as well. It is known that every reflexive
Banach space and every separable dual Banach space has the RNP,
For more details on this subject the reader is referred to the mono-
graph [11].

The following result on differentiation of Lipschitz mappings in
Banach spaces, due to the second named author [287], proved to be very
usctul in the study of the problem of unitorm and Lipschitz classification.
Other, slightly different versions of this result (with different notions
of zero-sets) have been obtained independently by Christensen [7] and
Aronszajn [4].

TaporeM 1.3 (Infinite Dimensional Rademacher Theorem). Let f be
a Lipschitz mapping from a separable Banach space X into a Banach space
Y with the Radon—-Nikodym Property. Then

() f is Gateaux differentiable almost everywhere (i.e. the set where f
Jails to possess a differential is a zero-set in X).
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(ii) if (Df), ewists for some x € X, then it i3 a continuous linear operator
from X into X and its norm is not greater tham the Lipschitz constant of f.

(iii) if f i o Lipschitz embedding of X into X, then (Df), is an dso-
morphic embedding of X inte ¥ and the isomorphism constant of (Df), (i.e.
the product of the norm of (Df), and the norm of its imverse) is not greater
tham the Lipschite embedding constant of f.

Our main tool to establish an isomorphism between Banach spaces
will be Pelezyriski’s decomposition method [30], [25]. To describe the
different variants of it, we first need some more notation. For a Banach
space X we denote by XPX the direct sum, by 1, (X) 1< p < o0, the

space of all sequenceﬁ (m;) c X satisfying ||(a)] = ( 2 )P < oco. Tt X

is a Banach lattice, X (1) is the Space of all scqucncos (%) = X satisfying
Il = sup 2 @) < o0,

where the expressmn ( 2 |2 *)* is defined. by Th.1.dLL of [26]. X (I,) is

the closure in X (T5) of the set of sequences which are eventually zero.

Let X and Y be Banach spaces. We shall say that the pair X, Y
satisfies the Decomposition Scheme if one of the following conditions (D1)-
(D3) is fulfilled:

(D1) X = XPX and ¥ == YPY.

(D2) Rither X or Y contains a complemented subspace isomorphic
to 1,(X) (I,(X), respectively) for some p, L<<p < oo

(D3) Either X or Y is a Banach lattice which containg a complemented
subspace isomorphic to X (I,) (¥ (I,), respectively).

The main use of thiz scheme lies in the following

THEOREM 1.4 (Pelezynski’s Decomposition Theorew). Assume that
the pair of Banach spaces X, Y satisfies the Decomposition Scheme. If each
of the spaces X, Y is isomorphic to a complemented subspace of the other,
then X and Y are isomorplic.

.Checking the case of (D1) iy cagy, (D2) is due to Pelezynski [30]
(ef. also [257, 2.2.3). (D3) comes from Johngon, Maurey, Scheehtman,
Tzafriri [20], Cor. 9.2 (sce also [26], 2.d.5).

Let us mow turn to the mnecessary prorequigites concerning ulira-
powers of Banach spaces. For proofs and further details we refer to the
survey [18]. Let % be an ultrafilter on a set I and let (X;);., be a family
of Banach spaces. Consider the space I.(I, X;) consisting of all families
(%;)iey With ®; € X, and

(wl)ﬂ = sup flaegll < oo,

Let Ny be the closed subspace of all those families (x;) which satisfy
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lim lj;][ = 0. Then the ultraproduct (X,), is defined to be the quoticnt

L2
space lo(I, X;)/ Ny, equipped with the natural quotient norm. By (%)a
we denote the element of the ultraproduct which is determined by the
family (#;). It8 norm can be computed as ||(#;)ql = lim |z;.

(4

‘We shall mainly deal with the ultrapower (X), of a space X, i.c.
with the ultraproduct (X;), where all spaces X; are identical with X.
There is a canonical isometric embedding Jx of X into (X), which maps
an clement # € X onto the equivalence class of the constant family (),
ie. Jxa = (@;)q With x; =  for all 4 € I. On the other hand, there is also
a canonical map Qx: (X),—X™* which assings to cach family its 2*-limit
along % in X, i.c.

Qx(2:)y = w*—limw,.
¥

Qx hag norm one and satisties QxJy = Iy (the identity on X). Con-
sequently, if X i3 reflexive (or a dual space), X can be identified with
a norm-one complemented subspace of (X),. Finally, the dual space
(X)7 contains an isometric copy of X*. The isometry, which we will
denote by Jx« (if no confusion with the notation above is possible), is
defined by

' )y I a0*y = H;ﬂ {mgy #*5

for (@;)g € (X)g-

Returning to the ultrafilter # itself, we say that # is countably incom-
plete if there exists a sequence (I,) of subsets of I with I, e % for ne N

and () I, = @. For example, each free (i.e. nontrivial) ultrafilter on
n=1
N is countably incomplete. Given ultrafilters # on I and ¥ on J, we

define a new ultrafilter % X ¥ on I xJ in the following way: A e ¥ x ¥
iff {j: {: (¢,]) e A} e} e ¥. This ultrafilter appears when we iterate
the ultrapower construction: (X)), is (canonically) isometric t0 (X) g,

Finally, we present two basic results from the model theory of Banach
spaces. The first one iy o variant of the Keisler—Shelah Isomorphism
Theorem, [6], Th, 6.1.15. The second one is a combination of the Keisler—
Shelah yesult with the Loewenheim-Skolem Theorem, [6], Th. 3.3.6.
Their Banach gpace versions are due to Hengon [17], [18] and Stern [37)].
The form of the Loowenheim~Skolem Theorem which wo state here is
an immediate congequence of the proof of Th. 2.2. in [37].

Tusornm 1.5 (Keigler—Shelah  Isomorphismi Theorem). Let X be
a Banach space and let % and ¥ be ultrafiliers on I and J, respectively.
Then there exists an ultrafilier # on a set K such that the spaces (X)y .y
and (X)y.pr are isomeirie. ‘

TurorEM 1.6 (Loewenheim—Skolem Theorcm). Let X be a Banach
space and let ¥ < X be a subspace, Y. 5= {0}. Then there ewists a subspace


GUEST


232 8. Heinrieh, P. Mankiewicz
Z, ¥ «Z = X, with densZ = dens Y, an ultrafilier % and an tsometry S
from (Z)g onto (X)y such that the following diagram commautes:

(B)g—> (X)y

Jz Jx

L——> X
Iy

where Jx,J, and I, are the canowical embedding maps.
As usual, dens X denotes the density character of X, i.c. the smallest
cardinal » such that X has a dense subset of cardinality s.

2. Lipschitz homeomorphisms hetween spaces with RNP. The differ-
ential Df of a Lipschitz embedding f: X—Y provides a linear embedding
of X into Y. It turng out that under certain assumptions the position
of the image Df(X) in ¥ can be specified:

PropostrIoN 2.1. Let f be o Lipschitz embodding of o Banach space
X into @ Banach space Y such that f(X) is the range of o Lipschitz pro-
jection in Y. Assume that f is Qateaus differentiable ot vy X and that
there exists a Lipschitz projection from X** omio X.

Then there ewists a Lipschitz projection from ¥ onto (Df ) (X). Moreover,
if there is a linear projection from X** onto X, then (Df Jeo (X) 48 @ Vinearly
complemented subspace of Y.

Proof. By a simple translation argument, without any loss of gen-
erality, we may assume that @, = 0 and f(0) = 0. In the sequel, for
the sake of simplicity, we shall write Df insteado £ (Df)g. Also, we shall
identify X with its eanonical image in X™**,

Let 7,y be a Lipschitz projection from ¥ onto F(X) and set g = f~o
O%yx), thus gof = Iy (the identity on X). Since ¢ is Lipschitz with, say,
constant K,, we have, for all y,, y, ¢ ¥ and all positive integers n,

(0h) llng (n~*y1) —ng (n ™2y )| < K, lly, — g2l

Let % be a free ultrafilter on the set of positive intogers. Note that it
follows from (1) and the agsumption f(0) = 0 that for each y e ¥ the
Bequence {ng(n“‘;y)} is norm bounded, and hence wr-relutively compact
in X**. We can therefore define a mapping §: ¥-=X** by

gly) = w*——lj{mng(n“‘y) for yelX.
By the w*-lower semicontfinuity of the norm in X**, we get from (1)
19 (y2) — Gyl < K,y —vsll;
hence § is a Lipschitz mapping. We shall show next that, for all » e X,
(@) §((Df) @) = .
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Indeed, denote (Df)x = 2. This implies by definition

lim |z —nf(n o) = 0.

N~ro0

Therefore, we have
lim lng (n™*2) — & = limn jjg(n~"2) — (gof) (n=a)|
« w

< I liman~e—f(n~'a))] =0,
@

which proves (2). Now seb Z = Df(X) and define a map h: ¥>Z by
setting b = Dfomyof, where my is o Lipschitz projection from X™ onto
X. Obviously, as a composition of Lipschitz mappings, h is Lipschitz,
and (2) ensurcs that k is & projection from Y onto Z.

If X is linearly complemented in its second dual, then so is %, and
we can apply Theorem 1.1 on uniform projections to obtain a linear
projection from ¥ onto Z.

Next, we draw some conclusions from Proposition 2.1, combinin,
it with the Infinite Dimensional Rademacher Theorem 1.3. )

THROREM 2.2. Let f be o Lipsohitz embedding of a separable Bamach
space X into a reflemive Banach space Y such that f(X) is the range of a
Lipsohitz projection in X. Then X is isomorphic to a complemented sub-
space of Y.

Proof. By Theorem 1.3 there is an # € X such that f is Gateaux
differentiable at # and (Df),: X—Y is an isomorphism. Hence X is a
reflexive space. Thus the assumptions of Proposition 2.1 are satisfied
and we conclude that (Df),(X) is complemented in ¥.

As an application of the theorem above, we have (compare also
Cor. 4.8 below)

COROLLARY 2.3. If a separable Banach space X is Lipschitz embeddable
i an Ly,(u) space for some p € (1, o) in such a way that ils image is the
range of a Lipsohite projection in L,(u), then X is isomorphic to & com-
plemented subspace of Ly, (u).

Foxr Lipschitz homeomorphisms we get the following

Tinoxrm 2.4. Let X be o separable Bomach space wilth the Radon—
Nikodgm Property, complemented in X**. If X is Lipschite homeomorphic
to another Banach space Y, then X is isomorphic to a complemented sub-
space of Y.

Proof. Lot f: X-»Y be a Lipschitz homeomorphism between X
and Y. By Theorem 1.8, f~' is a.c. differentiable and every such differ-
ential is an isomorphic embedding of Y into X. Thus ¥ has the RNP.
Again, by Theorem 1.3, f is a.e. differentiable and to complete the proof
it is enough to apply Prop. 2.1.
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In particular, we have .
CorOLLARY 2.5. If a Banach space is Lipschite homeomorphic o 1,,
then it contains an isomorphic copy of 1, as a complemented subspace.

The results above imply that for large classes of Bamach spaces
Lipschitz equivalence implies linear equivalence. The main result of thig
section is the following

TrEOREM 2.6. Let X and Y be separable dual Banach spaces and
assume that the pair X, Y satisfies the Decomposition Scheme. If X and ¥
are Lipschitz homeomorphic, then they are isomorphic.

Proof. It is easy to see that the assumptions of Theorvem 2.4 aro
satisfied. Thus X is isomorphic to & complemented subspace of ¥ and ¥V
ig isomorphic to a complemented subspace of X. This together with
Pelezyriski’s Decomposition Theorem 1.4 concludes the proof.

A variation of Theorem 2.6 is

THEOREM 2.7. Let @ Banach space X be Lipschite homeomorphic to
@ separable, reflemive Banach space Y. Assume thet the pair X, Y satisfies
the Decomposition Scheme. Then X is isomorphic to Y.

Proof. An eagy proof is omitted.

Using the decomposition properties of particular spaces, we obtain
from Theorem 2.6 and 2.7

COROLLARY 2.8. A dual space Lipschitz homeomorphic to Iy is8 iso-
morphic to 1,.

CoRrOLLARY 2.9. Let p € (1, oo) and let X be isomorphic either to L,[0,1]
or to 1,. Then every Banach space Lipschite homeomorphic to X is isomorphie
to X. .

An analogous result for an essentially wider class of Banach spaces
can be obtained in the same way by relying on (D3) instead of (D2).
It was shown in [20] (cf. also [26], Prop. 2.d.4 and 2.d.b) that superre-
flexive rearrangement invariant function spaces on [0, 1] (for the defi-
nition see [26], Ch.2.a) satisfy (D3) of the Decomposition Scheme. Con-
sequently we have ‘

CororrAryY 2.10. Let Y be « superreflexive rearrangement invariant
Junction space on [0,1]. If X 48 Lipschits homeomorphic 10 ¥, then X is
isomorphic to ¥. In particular, this statement holds when Y = Loy [0, L],
where M is a reflewive Orlice fumction.

Ooncluding this topic, let us mention that Theorem 2.6 in particular
accomplishes the Lipschitz classifiation of tho following classes of Banach
spaces:

Separable dual Banach spaces which are isomorphic to their squares,
including : .

all spaces with a boundedly complete Symmetric basis, and
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all reflexive rearrangement invariant function spaces on [0,1] or
{0, 00). . ;

The rest of this section is devoted to the question what can be said
if we have no additional information about X (such as X being comp-
lemented in X**) but instead some more about ¥. It turns out that we
can §till agsert the existence of a Lipschitz projection (instead of & linear
one).

We need the following .

LmMmA 2,11, Let X be a Banach space, and ¥ a dual Banach space.
Then each Lipschitz map f: X—Y can be emtended to o Lipschilz map
Fo X -

Proof. We shall apply the principle of local reflexivity [24]. It
suits our purposes to use the ultrapower version of it ([15], Prop. 6.7):
There exists an ultrafiltor # on a set I and an isometric embedding
J: X™—>(X)q such that J restricted to X is the canonical embedding
of X into (X)g. We define a map F: (X),—~Y by

I((w)q) = w*—limf ().
w

Sinco f is Lipschitz, the family (f(#,));ris uniformly bounded and
lim fjy ;— @y 4l == 0 implies lim || f(w, ;) —f(2,)l = 0. Thus, F is well-
@ w
defined. I is a Lipschitz map since
[2((#1,0)e) =F (@ )a)]| = |w*— 1;‘[1‘11 (£ (0,0) —F (2,0))|

< Bl f (@) — fa, )l < I{fliqin ll251,5 ~ 3 41l
%

= K |(®y )0 — (@ )all-
Obviously, we have for » ¢ X
I (Jw) = w*—limf(e) = f(=),
wu

and we can therefore define the desired oxtension as f = Fod.

The next proposition is & variation on the theme of Proposition 2.1.

Trovosreion 2.12, Let f be o Lipschilz embedding of o Bamach spacé
X dinto o Banach space Y such that f(X) és the range of a Lipschilz pro-
geotion in Y. Asswume that f is Gateauw differentiable at 2, € X and that ¥
is complemented in Y. Then (Df)ay (X)) is the vamge of a Lipschitz pro-
Jjeation in Y. ‘ .

Proof. According ‘to Proposition 2.1, it suffices to show that X
is the range of o Lipschitz projoetion in X™**, Let = X** 1" be an exten-
sion of f (regardod as a -map from X into ¥**) to X**, which exists ibfcor&
ing to Lemma 2.(L. Furthermore, let my be a projection. from ¥™ onto
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Y, and m,x, a Lipschitz projection from ¥ onto f(X). Tt is now clear
that the mapping ng: XX defined by my = Fromxonpof is the
desired projection.

Proposition 212 yields immediately

THEOREM 2.13. Let @ Banach space X be Lipschitz embeddable in
a separable dual Banach space Y in such a way that its image is the range
of a Lipschitz projection in ¥. Then X 4s isomorphic lo a subspace of ¥
which is the range of a Lipschitz projection in Y.

As a particular case of Theorem 2.13 wo get (compare also Cor. 2.5)

COROLLARY 2.14. If o Banach space is Lipschitz homeomorphic to 1,
then 4t is isomorphic to a subspace of 1, which s the range of a Lipschite
projection in 1,.

3. Lipschitz embeddings into dual Banach spaces. It follows from
Th. 1.3 that if a Banach space is Lipschitz embeddable in a separable
dval space Y, then it is isomorphic to a subspace of ¥. This section is
mainly devoted to the proof that, in fact, the agsumption of the separ-
ability of ¥ can be omitted.

Let ¥ =2* and f: X—>Y be a Lipschitz mapping. Then, we say
that f is w*-differentiable at ©, € X iff for every ¢ € X the limit

(3) wk —Tim I 20T T ) MENS

exists (in the w*-topology of ¥) and the mapping (D*f), (®) = Fi(y)
ig linear (in #). The mapping (D*f)xo is said to be the w*-differential of f
at ®, (compare [4]).

In the sequel by a Lebesgue measure on an n-dimensional Banach
space X we shall mean any measure on X which is an image of the Le-
besgue measure on R* via an jsomorphigm between .X and R" Sinco all
Lebesgue measures on X are equal up to a constant, the class of Lebosgue
zero-sets in » finite-dimensional Banach space is well-defined.,

LeMma 3.1 (w*-Rademacher Theorem). Let X be a finite-dimensional
Banach space, Z a separable Banach space, and f: X—>Z* a Lipschitz map-
ping. Then

(i) (D*f), ewists for almost all » e X,

(8) of If (@) ~f(@a)| < K |lwy—,)) for @y, 2, € X, then ICD*f)l < K,
whenever . (D*f), ewists,

() if, in addition, %oy —a,)| < |f(@)—F(@y)] for w.,w,eX, then,
Jor almost every x e X, (D*f), i8 an isomorphic embedding of X into Z*
with |(D*F);") < k=%

Proof. During the proof we shall skip all (standard) arguiments
showing that all sets and functiong involved are meagurable.
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(i): Bet @, (@) = {2, f(2)> for all n e N and » € X, where (z,) is an
arbitrary fixed sequence of points dense in the unit sphere of Z. By Ra-
demacher’s Theorem, all ¢,’s are almost everywhere differentiable. Thus

W = {0 e X: (Dp,), exists for every u e N}
is of full measure. Fix # ¢ W. For every ae X, ne N

) f@t e —f)
(Dr).(a) = 1im <z ferin i) >

8inco the #,'s are dense in the unit sphere of Z, the routine computations
show that A~(f (2 + Aa) —f(@)) is & w*-Cauchy system when A->0. Thus, for
every a € X, the limit (3) exists. Its linearity easily follows from the
linearity of (Dg,),’s. Hlence (D*f), exists for all z e W.
(if):
I(D*f)e(a@)]l = sup [y (D*f)a@))]

= gup |lim <zm w>'
neN | 2-»0 A

< sup fig,[|- K - llal| = K |al.
neN
(iii): Without any loss of generality assume % == 1. First, we claim
that, for every fixed a € X with |a] = 1, the set
M, = {weW: |[(D*f),(a)] > 1}

is of full measure. Indeed, assume the contrary. Then there is an 4 € X
with [la| = 1 and m e N such that the set :

N ={oeW: [(D*f) (@) < 1—1/m)

is of positive measure. By Fubini’y Theorem, there is a line L of the .form
L = {wy+ta: t e R} in X with the property that the 0ne-dimensxonal
Lebesgue meagure of LN is positive. Let » be a Lebesgue point of the
sot LN on the line L. Then there is an ¢ > 0 such that the Lebesgue

measure of the sot
A ={te(0,6): -ta e L)

is greator than s(1—1/(2Km)). Set B = (0, &)\4. Since
f (@ + ea) —fla)l| = slla|| = &,
one can find z € Z with ||2] = 1 such that ¢(e) —(0) > e(l —1/(2m)), where
() = <2, f(wo+1ta)) te [0, e].
Clearly, ¢ i8 a Lipschitz function with the Lipschitz constant not greater

for
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than K and therefore ¢’ () exists a.e. in (0 ) and |o' ()] < K for ¢t € (0, &).
On the other hand, ¢'(t) = <~, (D f ria(@)) for te A, a,nd we have

e1—1/(2m)) < (s f,p
(0,2)
< f<~’ (D" tal@)> @+ dez

v

< [l D*fum(a)ndt-uce/ 2Km)
A

< s(L—1/m)+&/(2m) = g1 —1/(2m)),

a contradiction, which completes the proof of the eclaim.
Now, let & be a countable dense subset of the unit sphc,re, in X
and let M = () M,. Then for every weM

aess
4) WD*F) (@)l = llal  for every ae o,
and M is of full measure. (iii) easily follows from (4) and the continuity
of (D*f),. i

Using the same arguments ag in the proof of the Infinite-Dimensional
Rademacher Theorem in [28], one can deduce from the lemma above
its infinite-dimensional version. So we omit its proof. (For statement (i)
see also [4]).

THEOREM 3.2 (Infinite-Dimensional w*-Rademacher Theorem). Let
X and Z be separable Banach spaces and let f: X—2Z* be a Lipschitz map-
ping. Then

(i) (D*f), ewmists for almost all © e X,

(ii) if (D*f), ewists, then |(D*f),| < K, where K, is the Lipschitz
constant of f,

(i) 4f f is a Lipschite embedding, then for almost oll x € X, (D*f), is
an isomorphic embedding of X into Z* with [(D*f)7M < K.

Theorem 3.2 yields directly

CoROLLARY 3.3. If a separable Banach space X is Lipschite embeddable
into the dual Z* of a separable Banach space Z, then X is isomorphic to
& subspace of Z*.

The following proposition, which will enable us to pass from sep-
arable Z in Corollary 3.3 to the general case, is an extension of a result
of Lindenstrauss [22] on projections in nonseparable reflexive Banach
spaces (cf. also [3], [17]).

PROPOSITION 3.4. Let X be a Banach space and Y o subspace of X.
Then there exists a subspace Z of X comtaining Y such that densZ = dens Y.
and there is an isometric embeddwg T: Z*—X* with the property that (g, Te*>

=<{z,2*> for every 2 €Z and 2* € Z*. In particular, T(Z*) is norm-one

complemented in X*.
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Proof. Take a gobspace Z of X containing ¥, an ultrafilter # and
an isometry 8: (Z)q—(X), which satisty the conclusion of the Loewen-
heim—-Skolem Theorem 1.6. The embedding 7: Z*—>X* iy defined by
T =J%8NJ, % where J% X and J, o+ are the canonical embeddings of X
into (X)y and /"‘ into (Z)y, 10&‘])0(1.1v01y Then, for zeZ and 2* e 2",
we have

&y Le¥y == e, Kf(S"l)*Jz*z*> =8 xz2, I x2*>
=3 (g, Jop 8 = lim (e, 2> = (g, 2%>.
£
This completes the proof.
Now we are ready to prove

Tuwormm 3.5. If a seporable Banach space is Lipschite embeddable
nto a dual space X, then it is isomorphic to a subspace of ¥.

Proof. Let ¥ = 2Z" and let f: X—Z* be a Lipschitz embedding
of a separable Banach space X into Z*. Choose Z, = Z so that Z, is separable
and norming for the closed linear span of f(X). By Proposition 3.4, there
exists a separable space Z, such that Z, = Z, = Z and Z} embeds iso-
metrically into Z*. Let Q: /*——)-/* be the restriction map. Then, gince
Z, is norming for f(X), the map Qof is a Lipschitz embedding of X into
Zy . But Z, is separablo, and. so, by Corollary 8.3, X is isomorphic to a sub-
space of Z. But ZY, in turn, is isomorphic to a subspace of Z* = ¥,
which (omplm o8 the proot.

Note that it follows directly from the estimates in Theorem 3.2
and the proof above that the isomorphism constant of the embedding
of X infio ¥ does not exceed the Lipschitz embedding constant of f.

Let us also mention that Theorem 3.5 is no longer true if ¥ ig an
arbitrary Banach gpace. Indeed, by a result of Aharoni [1] cach separable
Banach space is Lipschitz embeddable into ¢, while obviously not always
lincarly embeddable in ¢,.

CoroLLARY 3.6, If X and Y are separable Lipschitz homeomorphic
Bamach spaces, then X embeds isomorphically into Y** and ¥ into X**.

CoroxwAry 3.7, Lipschitz homeomorphic dual spaces have the same
separable linear dimension (i.e. cach separable subspace of ome of them
embeds isomorphioally into the other).

Although it in off tho major theme of the present paper, it seems
worthwhile to mention the following observation, which is a consequence
of Proposition 3.4 and concerns the problem of existence of nontrivial
complementod subspaces in arbitrary Banach spaces (c¢f. [23], p. 166).

JOROLLARY 3.8. Let X be a dual Banach space with dens X > 2%
Then X contains a nontrivial complemented subspace. More precisely, there
awisls am infinite-dimensional subspace ¥ < X with dens ¥ < 2% and
o projection of norm one from X onto Y.
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Proof. Apply Proposition 3.4 to the predual of X and note that
the dual of a separable space has density character not greater than 2%,

4. Uniform homeomorphisms and isomorphism of ultrapowers. We
shall now apply the results of the previous sections to the study of uni-
form equivalence of Banach spaces. The connection between uniform
and Lipschitz mappings is supplied by ultrapowers, as the following
proposition shows.

PrOPOSITION 4.1. Let X and Y be Banach spaces and let % be a count-
ably incomplete ulirafilter. Then the following holds:

(i) If there is a uniform embedding f of X into Y such that f(X) ds

the range of a uniform projection in XY, then there evists o Lipschitz embedding
I of (X)g into (X)4 such that there is a Lipschite projection from (X)g
onto F((X))

(i) If X and X are uniformly homeomorphic, then (X)g and (X), are
Lipschite homeomorphic.

Proof. (i): Let myx be a uniform projection from Y onto f(X)
and set g =f"o Tyx)- We may assume without loss of generality that
F(0) = 0. Define f,(») = n~f(nw) for each positive integer »n and z ¢ X.
We claim that the family f, is uniformly equicontinuous (compare [29],
Lemma 2). Given &> 0, choose § >0 such that |, —,| < ¢ implies
IIf (@,) —f(2s)]| < &. We shall show that, for all =,

(8) Ifo(@) —fulwdl <& 3 |y —a] < 6.
Indeed,
Ifa (1) = Fu (@)} = 27 (| f (na0,) —f (masy) |
n—1

<™ | F((0 —T6) oy B — F (0 — Ko —L) vy -+ (B --1) g

<nns =g,
which proves (5). Applying Lemma 1.2 for § =1 gives a constant K
such that |[f(@,)—F(®:)ll < K |jw, —,)| whenever [, —a,|5> 1. For tho
Ja's we' get ‘
(6) 1Fa(#3) — o (@2) | < I [0y — 04|
whenever |z, — ]| > n~". Next, we define the mapping I': (X)g=>(¥)y.
Since % is countably incomplete, there is a family (I,),.~ with I, = I,
I,e% for all m, and (N I,, = &. We may assume that I, = I and that

Nu=]
(I,)is decreasing. For ¢ € I,\I,,,, we put f; = f,. Now, given (,)y € (X)g,
we define
F((‘”ﬁ)w) = (fi(wf))'w;
thus F is the ultraproduct (f;), of the family of mappings (fi)iex- By (8),
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(6) and_‘r:he assumption f(0) = 0, the family {f:(®) )iex is bounded whenever
(@) i8. Furthermore (5) guarantecs that Hm @, —a,,| =0 implies
L3

liinllft(wm) —fi(@,5)] = 0. Consequently, F' is well-defined. We claim

that F' is Lipschitz. Namely, given (w;,)y, (#;,)q € (X)a,s (@ 1)e # (%12)ars
there i8 & positive integer n such that [(w;,)g — (#;)q] > n~'. By defini-
tion, this means that there exists o D e with ey, — ;.1 > 0=t for
all 4 €.D. The set Dnl, also belongs to the ultrafilter %. By (6) and the
definition of the fs we have, for all 4 e DnlI,,

Ife(@i1) = Felm o)l < Kllgy — ;]
Pagging to the limit along the ultrafilter %, we get
|| (fel@e,))a— (Fa@i0))el] < K g 1) — (21 )a
which proves the claim.

Similaxly, wo can define g, (y) = n~'g(ny) and ¢ = (g,),. The argu-
ment above shows as well that ¢ is Lipschitz. On the other hand, since
9.0fn = Ix, we have GoF = (§,),0(f))y = Iix),- This concludes the
proof of (i). .

Part (ii) follows in the same way, with g = f~' if we observe that
in this case also (f)ao(9)e = I(Y)w.

In the sequel we shall need the following consequence of Prop-
ogition 4.1, essentially due to Ribe [34].

OororLARY 4.2. If a Banach space X embeds uniformly into a super-
reflewive space Y such that the image of X 4s the range of a uniform pro-
jection in Y, then X is superreflexive as well.

Proof. Let % be a countably incomplete ultrafilter. By Proposition
4.1, (X)q is Lipschitz embeddable into (X¥),. Since ¥ is superreflexive,
(Y)q is also superxeflexive (cf. [157, Ch. 6). By Theorem 1.3, each separable
subspace of X (regarded as a subspace of (X)) embeds isomorphically
into (¥)g, and hence is supervefloxive. Therefore X itself is superre-
flexive.

The following result reflects Theorem 2.2,

Lrovosrmion 4.3, Let X be o Banach space which is uniforsly em-
beddable into o superveflomive space ¥ in such a way that ils image is the
ramge of & wmiform projection in Y. Then there exists an ultrafilter % such
that X s igomorphio 1o a complemented subspace of (X )y.

Proof. By the Loewenheim~Skolem Theorem 1.6, there cxists a so-
parable subgpace Z of X and an ultvafilter % such that (Z)g wnd (X),
are igometric. Wo may asgume that # is countably incomplete (if this
is not the case, replace % by % X ¥, where ¥ is any non-trivial ultrafilter
on N). From Proposition 4.1 we infer that there exist Lipschitz mappings
F: (Z)g>(Y)g and G: (Y)g->(Z)q with GoF = Izy. We define a map-
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ping f: Z->(X)q by f = Fody, where J; is the canonical ombedding
of Z into (Z)y. Furthermore, by Corollary 4.2, X and hence Z are super-
reflexive. Therefore, we can define g: (Y)y—Z by g = @z06@, where
Qz: (Z)y~Z is the canonmical projection of (Z)g onto Z. Then gof = I,
and (Y), is reflexive—so we are able to apply Theorem 2.2. Thus we
conclude that Z is isomorphic to a complemented subspace of (X),.
Taking ultrapowers, we got (Z)g <, (¥)gxa, a0d hence (X)y <, (¥)gyq.
Since X is reflexive, it is complemented in (X), and we conclude finally
that X is isomorphic to a complemented subspace of (X)gy.4, which
completes the proof.

PrOPOSITION 4.4. Let X and Y be uniformly homeomorphic Banach
spaces and assume that Y is superreflemive. Then there ewists am ultrafilter
U such that (X)y is isomorphio to a complemented subspace of (Y), and
(X)y is isomorphic to a complemented subspace of (X)g.

Proof. By Proposition 4.3 and Oorollary 4.2, there exist ultrafilters
%, and %, such that

(7) X 4 (Y)a,
and
(8) Y < (X)ay-

The Keisler—-Shelah Isomorphism Theorem 1.5 asserts that there is an
ultrafilter %; such that (X)q, and (X)a,xa, are isometric. Taking powers
with respect to %, in (7) and (8), we get

(9) (X)ﬂlls Se (Y)‘ﬂlxwa
and
(10) (Day S¢ (X)gy-

Applying Theorem 1.5 once more, we find an ultrafilter U, such that
(Yo xaryxa, 18 isometric to (Y)ayxa,. From (9) and (10) we derive

(X)qzsxqq Se (Y)wsxq/4
and

(:Y)%x% Se (—X)%x414‘

We set % = U, x%,, which accomplishes the proof.

The following theorem is the main result of this section. Tt shows
that in many situations uniform equivalence of Banach spaces implies
linear equivalence of closely related structures—the ultrapowers of the
original spaces.

TemorEM 4.5. Let X and Y be Banach spaces. Assume that Y is super-
reflemive and that the pair X, Y satisfies the Decomposition Scheme. If X
and X are uniformly homeomorphio, then they have isomorphio ultrapowers,
i.e. there ewists am wlirafilier % such that (X)g and (X)q are isomorphic,
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Proof. In view of Proposition 4.4 and Pelezyniski’s Decomposition
Theorem 1.4 it remaing to check that the ultrapowers (X), and (X)e
also sutisfy the Decomposition Schenie. In the cage of (D) this is ob-
vious: X o X @X implies (X)y o2 (X)y, D(X), (and, of course, the same
holds for Y). We shall verify (D3) only, because the proof for (D2) is
technically quite similar, only easier. So assume that Y is s Banach
lattico and that ¥ () <, Y. Then (¥(ly))y <,(¥)y. The ultrapower
(X)q 18 & lattice as well, and weo claim that

(Y)vv/(lz) Se (Y(lz))%-
To prove the eluim, wo first dofine & wap J, from the dense subset of
{X)g (L), consisting of the sequences with only finitely many non-zero
coordinates, into (¥ (Iy))y, Dy setbing

Jo(((’/¢,1)4/7 vy Wim)as 0,0, ) = ((%,17 vy Yo 0,0, ---))%-
Jy is an igometry. This is a consequence of the identity

The verification of (11) can be carried out in a standard way: Approxi-
n

mate the function ( 3 |£,[))"*: R*»R by functions which are obbtained
Jeen

from fi, (¢, ooy 8,) =1y, k=1, ..., %, by applying linear operations finitely
many timos ox tuking finite suprema (i.e. functions from s, in the no-
tation of [26], Ch.T.d). Then (11) follows from Th.l.d.1 of [26] and the
faet that in ultrapowers of Banach lattices sup ((%)e, (¥:)e) = (Sup (%, ¥;))e-

Wo extend J, to an isometry J from (X)g(1,) into (¥ (Z)). In order
to define o projection onto the range of J, we denote by P, the projection
onto the nth coordinate in ¥ (I,), and set for (v)y e (X (1))

Q((’Uz)w) =2 ((Px'”i)%; (Pats)ay ) _

Again, by (11), @ is a linear map from (¥ (I,))e into (¥)g(ly) of norm 1.
Sineo ¥ in guporvetloxive, (X)), is roflexive and hence (Y)g(ly) = (X)g (1),
(seo [267, p. 47). T romaing to define P == J@, which yields the desired
projection wnd compleies the proof.

A divoet congogquones of the theorem above is

COROTLARY 4.6, Let Y be a superreflenive rearrangement invariant
Junetion space on [0, 1], If X ds uniformly homeomorphic to Y, then X
and X have isomorphie ullrapowers.

An analogous statement wlso holds for £, spaces, p € (1, o). Namely,
we have

Cororrawy 4.7, Let p & (L, o). If X 48 uniformly homeomorphic to
an 2, space Y, then X and ¥ have isomorphic ultrapowers.
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Proof. According to a vesult of Stern ([37], the proof of Th. 4.4)
there is a countably incomplete ultrafilber # such that (Y)y =2 (I,)z.
By the proof of Theorem 4.5 of the present paper (or by Lemma 4.1 (i)
of [37]), (I,)s satisfies (D2) of the Decomposition Scheme. Therefore
(¥)q satisfies (D2), as well. On the other hand, Proposition 4.1 shows
that (X), and (Y), are Lipschitz homeomorphic. Since Y is superreflexive,
it suffices to apply Theorem 4.5 to the pair (X)g, (¥Y)g.to obtain the
degired result.

A consequence of Corollary 4.6 is the fact (due to Ribe [35]) that
for p e (1, co) the class of £, spaces is stable under uniform homeomor-
phism. Using Proposition 4.3, we get a slightly stronger result (which is
implicitly contained in the original proof of Ribe asg well).

COoROLLARY 4.8. Let p € (1, o) and let X be a Banach space which
is uniformly embeddable into an &, space Y in such a way that the image
of X is the range of a uniform projection in Y. Then X either is an &, space
or 1s isomorphic to a Hilbert space.

Proof. By Proposition 4.3, X is isomorphic to a complemented
subspace of some ultrapower (¥),. But (¥), is an £, space, which implies
the desired result (see [24]).

Concluding this section, we shall show that an analogous result
holds for £, spaces. We derive this from a result of Lindenstrauss, using
the techniques developed above.

THEOREM 4.9. If o Banach space X is uniformly embeddable into an
L, space Y in such a way that its image is the range of a uniform projection
in ¥, then X is an L, space. In particular, the class of &, spaces is stable
under uniform equivalence.

Proof. In [21], Cor. 4 of Th. 3, Lindenstrauss established the fol-
lowing: Let Z be & Banach space complemented in Z**, which is uniformly
embedded into a space I, (I), for some set I, in such a way that the image
of Z is the range of a uniform projection from I.,(I"). Then Z is an injective
space.

Now, let X and ¥ be as in the hypothesis of the theorem. By the
ultrapower version of local reflexivity ([15], Prop. 6.7), there cxists
a (countably incomplete) ultrafilter # such that X** ig isometric to w coni-
plemented subspace of (X),. On the other hand, according to Prop-
osition 4.1, (X)q is Lipschitz homeomorphice to & subset of (¥), which is
the range of a Lipschitz projection in (¥),. This means that there
exist Lipschitz maps f: X —(¥), and g: (¥)y—~>X™ with gof = Igu..
The ultrapower (¥)q is an &, space, and therefore its seccond dual (¥)5*
ig an injective space, [24]. By Lemma 2.11, ¢ extends to a Lipschitz
mapping §: (¥)3'—X". This shows that X**is Lipschitz embedded into
(X%, so that the image admits a Lipschitz projection from (¥)%*. Since
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(X)4, a8 an injective space, is isomorphic to a complemented subspace
of some 1,(I") and X™ is complemented in its second dual, we can now
apply the result of Lindenstrauss quoted above. Hence X** is an injective
space and, consequently, X is an %, space, [24].

5. The local structure of uniformly homeomorphic Banach spaces.
Ribe [34], [36] has established general connections hetween wuniform
equivalence and the local structure of the spaces involved (which he
used to deduce Corollary 4.8 of the previous section). The proof required
a detailed combinatorial analysis of so-called finite point meshes. The
aim of this gection ig to give short proofs of these results based on the
theory developed in the previous chapters, which means using essentially
only differentiability and ultrapower techniques.

To state the first result, recall that for Banach spaces B and F with
dim B = dimI < co the Banach~Mazur distance is defined as d (¥, F)
= I {IZNIZY: T is an isomorphism between ¥ and Fi.

TunorEM 5.1 (Ribe [34]). Let X and Y be uniformly homeomorphic
Banach spaces. Then there exisls a constant 0 = 1, such that for each finite-
dimensional subspace Il = X there ewists a subspace F < Y of the same
dimension as B with (B, F)< 0.

Proof. By Proposition 4.1, there is an ultrafilter % such that (X),
and (Y), are Lipschitz homeomorphic. Let K denote the corresponding
Lipsgchitz homeomorphism constant. Given & finite-dimensional B = X, B
can be congidered as a subspace of (X),; hence it is Lipschitz embedded
into (X)q. Corollary 3.6 and the remark after Theorem 3.5 show thatb
there is o subspace ¢ < (¥)3* such that d(¥, @) < K. Applying the prin-
ciple of local reflexivity, [24], and using the local structure of ultra-
powers, [15], Prop. 6.1, we find for each &> 0 a subspace F < ¥ with
d(F,G) < 1-Fe Hence d(B, F) << K(1-¢) and setting ¢ = K(1+e¢) for
some &> 0 completes the proof.

For superrcflexive spaces, the following stronger result holds.

Tunorem 5.2 (Ribe [361). Assume that the Banach spaces X and Y
are wniformly homeomorphic and that Y is superreflexive. Then there ewists
a constant = 1 such that for each finite-dimensional subspace B < X and
cach positive integer n there 48 a Uinear embedding 8: H—Y with the fol-
lowing property:

Whenever 1 is an n-dimensional subspace of X, there is o linear map-
ping T: S(B)--F-»X such that T8 is the identity on B and ||S||T) < C.

Proof. It follows from Proposition 4.3 that X <, (Y), for some
ultrofilter # on a set I. Let J: X—(Y), be an embedding and let P:
(X)g—>J (X) be a projection. Fix any &> 0 and put € = |J| |J P[4+ .
Let B <« X De a finite-dimensional subspace and fix » e N.
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The operatior J, restriced to Z, induces a family of mappings 8;: B,
i € I, in the following way: Choose any basis {#,}5.; of B, put y, = Ju,
€ (Y)q and take representations y, = (¥;,)y- Define §;, for ¢el, by

8, =4, for IL<k<m

and extend by linearity to the linear span of @,'s. We claim that among
the 8,’s there is at least one which satisfies the conclusion of the theorem
(with § = §;, the fixed » and the constant ¢ above). Assume the claim
is false. Thig means that:

(*) For cach i el we can find an n-dimensional subspace I, = ¥
such that, whenever I': §,;(¥)+F,—X is a lincar operator with 1'S; = I,
then [|8,|[[T]] > 0. Denote G; = 8;(H)+F,. The ultraproduct (G;), can
be identified with an r-dimensional subspace @ of (¥)y, where 7 <X m-f-n.
We shall show that the operator J~'P, restricted to &, induces mappings
T;: G;—X, for i eI, which will, at least for some ¢ eI, contradict (x).

To this end, note that the family {y,}i., belongs to & and forms
a basis sequence. Hence it can be extended to a basis {y,};.., of G. Choose
representations of the remaining y, = (4, x)g, for m < k< r with ¥, , e &
for i el and m < b <r. It is easily checked (cf. e.g. the proof of Prop.
6.1 in [15]) that there is a set D, e % such that, for 4 e Iy, the family
{Y:,14k=1 I8 @ basis of G;.

For 4 eD; we can now define

T, =J Py, for 1KEk<r.

Extend I; by linearity to the whole of @; and set T == 0 for ¢ e IND;.
By the above definitions, 1';8; = Iy for 4 € D,. It is casy to check (com-
pare again Prop. 6.1 in [15]) that

Lim 18} << [l1]
L4

and
1im 1250 < P

Henee there is a set Dy e % such that |8, |7, < || ~2P] - e == ¢ for
ieD,. Any T; with i € D,nD, will contradict (x). Since D,nD, +# &, this
concludes the proof.

It seems worthwhile to summarize the essential direction of the
argument above. What we actually did in order to prove Theorem 5.2
was “localizing” Theorem 2.2, i.e. passing to ultrapowers, applying (via
Proposition. 4.3) the infinite- dunenmonoul Theorem 2.2 to them and finally
transferring the outcome back to the original gpaces, where it takes local
shape. Similarly, the proof of Theorem 5.1 consists in fact of the localization
of Corollary 3.6. We refer to [15], Oh. 9 and 10, for further applications
of this technique.
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6. Comments and Problems. After the stnkmg example given by
Aharoni and Lindenstrauss [2], the problen) remains open whether each
two reflexive or separable uniformly (or Lipsehitz) homeomorphic Banach
gpaces are isomorphie. Also, one might ask generally what cam be said
about the linear structure of uniformly (Lipschitz) homeomorphic Banach
gpaces. Tn the sequel we shall point out some: parfial problems, which
arise in connection with the contents of the present paper. We also add
some comments concerning the results of the particular sections.

Seetion 2: Tho only gpace for which the problem of Lipschitz classifi-
cation had been golved before is the Hilbert space [13]. Since the. differen-
tiation technique applies, by definition, to separable Banach spaces
with the RNT, the only “classical” separable Banach space with the
RNP for which we are now unable to selve the problem is I,..In view
of the results in Section 2, to solve the problem of Lipschitz classification
for I, it suffices to give a positive answer to any of the following two
problems: L .

Prosrum 6.1. Is every Banach space, Lipschitz homeomorphic to
2 separable dual gpace, isomorphic to a dual, space? | .

Prosriv 6.2, Is every Lipschitz complemented subspace of 11 linearly
complemented in it?

We do not know what is essential in the Aharom—-Lmdenstrauss
example [2]. Nonreflexivity ¥ Nonseparability 2 ‘Or hoth? However, if we
take into account Theorem 2.7, there seems to be a good chance for a po-
sitive answor to - .

ProvreM 6.3. Is every Banach space, Lipschitz homeomorphic to
a separable reflexive Banach space X, isomorphic to X?

In the context of Pelezyrski’s Decomposition Method, the following
problem is important. T

Prosrum 6.4. Let X be a separable reflexive Banach space isomorphic
to ity Cartesian square. Is every Banach space, Lipschitz homeomorphic
to X, isomorphic to its square as well?

A positive angwer to Problem 6.4 would, imply that a Banach space
Lipschitz homeomorphic to a geparable reflexive Banach spu.ce X with
a gynunetric basis is isomorphic to X. .

Tho regults of Section. 2 admit some extensions. Since the differen-
tiation wrgument is of local character, all the corresponding results of
this section remain valid (after obvious modlﬂcatmns) if wo replace Lip-
schitz homeomorphisms (or embeddings) of gpaces by Lipschitz homeo-
morphigmg (resp. embeddings) of their open subset. In pa,rmculwr, we
have the following wversion of Theorem 2.6!

TiunoreM 6.5. Let X and Y be separable dual Bamach spaces such
that the pair X, Y satisfies the Decomposition Scheme. If an open subset
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of X is Lipschitz homeomorphic to an open subset of Y, then X is isomor phw
to Y.

Finally, we want to mention that all Lipschitz, isomorphism or
embedding constants for the mappings obtained can be computed directly
from their constructions. For example, in Proposition 2.1 the Lipschitz
congtant of the projection onto Df(X) ig less than or equal to Kfo_1 K, _—
This remark concerns also the subsequent chapters. E.g., in the homeco-
morphism case of Proposition 4.1, the constant of the produced Lipschitz
homeomorphism between (X), and (Y)gq is equal to 0y0p-1, where ¢
denotes the “best Lipschitz constant for large distances” of f, i.e.
O, = inf{C: there exists an r> 0 such that ||f(z)—f(y)| < Cllw—y| for
le—yl =}

Section 4: A uniform eclassification of Banach spaces seems to be
far from a solution. The following problem, which is suggested by the
results.of Section 4, might be more accessible:

ProBLEM 6.6. Do uniformly homeomorphic Banach spaces have
igomorphic ultrapowers (i.e: if X and ¥ are uniformly homeomorphic,
does there exist an ultrafilter % such that (X)y and (¥), are isomorphic)?

- We feel that an important special case is the following

PrOBLEM 6.7. Do superreflexive uniformly homeomorphic Banach
spaces have isomorphic ultrapowers?

In connection with Problem 6.6 one might Wonder whether the two
spaces exhibited. by Aharoni and Lindenstrauss [2] bave igomorphic
ultrapowers. As the following proposition shows, they do (thus supporting
the hope for a positive solution of Problem 6.6).

PROPOSITION 6.8. Let I'be a set of cardinality 2%, let X = span {c,(N)U

(xN yer} S by where (N,),.p 8 a family of almost disjoint subsets of
N, and lgt ¥ = co(I"). Then X and Y have isomorphic ulirapowers.

Proof (Sketch). Let us say that a Banach gpace Z, Z = X is an
clementary subspace of X if Z satisfies the conclusion of the Loowenheim—
Skolem Theorem 1.6 (i.c. if there is .an ultrafilter # and an isometry §
such that the diagram in Th. 1.6 commutes). Using Theorem 1.6 and tho

structure of X, we .can find an alternating chain of separable subspaces
of X,

N)=XycZyc X, Z,..

such that each Z, is an elementary subsp&ce of X while each X, is of
the form

span{co(N)u (lN,,)a'eF'} ’
with I countable (depending on n). Obviously | X, is then of the suine

L - e n
form, and it is vt difficult to sce that such a space is isomorphic to ¢,(N).
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On the .other hand, the XBlementary Chain Theorem of model theory ([6],
Th. 3.1:13) implies that | J X, = |J Z, is an elementary subspace of X.

Consequently X and ¢,(N) have isomorphic ultrapowers. The same
approach shows that ¢,(N) and ¢, (I") have isomorphie ultrapowers (cf.
also [177). Finally, we apply iterated powering asin the proof of Prop-
position 4.4.

The two problems above are clogely related to those concerning
Lipschitz classification. Indeed, a positive solution of Problem 6.3 implics
a positive rolution of Problem 6.7. Similarly, a positive angwer to thé:
general separable case of Lipsehitz clagsification (mentioned at the begin-
ning of thiy section) would give a positive answer to Problem 6.6. To
see this, use an clemientary chain argument as above together with the:
following observation: Given s Lipschitz homeomorphism f: X— ¥ and
separznblel gubspaces X, < X, ¥; = ¥, there exist separable subspaces
X, Y, with XX, X, Yoo ¥, =« ¥ and f(X,) = Y;.

" Although there ig mo converse implication, we are convinced that
a positive result concerhing say, Problem 6.7, might also give some olué
for Problem 6.3.

Another related question concerns the classes 2. As follows from
Ribe’s result, Corollary 4.8, and. Theorem. 4.9, thcse clagses are stwble
under uniform homesmorphisms for 1 < P< < oo. There remains

. PropuEM 6.9. If .a Banach space X .is umfoamly homeomorplic to
an %, space, is X Mselj an %y 81)403?

Obwously, an affirmative amswer to Problem 6.6 would solve Prob-
lem. 6.9 a8 well, ‘

Let us finally mentlon tha.t there are. separable Banach spaces,
namely the spaces l; and £,[0, 1], which have isomorphic ultrapowers,
[37], but are not uniformly homeomorphic [14]. Similarly, the spaces
1, and L,,[O 1] have isomorphie ulfrapowers. Therefore, neither Theorem
4 5 nor amy other Jocal approach can distiguish them with respect to
uniform cquivalence. This leaves open the following problem (cf. [23],
Problem 3).

ProprEm 6.10. Let 1 < p < oo, p 2. Ave the spaces 1, and Lp [o, 1]
uniformly homeomorphic?.

Segiton 5: Oonbmmng the idea of the preceding remark, lot us noté
the following: In the proof of Ribe’s two theorems, 5.1 and 5.2, we did
not exploit the whole uniform homeomorphism but rather ity local action
only. In fact, the proofs show that both theorems hold true if we replace
the ‘agsumption “X i§ vniformly homeomorphie to ¥” in the first cagé
by “X is Lipschitz embeddable into some ultrapower of ¥” and in the
second case by “X is Inpschltz homeomorphic to o Lipschitz complemented


GUEST


250. S. Heinrich, P. Mankiewicz
guibiet of some ultrapower of ¥?”. Therefore, it is mot difficult to-see that
 the following “local Lipschitz” variant of Theorem 5.1 also holds:

THEROREM 6.11. If there is @ K =1 such thut each finite subset A of
X satisfying @y —2, = 1 for all o, #2535 %) 5,6 A, “embeds ‘into Y ivith
Lipschite embedding constant not greater thaw K, then cach finite:dimen-
sional subspace of X is isomorphically embeddable into' Y ‘with: isomorphic
embedding constant not greater than K-+ for arbitrary &> 0.
© A gimilar but more involved version of Theorem 5.2 can also be
given. Both versions can be obtained also by modifying Ribe’s original
Proofs. We want to stress the following fact: In view of these versions
of Ribe’s theorems it is clear that both of them belong to step B, as de-
scribed in the introduction, and. are of local character. It scems that the
best hope for progress in the problem. of uniform classification’ of Banach
spaces lies now in achieving some improvements in step A; based on
replacing the loeal use of the Corson—Klee Lemma by some global argu-
ment which will preserve the information that we begin with a sur]eotwe
homeomorphism. So far we have no idea how to: ma:ke it.

il | i ¥ o i $
. vl
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