

- [21] A. Pietsch, Nuclear locally convex spaces, Ergebnisse der Math. 66 (1972), (2nd edition), Springer-Verlag.
- [22] M. Schottenloher, e-product and continuation of analytic mappings, Analyse fonctionnelle et application, Rio de Janeiro 1972; Hermann, 1975, 261-275.
- [23] R. L. Soraggi, Partes limitados nos espacos de germs de aplições holomorfas, Tese de Doutorado, Univ. Fed. do Rio de Janeiro, 1975.
- [24] L. Waelbroeck, The nuclearity of O(U), Proceedings of the Campinas Conference on Infinite Dimensional Holomorphy and Applications, Notas de Matematica 12 (1977), 425-435, North Holland.

DEPARTMENT OF MATHEMATICS UNIVERSITY COLLEGE DUBLIN BELFIELD, DUBLIN 4, IRELAND

> Received March 31, 1979 (1533) Revised version November 17, 1980

A generalization of the Banach-Stone theorem

by

KRZYSZTOF JAROSZ (Warszawa)

Abstract. We investigate the geometric properties of a Banach space X^* which give the following implication: There is an isomorphism between O(S,X) and O(S',X) with a small bound iff S and S' are homeomorphic.

Let X be a Banach space and let C(S,X) (C(S)) denote the space of X-valued (scalar-valued) continuous functions on a compact Hausdorff space S provided with supremum norm. The classical Banach–Stone theorem states that the existence of an isometric isomorphism from C(S) onto C(S') implies that S and S' are homeomorphic. Cambern [3] proved that this property is stable: If Y is an isomorphism of C(S) onto C(S') such that $\|Y\| \|Y^{-1}\| < 2$ then S and S' are homeomorphic.

Several authors have considered a vector-valued generalization of the Banach–Stone theorem. Behrends [2] proved that if the centralizers of X and Y are one-dimensional then the existence of an isometric isomorphism between C(S,X) and C(S',Y) implies that S and S' are homeomorphic. (For the definition and properties of the centralizer see [1], [2]). Cambern [4] proved that if X is a finite-dimensional Hilbert space and if Y is an isomorphism of C(S,X) onto C(S',X) such that $\|Y\| \|Y^{-1}\| < \sqrt{2}$ then S and S' are homeomorphic. In this paper we investigate the relation between geometric properties of X^* and the stability of X-valued Banach–Stone theorem.

THEOREM 1. Let S and S' be compact Hausdorff spaces and let X be a complex (real) Banach space. If there is an isomorphism Ψ of a complex (real) Banach space C(S,X) onto C(S',X) with $\|\Psi\| \|\Psi^{-1}\| \le k$ and if

$$\sup\{\|x_1^*-x_2^*\|:\ \|(x_1^*+x_2^*)/2\|=1,\ \|x_1^*\|\leqslant k,\ \|x_2^*\|\leqslant k\}=a<4/3,$$

then S and S' are homeomorphic.

We divide the proof of the theorem into a number of lemmas. Let K^* denote the set $\{x^* \in X^* \colon \|x^*\| = 1\}$ provided with the weak * topology. A Banach space C(S,X) can be identified in a natural way with a subspace of $C(S \times K^*) \colon \varPhi(f)(s,x^*) \colon = x^*(f(s))$. Hence any $F \in (C(S,X))^*$ gives

a Borel measure μ on $S \times K^*$ (usually μ is not uniquely determined). Let S_1 and S_2 be Borel subsets of S and denote by F_i the elements of $C^*(S, X)$ given by $\mu_i := \mu|_{S \times K^*}$, i = 1, 2.

LEMMA 1. For all scalars α and β ,

$$(1) \|\alpha F_1 + \beta F_2\| = |\alpha| \|F_1\| + |\beta| \|F_2\|,$$

(2) if
$$var(\mu) = ||F||$$
 then $||F_i|| = var(\mu_i)$, $i = 1, 2$.

Proof. (1) Fix $\varepsilon > 0$ and let

(a)
$$S_i = \bigcup_{j=1}^{\infty} A_j^i \cup B^i$$
 with A_j^i compact, $A_{j+1}^i \supset A_j^i$ and $\mu(B^i \times K^*) = 0$, $i = 1, 2$,

(b)
$$f_n \in C(S)$$
, $||f_n|| = 1$, $f_n |_{A_n} = 1$, $f_n |_{A_n} = 0$,

(e)
$$\alpha'$$
, β' scalars such that $\alpha\alpha' = |\alpha|$, $\beta\beta' = |\beta|$,

(d)
$$g_i \in C(S, X)$$
, $||g_i|| = 1$, $||F_i|| < F_i(g_i) + \varepsilon$, $i = 1, 2$.

Then for all n

$$\|\alpha' f_n g_1 + \beta' (1 - f_n) g_2\| \le 1$$

and we get

$$\begin{split} \|aF_1+\beta F_2\| &\geqslant \lim_n \left| \left[(aF_1+\beta F_2) \left(a'f_ng_1+\beta'(1-f_n)g_2 \right) \right] \right| \\ &= \lim_n \left| \left[|a| \int f_ng_1d\mu_1+a\beta' \int (1-f_n)g_2d\mu_1+\beta a' \int f_ng_1d\mu_2 + \\ &+ |\beta| \int (1-f_n)g_2d\mu_2 \right] \right| = |a| \int g_1d\mu_1+|\beta| \int g_2d\mu_2 \\ &\geqslant |a| (\|F_1\|-\varepsilon)+|\beta| (\|F_2\|-\varepsilon). \end{split}$$

(2) If $var(\mu) = ||F||$ then

$$\operatorname{var}(\mu) = \|F\| = \|F_1 + F_2\| \le \|F_1\| + \|F_2\|$$

 $\le \operatorname{var}(\mu_1) + \operatorname{var}(\mu_2) = \operatorname{var}(\mu);$

hence we obtain $||F_i|| = \text{var}(\mu_i)$.

LEMMA 2. Let $s'_0 \in S$ and $y_0^* \in K^*$, and let G denote the functional on C(S, X) defined by $G(g) := y_0^*(g(s'_0))$; then $F := Y^*G$ is of the form

$$F(f) = ax_0^*(f(s_0)) + \Delta F(f)$$

where $x_0^* \in K^*$, $\Delta F \in C^*(S, X)$, $\alpha + \|\Delta F\| = \|F\|$ and $\alpha > \frac{2}{3}\|F\|$.

Proof. Let μ be a measure on $S \times K^*$ given by F with $\operatorname{var}(\mu) = \|F\|$ and let $S = S_1 \cup S_2$ be a partition of S into two disjoint Borel subsets such that $\operatorname{var}(\mu_1) \geqslant \operatorname{var}(\mu_2) > 0$ where $\mu_i = \mu|_{S_i}$, i = 1, 2. We have $F = \frac{1}{2} F_1 + \frac{1}{2} F_2$, where

$$F_1 := rac{\|F\|}{ ext{var}(\mu_1)} \mu_1, \quad F_2 := \Big(2 - rac{\|F\|}{ ext{var}(\mu_1)} \Big) \mu_1 + 2 \mu_2$$

and by Lemma 1 $||F_i|| = ||F||$.

Let $G_i := (\Psi^*)^{-1}F_i$ and let ν_i be measures on $S' \times K^*$ given by G_i with $\operatorname{var}(\nu_i) = \|G_i\| \leqslant \|\Psi^{-1}\| \|F\|$. We have

$$v_i = a_i \delta_{(s_0, y_i)} + \xi_i,$$

where

$$\xi_i = \nu_i|_{\{S'-\{s_0\}\}\times K^*}, \quad \alpha_i y_i^*(y) = \nu_i|_{\{s_0\}\times K^*}(y), \quad \alpha_i \geqslant 0$$

and $y_i^* \in K^*$. Since $G = \frac{1}{2}G_1 + \frac{1}{2}G_2$, we get from Lemma 1

$$y_0^* = \frac{1}{2} a_1 y_1^* + \frac{1}{2} a_2 y_2^*,$$

 $a_s + ||\xi_s|| = ||G_s||,$

$$-\xi_1 = \xi_2$$
 (as a functional on $C(S', X)$).

Let us assume $a_1 \ge a_2$; then we have

$$y_0^* = \frac{1}{2} \left(a_1 y_1^* + (k - a_1) \frac{a_1 y_1^* - y_0^*}{\|a_1 y_1^* - y_0^*\|} \right) + \frac{1}{2} \left(a_2 y_2^* + (k - a_1) \frac{a_2 y_2^* - y_0^*}{\|a_2 y_2^* - y_0^*\|} \right)$$

and

$$\left\|a_i y_i^* + (k - a_1) \frac{a_i y_i^* - y_0^*}{\|a_i y_i^* - y_0^*\|} \right\| \leqslant k;$$

by the assumption about the spaces X^* we get

$$\begin{split} a \geqslant & \left\| \alpha_1 y_1^* + (k - \alpha_1) \frac{\alpha_1 y_1^* - y_0^*}{\|\alpha_1 y_1^* - y_0^*\|} - \alpha_2 y_2^* - (k - \alpha_1) \frac{\alpha_2 y_2^* - y_0^*}{\|\alpha_2 y_2^* - y_0^*\|} \right\| \\ &= \|\alpha_1 y_1^* - \alpha_2 y_2^*\| + 2(k - \alpha_1), \end{split}$$

and hence

$$\begin{split} \|F_1 - F_2\| &\leqslant \|\mathcal{Y}\| \, \|G_1 - G_2\| \, = \, \|\mathcal{Y}\| \big(\|a_1 y_1^* - a_2 y_2^*\| + 2 \, \|\xi_i\| \big) \\ &\leqslant \|\mathcal{Y}\| \big(a - 2 \, (k - a_1) + 2 \, (\|G_1\| - a_1) \big) \\ &\leqslant \|\mathcal{Y}\| \big(a - 2 \, (k - \|\mathcal{Y}^{-1}\| \, \|F\|) \big). \end{split}$$

From the definition of F_i and Lemma 1 it is easy to check that $||F_1 - F_2|| = 4 \operatorname{var}(\mu_2)$, and finally we obtain

$$\begin{split} \operatorname{var}(\mu_2) &\leqslant \frac{\|\mathcal{Y}\|}{4} \left(a - 2\left(k - \|\mathcal{Y}^{-1}\| \; \|F\| \right) \right) \\ &\leqslant \frac{1}{3} \; \|F\| + \|\mathcal{Y}\| \left(\frac{a}{4} - \frac{k}{2} + \frac{\|\mathcal{Y}\| \; \|\mathcal{Y}^{-1}\|}{2} - \frac{1}{3} \right) < \frac{1}{3} \; \|F\|. \end{split}$$

Now we shall use the following

PROPOSITION. Let μ be a regular measure on S with total variation 1. If for every partition of S into two Borel subsets the measure of the smaller one is less than 1/3, then there is an $s_0 \in S$, $\mu(\{s_0\}) > 2/3$.

To end the proof we define

$$ax_0^*(x) := \mu|_{f_{\text{only}}K^*}(x), \quad x_0^* \in K^*, \quad \alpha > 2/3$$

and

$$\Delta F(f) := \mu|_{(S - \{s_0\}) \times K^*}(f).$$

It follows from Lemma 1 that the point s_0 in Lemma 2 is unique; thus, for each $y_0^* \in K^*$, Lemma 2 defines a function $\varphi \colon S' \to S$, $\varphi(s_0') = s_0$. Similarly for each $x_0^* \in K^*$ we get a function $\psi \colon S \to S'$, $\psi(s_0) = s_0'$ where s_0' is determined by

$$(\Psi^{-1})^*(\delta(s_0,x_0^*))(g) = \beta y_0^*(g(s_0')) + \Delta G(g),$$

 $\beta > \frac{2}{3} \|(\Psi^{-1})^*(\delta(s_0,x_0^*))\|.$

We shall prove that φ is a homeomorphism of S' onto S and $\varphi^{-1} = \psi$. LEMMA 3. φ and ψ are continuous.

Proof. Let $\varphi(s_0') = s_0$ and let U be a neighbourhood of s_0 . We shall find a function $f \in C(S, X)$ such that

(1)
$$y_0^*(\Psi(f)(s_0')) > \frac{1}{3} \|\Psi\|$$

and

(2)
$$|y_0^*(\Psi(f)(s'))| < \frac{1}{3} ||\Psi|| \quad \text{for} \quad s' \notin \varphi^{-1}(U).$$

The function $s' \to y_0^*(\Psi(f)(s'))$ is continuous; hence $\varphi^{-1}(U)$ is a neighbourhood of s'_0 and φ is continuous.

Retain the notation of Lemma 2. Let $\varepsilon = \alpha - \frac{2}{3} ||F|| > 0$ and let κ be a real continuous function on S such that

- (a) $\sup\{|\varkappa(s)|: s \in S\} = \varkappa(s_0) = 1$,
- (b) $\operatorname{supp} \varkappa \subset U$,
- (c) $|\mu|((\sup \varkappa \{s_0\}) \times K^*) < \varepsilon/2$.

Let $x_0 \in X$ be such that $||x_0|| = 1$ and $x_0^*(x_0) > 1 - \varepsilon/4$. Set $f := \varkappa \underline{x}_0$. We have

(1)
$$y_0^*(\Psi(f)(s_0')) = G(\Psi(f)) = F(f) = \alpha x_0^*(x_0) + \Delta F(\kappa x_0)$$

> $\alpha(1 - \varepsilon/4) - \mu|_{(S - \{s_0\}) \times K^*}(\kappa x_0) > \alpha(1 - \varepsilon/4) - \varepsilon/2 > \frac{2}{3} ||F|| > \frac{1}{3} ||\Psi||.$

(2) For $s' \notin \varphi^{-1}(U)$ let us consider the functional $\tilde{G} \in C^*(S', X)$, $\tilde{G}(g) := y_0^*(g(s'))$. By Lemma 2

$$\tilde{F}(f) := \Psi^* \tilde{G}(f) = \beta x_1^* (f(s)) + \Delta \tilde{F}(f),$$

where $\|\Delta \tilde{F}\| < \frac{1}{3} \|\tilde{F}\|$ and $s \notin U$. Hence we get

$$egin{aligned} y_0^*ig(arPsi_s(s')ig) &= ilde F(arPsi_s) &= ilde F(arpsi_s(s)\underline x_0ig) + \Delta ilde F(arpsi_s(s)) &\leq \|\Delta ilde F\| &\leq frac{1}{3}\|arPsi_s\|. \end{aligned}$$

The proof that ψ is continuous follows upon changing the notation. LEMMA 4. φ is a homeomorphism S' onto S.

Proof. Let F, G, α be as in Lemma 2, and put $G' := (\mathcal{V}^{-1})^* F'$ where $F' \in \mathcal{C}^*(S, X)$ is defined by $F'(f) := x_0^*(f(s_0))$. By Lemma 2

$$G'(g) = \beta y_1^*(g(s_1')) + \Delta G'(g), \quad \text{where} \quad \beta > \frac{2}{3} ||G'||, \quad \beta + ||\Delta G'|| = ||G'||.$$

We have $G = \alpha G' + G''$, where $G'' = (\mathcal{Y}^{-1})^*(\Delta F)$. This means that, for $g \in C(S', X)$, $y_0^*(g(s_0')) = \alpha \beta y_1^*(g(s_1')) + \alpha \Delta G'(g) + G''(g)$. Hence $y_0^*(g(s_0')) - \alpha \beta y_1^*(g(s_1')) = \alpha \Delta G'(g) + G''(g)$.

Assume that $s_0' \neq s_1'$; then the norm of the functional on the left is equal to $1 + \alpha \beta$, and hence $\alpha \| \Delta G' \| + \| G'' \| \geqslant 1 + \alpha \beta$. Since $\| \Delta G' \| = \| G' \| - \beta$ and $\beta > \frac{2}{3} \| G' \|$, we have

$$||G''|| + \alpha ||G'|| \geqslant 1 + 2\alpha\beta \geqslant 1 + \frac{4}{3}\alpha ||G'||.$$

Hence

$$\begin{array}{l} \frac{1}{3}k \geqslant \frac{1}{3}\|Y^{-1}\| \|F\| \geqslant \|Y^{-1}\| \|\Delta F\| \\ \geqslant \|G''\| \geqslant 1 + \frac{1}{3}\alpha \|G'\| \\ \geqslant 1 + \frac{1}{3}\frac{2}{3}\|F\| \|G'\| \geqslant 1 + 2/(9k) \,. \end{array}$$

Hence k > 3,207..., but this is imposible for a < 4/3. This means that $s'_0 = s'_1$ and $\psi \circ \varphi = \mathrm{id}_{S'}$. Similarly $\varphi \circ \psi = \mathrm{id}_{S}$ and φ is a homeomorphism.

In Theorem 1 the assumption about X is stronger than: $\dim(Z(X)) = 1$. The natural question arises whether the spaces with trivial centralizers are stable. The answer is negative:

THEOREM 2. There is a real Banach space X such that

$$\dim(Z(X)) = 1$$

and

(2)
$$\inf\{\|\Psi\| \|\Psi^{-1}\|: \Psi: C(S, X) \to C(S', X)\} = 1,$$

where S is a one-point set and S' a two-point set.

Proof. X will be the space of infinite, bounded sequences with the special norm defined below.

Let (k_n) be a sequence of positive integers such that $\sum_{n=1}^{\infty} 1/k_n = 1$.

By induction we define an increasing sequence of norms on l^{∞} . To this end let $a = (a_1, a_2, \ldots) \in l^{\infty}$,

$$||a||_0 := \sup\{|a_k| \colon k \in N\},$$

 $||a||_1 := \sup\{a_k^1 \colon k \in N\},$

where
$$a_k^1 := \sqrt[k_1]{|a_{2k-1}|^{k_1} + |a_{2k}|^{k_1}}$$
,

$$||a||_n := \sup\{a_k^n \colon k \in N\},$$

where
$$a_k^n := \sqrt[k_n]{(a_{2k-1}^{n-1})^{k_n} + (a_{2k}^{n-1})^{k_n}}.$$

where $a_k^n := \sqrt[k_n]{(a_{2k-1}^{n-1})^{k_n} + (a_{2k}^{n-1})^{k_n}}$. Now define $X := (l^{\infty}, \|\ \|)$, where $\|\ \| = \sup_{n \in \mathbb{N}} \|\ \|_n$. For $a \in l^{\infty}$ we have $||a||_n \leqslant ||a||_{n+1} \leqslant -\sqrt{2} ||a||_n$; hence

$$||a||_0 \leqslant ||a|| \leqslant \prod_{j=1}^{\infty} \sqrt[k_j]{2} ||a||_0 \leqslant 2 ||a||_0.$$

Thus $\| \|$ is well defined and X is complete. For $n \in \mathbb{N}$ denote by I_n the identity isomorphism from $(l^{\infty}, || ||)$ onto $(l^{\infty}, || ||_n)$. We have $||I_n|| = 1$ and $||I_n^{-1}|| \xrightarrow[n\to\infty]{} 1$. Notice that $(l^{\infty}, || ||_n)$ is a direct sum, with the norm sup, of infinitely many spaces isometric with the subspace X_n of X: $X_n := \{a \in l^\infty : a_k = 0 \text{ for } k > 2^n\}$. Let us now consider the sequence of isomorphisms

$$C(S,X) \overset{\sigma_1}{\cong} X \overset{I_n}{\cong} (l^{\infty}, \| \ \|_n) \overset{\sigma_2}{\cong} \underset{k=1}{\otimes_{\infty}} X_n$$

$$\overset{\sigma_3}{\cong} \underset{k=1}{\otimes_{\infty}} X_n \otimes_{\infty} \underset{k=1}{\otimes_{\infty}} X_n$$

$$\overset{\sigma_4}{\cong} (l^{\infty}, \| \ \|_n) \otimes_{\infty} (l^{\infty}, \| \ \|_n) \overset{I_n^{-1}}{\cong} X \otimes X \overset{\sigma_S}{\cong} C(S', X),$$

where Φ_i , i=1,2,3,4,5 are isometries and $||I_n|| ||I_n^{-1} \otimes I_n^{-1}|| \xrightarrow[n \to \infty]{} 1$. This gives (2).

Let $T \in Z(X)$. It is easy to check that $T_n: X_n \to X_n$ defined by $T_n a := \pi_n(Ta) \text{ where } \pi_n : X \to X_n, \pi_n(a_1, a_2, \ldots) := (a_1, a_2, \ldots, a_{n}, 0, 0, \ldots),$ is in $Z(X_n)$ but $\| \|$ on X_n is strictly convex, and so $\dim Z(X_n) = 1$ and consequently $\dim Z(X) = 1$.

References

[1] E. M. Alfsen, E. G. Effros, Structure in real Banach spaces II, Ann. of Math. 96 (1972), 129-173.

- [2] E. Behrends, M-Structure and the Banach-Stone Theorem, Lect. Notes in Math. 736, Springer-Verlag, Berlin 1979.
- [3] M. Cambern, On isomorphisms with small bound, Proc. Amer. Math. Soc. 18 (1967), 1062-1066.
- Isomorphisms of spaces of continuous vector-valued functions, Illinois J. Math. 20 (1976), 1-11.