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Approximation by Abel means and

Tauberian Theorems in sequence spaces*
by
MARTIN BUNTINAS (Chicago, IiL.)

Abstract. Let B be a topological sequence space. We say the Abel means of
a gequence x € exist if for 0<r< 1 the sequences Ar @ = (2, 7%y, 0y, ...
ey ™,,0,0,...) converge to the sequence Arm = (&g, Ty, 128y, ey TPy, .0.) 0
the topology of B. We say that o can be approximated by Abel means if A"x converges
to @ (as r—1~) in the topology of B. Approximation by Abel means in topological
sequence spaces is investigated. It is a concept more general than Abel summability
since in the FK-space
oo
o = {m: lim 3 opr* exists}

r—1" k=0

of all summable sequences, every sequence ean be approximated by Abel means. Also

a sequence x & & has the property of sectional convergence (AK) if and only if it is in
)

the summability field es = {#: 3 @ exists}. Yot the properties of approximation by
k=0

Abel means and AK apply also to spaces which are not summability fields. Thus
statements which give conditions under which approximation by Abel means implies
AK are generalizations of Tauberian Theorems for the Abel method. Several such
approximation statements are obtained which extend classical Tauberian Theorems.
Approximation by Abel means is useful in spaces of Fourier coefficients as well as
being of interest in the general theory of sequence spaces. As an application, a genera-
lization of results of Tietz and Goes is obtained about the equivalence of absolute
Tauberian conditions.

1. Introduction. Section 2 contains definitions. In Seetion 3 we

investigate approximation by Abel means in topological sequence spages.
It is shown that in the FK-space

o = {w: rlf?- égmk'r" ex.ists}

of Abel summable sequences, every sequence can be approximated by Abel

*This paper was presented to the American Mathematical Society. Part of this
work was done while the author was an Alexander von Humboldt Scholar at the
University of Stuttgart.
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means and a sequence » in & has sectional convergence if and only if

its series 3 a;, converges. We also give some criteria for approximation by
k=0

Abel means in general topological sequence spaces. In Section 4 it is shown
that many of the Tauberian Theorems for Abel summability such ag
Tauber’s First and Second Theorem [16], the O-Tauberian Theorem of
Littlewood [10] and the gap Tauberian Theorem of Hardy and Little-
wood [7] can he generalized to approximation statements. As a further
application of Abel means, in Scetion 5 we generalize results of Tietz [17]
and Goes [5] on the equivalence of absolute Tauberian conditions.

2. Definitions. A K-space is a Hausdorff locally convex space of se-
quences # = (&) of real or complex coordinates with continuous coordinate
functionals fi: @—a, (5 =0,1,2,...). An FK-space (respectively BK-
space) i 2 K-space with a Fréchet (respectively Banach) space topology ([61,
[18], [20]). For each & = 0,1, 2, ..., let 6* bo the sequence with 1 in the
kth position and zero elsewhere and let ¢ be the space of all finite linear
combinations of the 6”’s. All sequence spaces B and F considered will be
assumed to be K-spaces which contain ¢.

Let © e B. We say that the Abel means of @ exist i, forall 0 <r<1,

the series A"r = }' 4,7 8% converges with respeet to the topology of E.
k=0

We say @ can be approvimated by its Abel means if the Abel means of o exist
and lim A"2 = z, the limit being convergent with respect to the topology

=17

of F.
Let T be an infinite matrix with rows in ¢ and with columns conver-
ging to 1. A sequence # in B has T-sectional convergence (TK) if limT"x
N—=ro0
= &, where I"% = }'t,,u,8", convergence being with respect to the top-
< ‘
ology of . t"w is called the n-th T-section of ». For a>> 0, C,-sectional
convergence is TK with respect to the triangular matrix given by ¢,

nlk =
("RECEY), k<n. Sectional convergence (AK) is the same as 0y

n
sectional convergence; the nth sections of @ being 8™y = J @, 0%, The
C,-sections are denoted k=0

K3

k 1 o
My e P e _ e
i 2(1 n~{-1) %, 0 nh4~1%8w'

k=0

A scquence 2 in B has bounded sections if {8"a}_4 i a bounded subset of X

i * .
Let of = {o = (#,)2,: lim kZ' w1 exists} be the series-sequence Abel
r>l™ k=0
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summability field. o7 is an FK-space with seminorms given by:

) = su @, 7"
Po(a) wgl]é: i |5
j m
o = sw (), -1z,
. m=0,1,2,...

This was proved in [19] (Theorem IV) (and stated earlier without proof
in [23]). The seminorms p;,j =1, 2, 3, ... may be replaced by

, 0 j m .
= E — =1,2,3,...
; () < [ (j—l‘l) PR 1459,

3. Approximation by Abel means. We start with a proposition aboust
the existence of Abel means. ’

PROPOSITION 1. Let E be a sequentially complete K-space and x e E.
The following statements are equivalent.

(a) The Abel means if x ewist;
(b) for every 0 << v << 1, 27" 6*>0 as n-—>oo;
(e) for every 0 << » << 1, {m,* 6%} is a bounded subset of B

n
(d) for every 0 <7 <1, #"8"x =" 3 @, 60 as n—>oo;
k=0

(e) for every 0 <r<1, A"z = (L—¢) > +"8"2.

k=0

n N1
Proof. Since x,#" 6 = 3 7" 6% — Y w,7* 6%, (a) =(b) follows. (b) =(¢)
K=o ¥=0
is trivial. ]
(e) =(d): Let 0 < << t<< 1 and let p be a continuous seminorm on E.
Then
pAT r\" y 1 ——i”“
P 8"z) < (-) sup p (a,t* 86 Zt“"‘ - (—) supp (z,t* 6’“)(———-)
1 % 1 % 11—t

k=0

which tends to zero as n—»cc.
(d) =>(e): Let 0 < <<t << 1 and let p be a continuous seminorm on F.

Then
J\T i
P (ZN: @ r* é") < s:.pp (t* 8% ) 2(;)1 .

k=2 k=M

Since F is sequentially complete, ' ##8%x exists. The rest follows from the
k=0
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observation that

n n
Z'w,ﬁ'rk = —T)ZW‘S%-}-?'”“S%.
k=0 k=0
Finally, (e)=-(a) is trivial. m

A sequence space B is tempered if for each » e B, there exists # such
that @, = O(k™). All spaces of Fourier coefficients are tempered. If an
FK space F contains the space I' of absolutely convergent series, then
{89, is a bounded subset of B. It follows from (c) above that in a tempe-
red FK-space B containing I' the Abel means of every sequence exists.

The following shows that approximation by Abel means is more
general than O, -sectional convergence.

PROPOSITION 2. Suppose B is sequentially complete and « = 0. If & has
O,-sectional convergence, then © can be appromimated by its Abel means.
In particular, AK implies approximation by Abel means.

Proof. Since C,-sectional convergence implies Cj-sectional conver-
gence for 0 << a< B, it is sufficient to assume that e is a non-vegative
integer. Let p be a continuous semi-norm on F and suppose # in F has
C,-sectional convergence. Let

k3
—%
T :Igtnhwk 6k? where tnlc = (Wni"i‘a)/(n:a)_
Clearly p(#;,6%)= O(k"). By Proposition 1 (¢), the Abel meang of @ exist.
Further,
ATg = (1 —r)*+? Z (k;;a) A N
k=0

If p(T"v —2) < & whenever k> N, then

N
A"z —2) < (L —r)F? 2 (kza) rigupp (T —2) + ¢,
frors n

which tends to ¢ ag 7 tends to 1. m

The following two results show that for a general class of gummability
fields, approximation by Abel means (respectively, 0 ,-sectional convergen-
ce) of a sequence is the same as Abel summability (resp. C,-summability).
The following result is stated in [23] without proof. For completeness we
give a proof.

THEOREM 1. Every element of = can be approzimated by its Abel
means.

Proof. Let zes/. We show (a): p;(# —4"2)—~0 (as r-»17) for j
=1,2,3,...and (b): po(Anz—A2x)>0 (as 7y, ro—>1 ).

icm®

Approzimation by Abel means and Tauberian Theorems
(a): Let ¢ > 0,j 0. Choose N such that
j m
Tl | ——) < eform > N.
|ML+J
For r sufficiently large,

iy m
@, (]—F—l) L—r™<e for m
Then
pi(x—A"x) = sup la,,| (—_—]——)m (T =" <e.
m j+1
(b): Liet e> 0. Since » €, there exists j sueh that ]%‘mk'r’f—mkr;‘]

< ¢ whenever (3—_7—_—1-) < 7, < 1,<< 1. By the equivalence of the seminorms
{p;} and {pj} we have p;(A"z—A"z)<e for 0<r,r,<1 sufficiently

J J
lose to 1. Let, further, — < ry< 1. For t > —~— we have
close to et, fur er’j—|—1<rl A T )

’Z(wk'r'f —mk"'lé)tk] = !2%(?,})"’ —m (et < &
% P2

. iy J
since [ —— ) < 7t < 7ot << 1. For t < —— we have
Q+J ! j+1

1 2 (7% —m,cr’;)t’cl < pj(dhe — AT ) < &
%

Thus
Po(ANz —AT2g) = sup‘Z(wkr’f—mkr._’f)t"l <e W
k

0<t<1
)

Let A be a summability method given by 4 — 3 a;, = lim 3 a,(r) @
satisfying: oo B=0
(1) a(r) is continuous for 0 < r <7, < o0,k =0,1,2, ... and some
fixed r,;
o0
(2) for any =z, 0 < 7, < 7, convergence of > a,(r,)®;, implies uniform
K=0

convergence of 3 a,(r)x, in the interval 0 < » < 3

(3) for allm = 0,1,2, ...,if # = 6", then 4 — > @, = 1.

The summability field ¢, = {#: 4 — 3 o exists} of such a method is
an FK-gpace [19]. All summability methods defined by a matrix (4 — 3 @y,

= lim 3 a,,7,) satisfy (1) and (2) when r,, = oo, ay(n) = &,; and a,(r) i8
n—rco k
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linear between a,(n) and a;,(n+1). Condition (3) states that the method 4
sums finite sequences to their usual sum.

THEOREM 2. Let ¢, be the summability field of a method satisfying
(1)-(3)-

(2) If © € o4 can be approximated by its Abel means, then o € .

(b) If we ¢y has Oy -sectional convergence, then x is C,-sumsmable.

Proof. By standard cquicontinuity arguments on FK-spaces, one

can show that f(») = 4 — Y, is a continuous linear functional on ¢, . If

@ = lim A"x, then

1"

z) =lim f(Ad'®) =lHm ¥ @,r*f(4%) = lim > a,0*.
fla) = lim f(4"a) = lim ; W (8 = Tim _%j .
Thus « e «/. Similarly, if « has C,-sectional convergence, then f(#) = (!, —
—Na,. n

Remark. Suppose ¢, satisties (1)~3). If & <¢,, the inclusion
map 4: &/—>c, is continuous. Then a sequence « in ¢, can be approximated
by Abel means if and only if # e «. Such a statement can also be made
about C.-sections (a > 0) since the summability ficlds of the ¢, methods
have C,-sectional convergence [22]. In particular, a sequence @ in & hag
the property AKX if and only if 3’ exists.

im0

A sequence Ais a multiplier from B to Fit @-) = (0, 4,) € Fior all win B,
The space of all multipliers from B to F is denoted by (E—I). For example
(P—=1)=1"wherel/p-+1/g =1and 1 < P, ¢ < co. Multiplier maps a— 21
between FK-spaces are continuous [20]. If F is an FK-space and 1 is
@ multiplier from F to &, it follows that the linear functional flo) =
lim 3" 2, 4,r* is continuous on H. We define E” as the space of all

71" &
sequences A= (4,), 4 =f(8%,% =0,1,2,..., where f ranges over all
continuous linear functionals on E.

ProPOSITION 3. Let B be an FK-space containing ¢. (H->of) = B if

and only if Um %, f(8%) exists for every continuous linear Jumctional f on
1 o
E and every x € E.

Prootf. (=): Suppose (o) = B”. Let f be a continuous linear
functional on B and 7, = f(¢). Then A-w e/ for every o e H. That is,
lim 3 2,0% = lim Y ,r%f(6%) exists for every x e B.

17 [

1"k

r* d
(+): Let 4 & (B—+s/). Then the linear functional f(z) = lim Y o, 4,0* is

continuous. Since f(8’) = 4;, we have A e B*. Hence (E».s% < B”. Con-
versely let f be a continuous linear functional on E and let A; = f(8%). Then

icm°®
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for every @ e B, lim > ,#"f(6%) = lim Y @, 9" 4, exists. Thus i-z e for
r—=17" &k 17k
every ceHand Ae B, m
. TamorEM 3. Let B be a K-space containing ¢. If every element of H
can be approximated by Abel means, then every continuous functional f on B
is of the form

fl@) = lim D'z, 40"

=175

for some multiplier A from B to o. If B is an FK-space, the converse is also
true.
The proof if omitted. The first statement can be proved easily for
A, =F(8%). The converse uses an equicontinuity argument as in [21],
Satz 3.4, and [4], Proposition 1.
In particular, &/ = (o/—s7) by Theorem 1. A multiplier A from .« to =/
1

is of the form 1, = [ t*dg(t)+ O (+%), where 0 < r< 1 and g is of bounded.

[}
variation ([23], [19]).

In the theory of Fourier series, approximation by Abel means is-
a natural concept. Some examples of spaces of sequences of Fourier coeffi-
cients in which all sequences can be approximated by Abel means (but not.
by Oesaro sections) are given in [3]. Although T-sections are finite sequences
whereas Abel means are not, many of the results for T-sectional convergen-
ce carry over to approximation by Abel means without major changes in
proofs. Below we given three such results.

The following can be proved using equicontinuity arguments similar
to [21], Satz 3.3, and.[4], Proposition 1.

TaEoREM 4. Suppose E is a barreled K-space containing ¢. Hvery
element of B can be approzimaied by Abel means if and only if ¢ is a dense
subset of B and for each x e B the Abel sections {A"a}g e form a bounded:
subset of K.

The proof of the following is similar to [15], Theorem 3.4.

TEEOREM 5. Let B be an FK-space containing ¢. Every element of H
can be approzimated by Abel means if and only if @ is o dense subset of H
and every multiplier from o 1o o is a multiplier from B to B.

The proof of the following is similar to [1], Theorem 4 and [1], Prop-
osition 2.

TurorEM 6. Let B be a BK-space containing ¢. If every element of E
can be approximated by Abel means, then the space (E—sf) is a BK-space
in whick for each multiplier A € (B—><7) the set of Abel meams {A" A}cpcr 18
bounded.
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4. Tauberian theorems as approximation statements. Here wo
consider statements giving conditions under which approximation by
Abel means or C;-sectional convergence implies sectional convergence.
When applied to the FK-space &7 or

. k
O = {m iﬂ;(l—nﬂ

such statements become Tauberian Theorems in the clagsical sense because
every clement of & can be approximated by Abel means (Theorem 1),
every O summable sequence has C;-sectional convergence ([22], Satz B)
and a sequence in these spaces has sectional convergence if and only if it
hag a convergent series (Theorem 2). Some Tauberian Theorems for Cegaro
sections are given in [2].

Sectional boundedness can often be deduced from Tauberian conditions
using the equivalence of boundedness and weak boundedness along with
a classical Tauberian Theorem on 7. This technique is used in Theorems 8
and 10. The following theorem uses sectional boundedness to reduce
a Tauberian Theorem for Abel means to one for 0,-sections. The proof is
@ modification of a Tauberian Theorem of Karamata [9]. It has been
adapted to an approximation statement instead of a summability state-
ment and also differs from the original by using the uniform approximation
by polynomials of a continuous function g instead of almost everywhere
approximation by polynomials of an integrable function. For Banach
spaces, the result was also obtained in [11] using another modification of
Karamata’s argument.

TororeM 7. Let B be a sequentially complete K-space containing ¢.
If a sequence @ in B can be approvimated by Abel means and has bounded
sections, then it has O,-sectional convergence.

Proof. Let r = ¢7*. Since lim(1 —e~*)/t =1 and

t—>00

) @, exists},

A"m = (1 —¥) ZT"Skw—>m (r—17),
k=0
we have

i Ntk Qe
:1.,1101: th%: ey =g,
For m =0,1,2,... we have
o o
lim ¢ ) o7k (g~tkynghy — L lim (m—l—l)tZ ANk gl

-0t m-t1 o+
k=0 + =0 =

1
=x/m-+1 =mfy’"dy
0

icm
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and hence for each polynomial P, we have
o0 1
lim ¢ 3 ¢~®P(e"*) 8k 0 =z [ P(y)dy.
[ R et ¢
Let e>0,N>1/e and
o<or<e?,
el <1,

NtV it
gl@) = lw" i

Since g is continuous, we can find a polynomial P such that |g () —P(=)|
< efor 0 < #<< 1. Let p be a continuous seminorm on X. We have

n n
1 -l —tk
p(a"w——m)<p(—7;—_-|_—1 E Stz —1 E e P (e ”)S"m)+
=0 =0

+p (t j e~k P (¢7t) S’“m) +p (t Z e~ P(e~ ) 8%z —

k=n-+1 k=0
1 1
— fl’(y)dy) +p (w fP(y)dy—w)-
L] 0
There exists 6 > 0 such that

N —tlcP —tk)sk —x IP(y)d/y <&
p(tk;:e (e x uf )

1 .
whenever 0<<i< 8. Let t=m< 6 and M = s%pp(S’“w). Then

n o0
(o™ —w) < Mt 2 [ —e P (et | + Mt e [P(e~)| o+
k=0 k=n4+1
- N S Nk
—ik N1 ,—ED
+’f1’(y)dy——1‘p(w)<Mt25+Mt Z o1 (o4 o) gt
[ k=0 k=n+1
1 C —tk N+41,—tNE 2ep ()
] < Me++ Mt et - Mt eV Te™ " e -2ep
e < e e 3

1

1
This can be made arbitrarily small since Mie (l—e“t\) - Me (n—>00)

and Mt (1 ) <M |N+1< Me (n—>o0). &

1
_ G—Nt
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TaEoREM 8§ (Tauber’s second Theorem for Abel means). Let B be
a sequentially complete K-space eontaim‘ng @ Suppose that a segumwe xin B

can be approxzimated by iis Abel means. Let d™z =4—®—-_':—— ka, 0. Then »
Ie=0
Las sectional convergence if and only if *2—0 (n—oo).

Proof. Suppose that 2 has sectional convergence. Then

1

'z -————(n;S’"m— 2;5”‘ ) »--———(fn Ste —a) — Z (8@ —w )

k=

o " I
fn—l—l(S n-]— 5 (St —w)

each term of which tends to zero. Conversely let f be a continuous linear
functional on %, and let 4; = f(47). Since » can be approximated by Abel

n
means it follows that -2 is an element of &7, Clearly f(d"#) = ——i}i 2 kA,
. s
i

00

tends to zero. By the senond Theorem of Tauber, 3 4.2, converges.
Ii=0

In particular f(S"z) Zlkwk is bounded for every comtinuous linear

functional and hence {S"m} i a bounded subset of . By Theorom 7,  has
O-sectional convergence. But 8%z — o = d"z->0 as n—0. Slnce ot
converges to x, so does S"z. m

LevmA 1 (Hardy’s Tauberian Theorem for Cesaro sections). Let B
be o K-space contwining . Suppose that a sequence x in B has 0,-sectional
convergence. If {nw, 6", is a bounded subset of B, then  has the property AK.

Proof. It is sufficient to show that §"» —o"z->0 (n->o00) under the
conditions of the hypothesis. We have

M G p == ‘1 T
85 — g™z -1144“"6

It ()
and for m > » we have

PG = I n k
o m+1 _]_1 le,ca n+1 Z F1—K)a, o¢.

Iee=n--1
Substituting we get
m+1 1 W
Ste —o"p = _ I
— Z (m+1—T)m, 6.

- (6™g — o™ ) +
m

k=n+1
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TFor each continuous seminorm p and for m < n, we have

n+t

(8" —o"x) < ( n) p(0™2—o"n)+ (m ) supp (kay, 6%y,

+1
Let j be any positive integer and choose N so that ¥ > 27 and p (¢"z —
—o"z) < 4~/ whenever m = n > N. Let m be the smallest positive integer

n+1 1
for which ( s )< 2/, Then m>mn and ( +1) <% < (—jh— )
m—mn, m—n,

m—n—1
and hence

P8z —o"w) < (L4-29)4 "+"”’+‘supp(7cwké‘)<"“’“(Hsupp(mé’“))

THEOREM 9 (Littlewood’s Tauberian Theorem for Abel means).
Let B be a sequentially complete K-space containing ¢. Suppose a sequence
in B can be approvimated by its Abel means and {nx, 5M>_, is a bounded
subset of I. Then » has sectional convergence.

Proof. By Theorem 7 and Lemma 1 it is sufficient to show that @ has
bounded sections. Liet » be a continuous seminorm on E, let r = (—Ll—)
and let M = supp (kx, 6%). Then +

p(8*0) < p(8"w— 8" A x)+p(S*A"x)

n

< D a—rpm )+ Z " (@, &)

k=0

1 zafl 5 J
T = Ner
<n+1g;(1—r) P& )+ +1>a

1 -
=7:—1,Z (A7 ) (0 ) + I (L 2"
1 O
<_T Tep (2, 60+ M <2M. m
n
k=0

COROLLARY. Let B be a sequentially complete K-space containing ¢.
Suppose a sequfmce oz in I can be approximated by its Abel means and
@Ay = O(k™1) for every A e (BE—s?). Then = has sectional convergence.

The proot follows from Theorem 9 using the equivalence of bounded-
ness and weak boundedness.

LeEMMA 2 (Lacunary Tauberian Theorem for Cesiro sections). Let B
be a K-space containing @. Suppose that » € B has C-sectional convergence.
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If @, = 0 except perhaps for n = ny,, where (M, /M) = 7> 1 for kb =0,1,
., then » has the property AK.
Proof (cf. [24], vol. I, p. 79). Since (1., —ny) S™w = my,, a™e+17 g —
— 1, 0™ 2, we have for each continuous seminorm p,

P(S”hm__w)<,ﬂ~p(a’%+lm_w)+ " p(o™ g — i)

Ny — Ny Ny — Ny

1 1
<r—:i‘?(0""'lw—‘”) +t o p(o" g —w)

which can be made arbitrarily small for sufficiently large n,. m
THEOREM 10 (Lacunary Tauberian Theorem for Abel means). Let B
be a sequentially complete X-space containing . Suppose that v € T can
be approvimated by Abel means and x, =0 excopt perhaps for m = m,,
where (M /) Zr>1fork =0,1,2,... Then x has sedtional convergence.
Proof. By Theorem 7 and Lemma 2 it is sufficient to show that z has
bounded sections. Let f be a continuous linear functional on F and let
= f(4%). Clearly, - is a lacunary sequence in <. By the gap Tauberian

Theorem of Hardy and Littlewood [7], f(S"

n—>oco. In particular the set {S"#} is Weakly bounded and therefore
bounded. m

Zl,cw,, converges as

5. An application of Abel means to Absolute Tauberian Conditions.
For each sequence A = (4;) and a > 0, let

. j—Ts—a—1
A/’lk=2(7 57 4

=k

Then A°4; = %, and 4"}y, = A", — A" A, . The sequence 1 is monotonic of
order a it A°4, >0 for allk =0,1,2,... and it is of bounded variation of
order a if it is the difference of two bounded monotonic sequences of
order a. The set of sequences of bounded variation of order a form a BK-
space which we denote by bv®. We write bv = bvt.If a < §, then bv? < bv*
([12], [131).

We call a sequence fully monotonic if it is monotonic of all orders
n=1,2,3,... It is quasi-fully monotonic if it is the difference of two
bounded fully monotonic sequences. The space of quasi-fully monotonic
sequences is denoted by bv™. We have

icm®
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n
For each sequence & = (w), let d, =—]l——1—2kwk and d = (d,).
k=0

For each sequence space B, let [ B = {% Tyt TE E}

Hyslop [8] has shown that the condition d € bv is an Absolute Tau-
berian Condition (ATC) for the Abel method. That is, if the Abel transform
of a sequence @ is of bounded variation and d e bv, then e l'. Tietz [17]
has shown that if V is an absolutely permanent and additive summability
method, then “d e bv” is an ATC for V if and only if “@ & [ bv” is an ATC
for V. Goes [5] has further shown the equivalence of “d e bv”, “z e [ bv”
and “z e [ bv?” as ATC. We extend these results.

THEOREM 11. Let V be an absolutely permanent and additive summabi-
lity method and let a be any number such that 1 < a < co. Then “d ebv”
is an ATC for V if and only if “z € [ bv*” is an ATC for V.

Proof. Since bv™® < bv* < bv, for 1 < a < oo, and sinece the result
of Tietz is the case ¢ = 1, it is sufficient to show that it “z e [ bv™? is an
ATC for V, then “x e f bv” is an ATC for V. By the 0-Tauberian Theorem

of Littlewood,
ka exists}.
k

Thus (cs—»+) < (N [1®)>). We have (cs—o) = es” =bv since cs
has the property AK [4]. By Proposition 3, it follows that (& f I°)—s7)

= (#n [1°)”. By [14] (Theorem 3.1), (am J 1) =¥ +(f 1°)”. Thus

by = L7 ([ 1°)7 = (L) +([ 1°>5).
Every element of (&) is of the form & +¥, where z € bv*® and ¥;, = 0 (%)
for 0 < r< 1 [19], [23]. Every element of ([ 1°—s) is of the form (kz),
where # e I! since by Theorem 3 and [5], Beispiele 1.19, we have
(I=>st) = (1% = [1®—>cs) =T

Thus every element 2 of f bv is of the form A = 2+ w, where z € [ bv® and
wel'. If 2 is absolutely V summable, then x is absolutely ¥V summable
since V is absolutely permanent. If “z e f bv*®” is an ATC for V, then
A=g+wel. Then “ze [bv”is an ATC for V. m

.ﬂ'nfl”"ccs={m:
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Singular integrals supported on submanifolds

by
ROBERT 8. STRICIIARTZ* (Ithaca, N.Y.)

Abstract. Three results related to Calderén-Zygmund singular integrals in gen-
eralizod contexts are established. In the first, Hilbert transforms supported on hyper-
surfaces of the form [7 la;7 = r where b; are non-zero real mumbers, are proved
bounded on L? for certain values of p (Nagel and Wainger proved I? boundedness).
In the second, LP boundedness is established for convolutions on R? with kernels of the
form g (| %)%} sgn«; by transference from known results about radial kernels. In the
third, the “method of rotations” is carried through for the Z? theory of Knapp-Stein
singular integrals on 2-stage nilpotent Lie groups.

§ 1. Introduction. The Calderén-Zygmund theory of singular integrals
has been extended in many directions in recent years. One major theme in
these extensions is the “method of rotations” introduced in [1]. This
leads to the study of various Hilbert transforms supported on curves or
more general submanifolds. The reader is urged to consult the excellent
exposition of these ideas in Stein and Wainger [10].

In this paper we present three contributions to this study. The first
concerns Hilbert transforms supported on hypersurfaces in R* defined by

the equation H [o; |% = where by, ..., D, are non-zero real numbers.

The I? boundedness of these operators was established by Nagel and
Wainger [7]. We give an independent proof that also establishes I°
boundedness for certain values of p. We do not know if these values of
p are best possible.

Our second contribution is a transference result relating convolutions
on R with functions of the form g (|a; ,|"*)sgn e, to convolutions with the
radial function g(Va?4-a2). We show that L*-boundedness is equivalent
for these two operators, and the applicability of the Marcinkiewicz multi-
plier theorem is also equivalent.

Qur third contribution is to the Knapp—Stein [5] theory of singular
integrals on nilpotent Lie groups. For 2-stage groups we carry outb the
method of rotations for L*-boundedness. We use the Buclidean Plancherel

* Research supported in part by NSF Grant MCS-8002771.
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