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A generalization of the Banach~—Stone theorem

by
ERZYSZTOF JAROSZ (Warszawa)

Abstract. We investigate the geometric properties of a Banach space X* which
give the following implication: There is an isomorphism between (9, X) and 0(8’, X)
with a small bound iff § and S8’ are homeomorphiec.

Let X be a Banach space and let €(8, X) (C(8)) denote the space
of X-valued (scalar-valued) continuous funetions on a compact Hausdorif
space § provided with supremum norm. The classical Banach-Stone
theorem states that the existence of an isometric isomorphism from C(8)
onto ¢(8") implies that § and S’ are homeomorphic. Cambern [3] proved
that this property is stable: If ¥ is an isomorphism of C(8) onto €(8")
such that |7} P~ < 2 then § and 8’ are homeomorphic.

Several authors have congidered a vector-valued generalization of
the Banach—Stone theorem. Behrends [2] proved that if the centralizers
of X and Y are one-dimensional then the existence of an isometric iso-
morphism between 0(8, X) and ¢(§’, X¥) implies that § and 8’ are ho-
reomorphic. (For the definition and properties of the centralizer see [1],
[2]). Cambern [4] proved that if X is a finite-dimensional Hilbert space
and if ¥ is an isomorphism of ¢(§, X) onto €(8’, X) such that [¥] [|&
< V2 then S and 8 are homeomorphic. In this paper we investigate the
relation between geometric properties of X* and the stability of X-valued
Banach-Stone theorem.

THEEOREM 1. Let 8 and 8 be compact Hausdorff spaces and let X be
a complex (real) Banach space. If there is an isomorphism ¥ of a complew
(real) Bamach space C{S, X) onto O(8', X) with || 1P <k and if

sup (ot —all (@} +a5)21 =1, 1811 <K, lmyl <} =a <43,
then 8 and 8’ are homeomorphic.

We divide the proof of the theorem into & number of lemmas. Let
K* denote the set {#* € X*: |lw*|| = 1} provided with the weak * topology.
A Banach space 0(S, X) can be identified in a natural way with a subspace
of (8 xE*): ®(f)(s, #*): = a*(f(s)). Hence any Fe(0(8,X))" gives

3 — Studia Mathematica 73.1


GUEST


34 K. Jarosz

a Borel measure g on S xK* (usually u is not uniquely determined).
Let 8, and S, be Borel subsets of § and denote by F; the clements of
C*(8, X) given by p;:= Blymns @ =1,2.

Levya 1. For all scalars o amd f,

1) NaF'y+ BF,| = lal |[Fy)l + 18] 1 Fsll,

(2) if var(u) = [IF|| then |Fyl = var(u), i =1, 2.

Proof. (1) Fix &> 0 and let

(a) 8; = | 4luB® with 4] compact, 4], > 4} and u(B'xK*) =0,
i=1,2, i=1

(b) fro e O(8); Ifull =1, frlal =1, f,]a2 =0,

(¢) a'y B’ scalars such that aa’ = |a|, A8’ = ||,

(d) g:e0(8, X), lgall =1, IFll < Fylgy)+e, i =1,2.

Then for all

lo'fagi+ B L—Fa)ga <1
and we geb

oy + BT, 3= lim | [(aFs + BFo) e fuga+ .8 (1 —1,) 02)] |
= 1:':11 H{a! ffngldl‘1+ af’ f (L —f)g2@us+ o’ ffng1dﬂz+

181 [ (L —Fa) gadia]| = 1ol [ gudn+ 181 fgadise
= la|(1F ) — &)+ IBI(I1F .l —&).
(2) I var(p) = [P then
var(p) = |Fl| = | Fy+Fll < [yl + 1|l
< var (ug) +var (u,) = var(u);

hence we obtain [|F;|| = var(u,).

LeMMA 2. Let sp€ 8 and y5 € K*, and let G denote the functional on
0(8, X) defined by Gg) :=ys(g(s)); then F:= P*G is of the form

F(f) = awp(f(so)) +AF (f)

where ©y € K¥, AF e 0*(8, X), a+ |AF| = |F|| and o> §|F|.

Proof. Let u be a measure on § x K* given by I with var(u) = |[F||
and let 8 = 8;uS, be a partition of § into two disjoint Borel subsets
such that var(u,) > var(u,) >0 where u; = pulg, ¢ =1,2. We have
F =} F,4-% F,, where

gl ( I
Fyi=|2—
var(p) 1T var (u;)

and by Lemma 1 |F|| = |#|.

1+

)ﬂl +2p,
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Let G, : = (P*)71F; and let »; be measures on 8’ X K* given by @; with
var(v;) = |6, < [¥Y |Fl. We have

Y= 5(3{,,312‘)'*'51'7
‘where

& = vilg—gpxmes %Y (Y) = Vilppuxe (), 020

and yf € K*. Since G = 36,416, we get from Lemma 1
Y% =kayi +iay],
a;+ &l = 16,
—& = £, (as a functional on 0(8', X)).

Let us assume a, > a,; then we have

1 ayi—yr) 1 %Y —Ys
=yt ) 2N 2 (o 1 (kg _=.__L)
v 2( ) oy T\ T e ) g
and
A * *
* GYs — Yo
s +(k—ay) ———20 ;
) oy | <
by the assumption about the spaces X* we get
* * * *
Y — Y * Y2 — Yo
a=llayyy +(F— o)) —— — ¥y — (k—ay) ——=— 70 _
“ T e S P g

= lay¥ — axt/5ll+2 (b —ay),
and henee
I, —Fall < P 16 —Gall = 1PN (leayy — etz ll + 2110
< ”W“(a —2(k—ay)+2 (G — al))
< I1Pl(a—2(k— 1L IF)))-

From the definition of F,; and Lemma 1-it is easy to check that |F, —F,|
= 4var(u,), and finally we obtain

b
var () < a2 (s — 1) 121
<Xg L s !
cg (g — g+ EHEL D)2 .

Now we shall use the following
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ProposITION. Let pu be o regular measure on 8 with total variation 1.
If for every partition of S into two Borel subsels the measure of the
smaller one is less than 1/3, then there is am sy, €8, u({se}) > 2/3.

To end the proof we define
vye K,

awy (9) 1= ptlgyxxr (@), a>2/3

and
AF(f) 1= plg—isgxzs (F)-

It follows from Lemma 1 that the point s, in Liemma 2 is unique;
thus, for each y§ € K*, Lemma 2 defines a function ¢: 8’8, p(sq) == &.
Similarly for each #} € K™ we get a function y: S—8', 9(s,) = s; where
8, is determined by

(T—I)*(Mo:@a))(g) = Byo(g (1)) + 4G (g),
B> %H(W—I)*(fs(so,zﬁ))ll-

‘We shall prove that ¢ is a homeomorphism of §' onto 8 and ¢™' = 4.
LEMMA 3. ¢ and v are continuous.

Proof. Let ¢(s;) = s, and let U be a neighbourhood of s,. We shall
find a function f e (8, X) such that

1) Yo(Z(F)(s0)) > 212
and
(2) [9s(Z(F)N)| < 312 for &' ¢ 9™ (T).

The function s'—>45(¥(f)(s")) is continuous; hence ¢~*(U) is a neigh-
bourhood of s; and ¢ is continuous.

Retain the notation of Lemma 2. Let ¢ = a—%[F| > 0 and let x be
a real continuous function on § such that

(a) sup{lx(s)|: s € 8} = w(s)) =1,

(b) suppx= = U,

(e) |ul{(suppx—{8o}) X K*) < e/2.
Let @, € X be such that ] =1 and @}(z,) > L—e/4. Set f:= xw,. We
have

1) g(PUN) ) = FP() = F(f) = af (@) +AF (25,)

> a(L—e/d) — plig-tagysere (1) > a(L—e/4) —8/2 > §ITI> 1P

_(2) For s" ¢ Y(U) let us consider the functional & e 0*(§’, X),
G(g) : = y3(g(s')). By Lemma 2

B(f):= V*G(f) = Boi(f(s)) +AF (f),

icm®
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where |4F| < }|F| and s ¢ U. Hence we get
Yo(FF(s") = G(F) = F(f)
= B3 (o6(8) @) -+ AF () < | AF| < FIP].

The proof that v is continuous follows upon changing the notation.
LEMMA 4. ¢ is a homeomorphism 8§ onto S.

Proof. Let I, @, a be as in Lemma 2, and put @' : = (Z~1)*F’ where
F'eC*(8, X) is defined by F'(f) := «}(f(s,))- By Lemma 2

&' (9) = Bnilg(s0) +46 (g), B+146] = el

We have G = o' 46", where G = (¥~)*(AF). This means that, for
ge0(8, X), yi(g9(s))) = aByilg(s))) +adG’(g)+G"(g). Bence uig(sq)—
—aByilg(s1)) = adG’(g)+6" (g).

Agsume that s = s;; then the norm of the functional on the left
is equal to 1+ af, and hence a|46’|| + |G”|| > 1+ af. Since |4¢| = & —8
and f > 3]6'l, we have

where  f> }||¢}),

16+ allel] > 1+2af > 1+Ea @]

Hence
oz YT IFN = 1 147
= 671> 1+La|@|
>

1H331F) 160 = 1--2/(9F).

Hence & > 3,207..., but this is imposible for & < 4/3. This means that
8o = &) and pog = idg,. Similarily poyp= idg and ¢ is a homeomorphism.

In Theorem 1 the assumption about X is stronger than: dim(Z (X)) = 1.
The natural question arises whether the spaces with trivial centralizers
are stable. The angwer is negative:

TaEoREM 2. There is a real Banach space X such that

(1) dim(Z(X)) =1
and
(2) () 1P e 08, X)-0(8, X)y =1,

where 8 45 a one-point set and 8’ a two-point set.
Proof. X will be the space of infinite, bounded sequences with the
special norm defined below.

Let (k,) be a sequence of positive integers such that 3 1/k, = 1.

n=1
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‘By induction we define an increaging sequence of norms on 1%, To thig

end let a = (ay, a,,...) €l%,
lallo : = sup{lay|: & e N},
flall, : = sup{ay: & e},
%y

where a} 1= V |ag_[* + lag ™,

llal, : = sup{a®: k € N},
Koy,
where a 1=V (@) + (a3 ).

Now define X = (I i ), where || [| = su£ Il .- For a €™ we have
ne.

llally < llalloss < _Vzuaun,hence
0 kj“
llallo < llall < H V2 llafl, < 2 la,-

Thus || || is well defined and X is complete. For n e N denote by I, the
identity isomorphism from (I, | |) onto (I™; | [,,). We have 1L =1
and ||, = 1. Notice that (I, [| [l) is a direet sum, with the norm
sup, of infinitely many spaces isometric with the subspace X, of X:
X, :={ael®: a, =0 for k> 2"}. Let us now consider the sequence of
isomorphigsms

0, DXL 2 S X

L2 ) L]
=~ Qe -Xn B B X,
k=1 =1
' tern? oy ,
207 @™ |l 1) = XX =0(8,X),

where @;, i =1, 2,3, 4,5 are isometries and Ll |1;'®I; . This
gives (2).

Let T eZ(X) It is easy to check that T,: X,—X, defined by
T,0: =, (Ta) where 7,: X=X, @, (G, @ay ...} 1== (1, Gay ..y 0,0, 0, ..0),
is in Z(X,) but || | on X, is strictly econvex, and so dimZ(X,) =1
and consequently dimZ(X) = 1.

n-d»oa
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