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Abstract. This is a study of dual spaces of various spaces of compact operators.
‘We derive representations for duals of (a) spaces K (X, ¥) of compact linear operators,
(b) injective temsor products X&,¥, and (c) spaces of vector-valued continwous
functions, in terms of the completed projective tensor product of the strong duals or
biduals of the factor spaces X and ¥. The results are specified for (i) X and ¥ Banach
spaces, (ii) X and ¥ Fréchet spaces, and (ili) X and ¥ DF spaces. Applications are
given to problems of weak convergence in any of the above types of operator or func-
tion spaces. The fundamental tool is a kind of localized Radon-Nikodym property
for locally convex spaces introduced by A. Grothendieck.

0.1. Introduction. The present work is a sequel to our previous
article [7] on weak compactness in spaces of compact operators. In that
Paper, our main object was to describe the weak topology and the notions
related to it, like weak compactness, weak convergence for sequences, and
reflexivity, in the general eontext of the operator space L(X,, ¥) of
weak*-weakly continuous linear operators from X’ into ¥ which transform
equicontinuous subsets of X' into relatively compact subsets of ¥, endowed
with the topology of uniform convergence on the equicontinuous subsets of
X', X and Y arbitrary locally convex spaces. The results were then applied
to the various spaces of analysis that can be represented as a suitable
operator space of the form I (X, ¥). Here our object is to describe the
dual space of L,(X;, ¥) in terms of the (presumably well known) duals X’
and Y’ of the factor spaces X and ¥, and, again, to specialize our results
to the concrete spaces representable as (a linear subspace of) an operator
space L,(X;, ¥): (a) spaces of compact operators, (b) injective tensor
products, and (c) spaces of vector-valued continuous, or holomorphic
functions.

* Research performed while the gecond named author was a visitor in the
Department of Mathematies at Louisiana State University, Baton Rouge.
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For the convenience of the reader, we recall here three of the basic
examples of such representations:

(%) K(X,Y) =L(X,, Y) (isometrically),
e (X and Y Banach spaces),
() X®, Y= L(X,, Y) (topologically),

n n
/ p (X and Y complete locally
217 % ® Y {w = 21: (@, @ )y"} convex spaces),

(x*s)  O(E, X) = L(X,, O(K)) (isometrically),

F s {5 v a'oF} (K compact Hausdorff,
X a Banach gpace).

For further details on the space L,(X;, ¥), as well as for the basic
terminology and notations, the reader is kindly asked to consult our pre-
vious paper [7].

We now deseribe the contents of this paper in more detail.

It is known from the work of A. Grothendieck ([16], I. 4.1, Prop. 18,
pp. 95, 96) that, for general X and ¥, the continuous linear functionals on
L,(X.,, Y) are given by certain integral linear forms, represented by
Radon measures on the products U° x V° of polars of zero neighbourhoods
U and Vin X and ¥, respectively. Our object is to specify conditions on X
and Y such that these linear forms are representable as elements of the
completed projective tensor product X;®,¥; of the strong duals of X
and Y, and thus appear in a form much closer to the original factor spaces X
and Y and their duals. Again, the prototype result in this direction is to
be found in Grothendieck’s work ([16], I. 4.2, Thm. 8, p. 122). In the
modern terms of the Radon-Nikodym property for Banach spaces, it
reads as follows:

(%) Whenever X and Y are Banmach spaces such that X' or X' has the
Radon—Nikodym property, and either of X' and X' has the approxi-
mation property, then the dual of X &,Y is isometrically isomorphic
to X'®,Y" = N(X, X') (the space of nuclear operators from X into
x.

It is a kind of “localized” Radon—Nikodym property for general
locally convex spaces, introduced by Grothendieck ([16], I. 4.1, Def. 6,
p. 104) as “propriété &” (“@” for R. S. Phillips), which enables us to
transfer this duality result to more general situations. (For a definition of
the “Phillips property”, see Section 1, Definition 1.5.) We arrive at the
following extension of (}}):
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() Whenever X and Y are locally convex spaces such that X or Y is

' gquasinormable and semi-reflewive, them, for every T e(L,(X,, X)),
there ewist zero meighbourhoods U and V in X and Y, respectively,
and an element

v = Z 1 7;®Y; € Xpyo @, Xo,
1
such that

Th = D X(halyyy)  for all  heL(X,, Y).
1

(Starting from the fact that reflexive Banach spaces do have the
Radon-Nikodym property, the reader may realize that, in comparison to
the Banach space result, for our general result the property of being
normed had to be replaced by “quasinormable”, and that of having the
Radon-Nikodym property by “semi-reflexivity”. The notion of quasi-
normability is that of Grothendieck ([15], ITI. 1, Def. 4, p. 106), see the
definition following Proposition 1.3 in Section 1.)

Section 1 contains the technical details this result is based on, together
with a first application to our original problem: the dual of IL,(X,, )
(algebraically) is a quotient of X, &, Y, whenever both X and Y are
Fréchet spaces, one of which is reflexive and quasinormable, or both X
and Y are generalized DF spaces (gDF), one of which is semi-reflexive.
Moreover, we use our representation of the dual of L,(X,, Y) to derive
various supplementary results to our paper [7] on weak compactness in
operator spaces. )

The subsequent sections are then devoted to a specialization of
the general technical results of Section 1 to the particular cases of

(1) X and Y generalized DF spaces (Section 2),

(2) X and Y Banach spaces (Section 3), and

(3) X and Y Fréchet spaces (Section 4).

Our results comprise repregsentations of duals of

(a) spaces K, (X, ¥) of compa,ét operators, X and ¥ Banach or, more
generally, X gDF and Y Fréchet,

(b) completed injective tensor products X @, Y, and of
(c) spaces of vector valued continuous functions, like C,o(S, X),

Cy (8, X);, and 0, (8, X);, S locally compact Hausdorff and X Banach,
or gDF, or Fréchet.

To give a flavour of the results, we take up the three examples con-
sidered above:
(*Y K'(X,Y) =X"&,Y" (isometrically)) X and ¥ Banach, X" or
Y’ RNP, X" or Y’ a.p. (Section 3, Thm. 3.2),
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(**) (XB,Y) = X;®, Y, (algebraically), X and ¥ gDF, X or ¥ semi-
reflexive, X, or Y; a.p. (Section 2, Thm. 2.1),

0K, X) = M(K)®,X (isometrically), K compact Hausdorif,
X Banach, X’ RNP (Section 3, Thm. 3.4).

0.2. Notation and terminology. Generally, we kindly ask the reader
to consult the corresponding section in our previous paper [7]. For con-
venience, we recall some of the fundamental definitions.

(a) Spaces of compact operators: Given locally convex spaces X and ¥,
we denote by K°(X, ¥) the space of weakly continuous linear operators
from X into Y which transform bounded sets into relatively compact
sets, and, as usual, by K(X, Y) the space of compact linear operators
from X into Y. Throughout, these spaces will be assumed to be endowed
with the topology of uniform convergence on the bounded subsets of X
(= operator norm whenever X and Y are normed), as indicated by
R3(X,Y) and K,(X,Y). (Recall that a linear operator from X into ¥
is called [weakly] compact if it transforms a certain zero neighbourhood in X
into a [weakly] relatively compact subset of ¥.) Whenever X is normed,
or a generalized DF gpace (see the definition below), and ¥ a Fréchet
space, then K°(X,¥) = K(X,Y). For X and Y locally convex spaces
such that ¥ is quasi-complete (closed bounded sets are complete), we have
the following topological linear isomorphisms:

Ey(X, )<t KY(X, ¥) 22 L(X;, ¥) == (Xp) ¢ ¥,
hh'.

(b) Spaces of vector-valued continuous functions: Let T be a completely
regular Hausdortf space, X a quasi-complete locally convex space, and
V > 0 a Nachbin family of weights on T such that T isa Vgp-space.

CV,(T, X) denotes the associated space of X-valued continuous functions
on T:

OVo(T, X) ={F: T-X continuous| vF: t—u(t)F(t) vanishes
at infinity for all v e V},
with the topology generated by the seminorms
by o(F) = sup{v(t) g(F(t))] t e T},
veV, and g a continuous semi-norm on X. For details consult ({7], Sec-
tion 4). We have the following topological linear isomorphism:
OV,(T, X) = L(X,, OVo(T)) == (CVo(T)) s X,
F - {g' —ax'oF}.
The following are the most common examples of weighted spaces.

o(T, X),,: continuous functions, with compaect open topology (' com-
pletely regular Hausdorff kg, X quasi-complete locally convex).

()’

icm°®
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Co(8, X): continuous funetions vanishing at infinity, with sup-norm
(8 locally compact Hausdortf, X Banach).

0y (8, X)z: bounded continuous functions, with the strict topology of
R. C. Buck ([4], [5]) (8 locally compact Hausdorff, X quasi-complete
locally convex).

C,(8, X);: continuous functions with compact support, with the
usual inductive limit topology (S locally compact Hausdorff o-compact,
X Banach).

(e) Special classes of spaces: A. locally convex space X is called semi-
reflexive if its bounded subsets are weakly relatively compact. X is called
a generalized DF space (gDF) if (i) its strong dual X, is a Fréchet space,
and (ii) linear operators into other locally convex spaces are continuous
a8 soon as their restrictions to the bounded sets are. Besides their classical
ancestors, and thus all normed spaces and strong duals of Fréchet spaces,
this class includes Mackey duals and e-duals Z, of Fréchet spaces Z, as well
as all function spaces with any of the extensions of R. C. Buck’s ([4], [])
strict topology g, c.f. ([26], [28]).

(d) Additional notations: Let X and Y be locally convex spaces, 4 a
subset of X, and U a zero neighbourhood in X.

B(X, Y) is the space of continuous bilinear forms on X x Y, usually
being endowed with the topology of uniform convergence on the products
B xC of bounded sets B and € in X and Y, respectively, as indicated by
By (X, ¥). ‘

N (X, Y)is the space of nuclear operators from X into ¥.

A®® i the (absolute) bipolar of A in X'’ = (X;)’.

X0 is the span of U° in X’ endowed with the Banach space norm
having U° as unit ball. ‘

The term “Radon—Nikodym property” (for 2 Banach space X) is, as
usual, abbreviated by “RNP”.

1. A. Grothendieck’s localized Radon~Nikodym property and the
dual of the operator space L,(X,, ¥). This section contains the fundamental
technical results on the representation of the dual of IL,(X,, ¥) in
terms of the completed projective tensor product X;&,Y,, together
with applications to weak convergence criteria in spaces of compact
operators.

Given locally convex spaces X and Y, we consider the natural linear
embedding of the algebraic tensor product X'®Y’ imto (L,(X;, T))
([7], Section 0):

Jor X'QY' —>(LG(X2, Y))’:

(1.1) . .
3o, i o 3 e 40}
1 1
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Our object is to specify conditions on X and Y under which

(a) jo is continuous from X, ®, ¥y into (L,(X,, ¥));,, and has a con-
tinuous extension j to X;®, ¥; which is still mapping into (L,(X;, Y)),

(b) j is & surjection from X; &, ¥, onto (L, (X;, ¥))', and

(¢) j is a one-one map from X, &, ¥, into (L, (X,, Y)) -

Ags is to be expected, problem. (c) is tied up with the approximation
property (for X, or ¥j).

Problem (b) is the most important point of our investigation. The
fundamental tool here is a kind of localized Radon-Nikodym property,
introduced by A. Grothendieck [16].

Problem (a) has easy satisfactory solutions in the two special cases we
are interested in:

1.1. LemMA. Let X and Y be both metrizable spaces or both gDF spaces.
Then the map jo of (LL) is continuous from X;®, Y, into (L,(X,, X)),
and has a continuous linear exiension j to X;&,¥, with range still
in (L,(X,, X)) -

Proof. For the continuity part of the assertion, let H be a bounded
gubset of Le(Xf,, Y). According to ([29], Prop. 1.9), there exist bounded
subsets B and C of X and Y, respectively, such that H(B°) = (. This
implies that j,(ac(B’®C")) = H°, and shows that j, is continuous.

For the second part of the assertion, consider first the case when
X and Y arve metrizable. Then L,(X,, ¥) is metrizable as well, so that

(L, (X4, ¥))p is & complete DF space. Hence, the continuous linear extension j
* of j, trivially maps into that space. In case X and ¥ are gDF, L,(X,, ¥)
has a fundamental sequence of bounded sets [29], so that (L,(X;, X)), is
metrizable. However, the question whether this space is complete in this
case, figures as “Probléme 10” in [16], and has been answered affirmatively
only in special cases ; see the discussion preceeding Theorem 2.2 in Section 2.

Nevertheless we are able to show that j still maps into (L,(X,, ¥))’
itgelf: Let 7e X;®,¥;. According to ([16], Thm. 1, p. 51), there exist
nullsequences (2}),qv a0d (¥;);ey in X, and ¥y, respectively, and (A)wey €V
such that

§ = 22.-90}@%.
1

k3
Hence, §( ) is the limit of (j,( 3% ;@Y}))uev in the completion of (L, (X;, T));.
1
‘We now show that the map
(=) T: L(X,,Y)~ K,

n
b lim 3 2 (haf, 97)
1

icm
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is an element of (L,(X,, Y)), and that the sequence (jo(znliwétxyy;))nsN
1

converges to T in (L, (X;, ¥)),. This will complete the proof.

First, the sequences (27),y and (¥;);v are contained in the polars U°
and V° of zero neighbourhoods U and V in X and ¥, respectively, for
strong nullsequences in the dual of a gDF space are equicontinuous ([26],
Prop. 2.2). Hence, given any k € L,(X;, ), the sequence ((ha;, ¥} is
a bounded sequence of scalars, and, therefore, the series >'4;(haj, ¥;) is

1

convergent. In order to prove that T is continuous, let (h,),., = L(X,, ¥)
be anet that converges to zero in L, (X,, ¥). Then, given ¢ > 0 and Uand V
ag chosen above, there exists 4, € 4 such that

1 (T°) s(j‘ w)‘lv for all A4,
1

Henee, we have:

T (k)] = lili(hzm;, yg)lg f:ud(s.(j:‘ W)"‘) =¢ forall Ax 4.
1 1 1

n
Tt remains to prove that (jo(zliw;®y§))ne,v converges to 7 in
1

{L,(X,, X)) as indicated before, given a bounded subset H of L, (X;, ¥),
there exigt B and € bounded in X and ¥, respectively, such that H (B°) < C.
For an arbitrary e > 0, there exists n, € N such that (a(;;)ia,,o =0,

and Y4l < &. Hence, we have:
110

(Th—zn'l.-(hwi-,?m[ = { i‘z,(hw;,y;)
1 n+1

< Dll<e
n+l

for all n>n, and all he H.
‘This proves our assertion.
Tor a discussion of injectivity of the map j, consider the following
linear map p, from X'®Y' into B(X, ¥):

p: X'@Y'~B(X, ¥}

(1.2) . .
N @y o {2, 9) ~ ) (@, @)y, 1)}
1 1

1.9. LEMMA. (a) The map p, is continuous from X;®, ¥, into By, (X, ¥)
for amy locally comver spaces X and X.

(b) Whenever X and XY are both gDF spaces or both Fréchet spaces, then
By, (X, Y) is complete, and the continuous linear extension p of p, maps
X, &, Y; inte By, (X, X). The map j is injective whenever p is.
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Connections between injectivity of p and the approximation property
for X; or ¥, will be investigated separately in any of the particular cases
to be discussed in the subsequent sections.

Proof of Lemma 1.2. The proof of part (a) being obvious, we immedi-
ately turn to a proof for part (b). Jn case X and Y are both gDF, the
solution of Grothendieck’s “Probléme des Topologies” for gDF spaces
([28], Thm. 1.9) reveals that B, (X, ¥) is topologically isomorphic to the
strong dual (X &,Y); of the gDF space X &, Y, and thus is a Fréchet
space. In case X and Y both are Fréchet, we first note ([33], IIL. 34.2,
Cor., p. 354) that B(X, Y) is equal to the space #(X, Y) of scparately
continuous bilinear forms on X x Y, and then use ([16], Intr. IIT. 4, ITL.G)
to conclude that %,(X, ¥) = L,(X, ¥;) is complete.

Now assume that p is injective and let o€ X, &, ¥, such that j(7) = 0.
There exists a net

ny

(M2)zea = X'QY", v, = 250;1@1/21
1

converging to ¢ in X; &, Y,. By assumption on 4, we have 0 = j{(3)(h)
= ((b—1im)j(v;)) (h) for all b e L(X,, ¥), in particular

s
0 =j()(a8y) =lim Y (@,0h)(y,93) forall (2,9) e XxY.
1
Hence, we have:
n3
2(8)(@, ) = ((bb—lim)py(0)) (@, y) = lim D' (@, 2{:)(y, ¥i) = 0
1

for all (#, ) e X XY, and thus, by assumptiononp, ¥ = 0.
‘We now turn to the central problem of this paper, namely the question
of when j is surjective. We shall derive the following result:
1.3. PrROPOSYITION. (a) Let X and XY be locally convex spaces such that
(i) X or X is a Banach space whose dual has RNP, or
() X or Y is semi-reflexive and quasinormable™™.

Then for every T e (L,(X,, X))’ there ewist zero neighbourhoods U and V
in X and Y, respectively, and

7= D Luey; e Xy ®, Yo,
1

such that Th = 3 h(hay, y))  for all he L(X., ¥).
1

** Actually, it is enough to assume that X or ¥ is a subspace of a product
of Banach spaces whose duals have RNP. (Note that a semi-refloxive guaginormable
locally convex space is a subspace of a product of reflexive Banach spaces.)

e ©
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(b) In particular, the map j: X3 &, Y, - (L,(X,, X)) is surjective,
whenever

(i) X and Y are Fréchet spaces one of which 4s reflewive and guasi-
normable, or

(ii). X and Y are gDF spaces one of which is semi-reflexive or a Banach
space whose dual has RNP.

We recall the definition of quasinormability.

DerINITION ([15], ITTL. 1, Déf. 4, p. 106). A locally convex space X is
called guasinormable whenever for every equicontinuous subset H of X"
there exists a zero neighbourhood U in X such that on H the strong dual
topology and the topology of uniform convergence on U coincide.

Every DF and, more generally, every gDF space is quasinormable
[26]. Also recall that a Schwartz space is exactly a quasinormable locally
convex space whose bounded sets are precompact.

The fundamental tool for a proof of Proposition 1.3 is based on the
notion of the “Phillips property” as introduced by A. Grothendieck.

First we need to fix some notations.

NoTATION. A convex circled subset of a linear space is called a disk.
If B is 2 bounded disk in a loeally convex space X, then we denote by Xp
the linear span of B in X endowed with the norm with unit ball B. B is
called completing if X5 is a Banach space.

1.4, DEFINITION ([16], L. 4.1, Déf. 6, p. 104). Let # be a family of
bounded completing disks in a locally convex space X. A subset C, of
X has the Phillips property with respect to 4 if its closed convex circled
hull ¢ is weakly compact, and if the following condition is fulfilled:

Given any compact Hausdorff space K, any Radon measure x on K,
and any continuous linear operator 7' from L' (u) into X, there exist
B e # and a bounded measurable function f: K—X5 such that

Ty =fgfd,u (in Xp) for all g e L' (u).

The following facts on the Phillips property are crucial for our con-
siderations.

1.5. FAors.

(1.5.1) If X is a Banach space whose dual has RNP, then the dual
unit ball By, has the Phillips property with respect to itself (take X' with
the wealk*-topology).

(1.5.2) (Phillips, [16], I.4.1, Thm. 4, p. 104) Every weakly compact
subset of a Fréchet space X has the Phillips property with respect to the
family of all bounded completing disks in X.

(1.5.3) ([16], I.4.1, Thm. 6, p. 108) Let & be a locally convex space,
% a family of bounded completing disks in F, and € a weakly compact
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disk in E which is contained in any B e # and has the Phillips property
with respect to 4. Furthermore, let F be any other locally convex space,
2 an upwards directed family of weakly compact disks in F, and H a linear
space of separately continuous bilinear forms on B X F whose restrictions
to (0, weak) X (D, weak) are continuous for all D € 2. Congider H to be
endowed with the topology of uniform convergence on the products
O xD, D e 9. Then any continuous linear functional in the polar of a zero
neighbourhood of the form

W(0,D) ={heH| h(xz,y)|<Lforall wel,yeD}, De9,

“originates” from the unit ball of the space Hy®,Fy, for a certain B e 4.
More precisely, this means that there exists B € # with the property that
forany T € W(0, D)° there exist nullsequences (,),.y and (¥,)pey in By
and Fy, respectively, and an I'-sequence (4,),oy Such that

)

Th = D hh(w;,y) for all heH.

1

We now apply this very last result to the space #,,(X,, ¥.)
= L,(X,, X) ([7], Section 0, (0.6.1)) and thus obtain our fundamental
technical result on the representation of the dual of the operator space
L(X;, X).

1.6. PROPOSITION. Let X and XY be locally convew spaces, U and V zero
neighbourhoods in X, and W a zero netghbourhood in Y.

(a) Consider the zero neighbourhood
N(U°, W) = {h e (X}, X)| B(U°) = W}

in L,(X,, Y). Assume that U° (considered as & weakly compact disk in
(X', weak*)) has the Phillips property with respect to V°.
Then for every T & (N (U, W))° there ewists

7 = Z}wm;@’f'/;

in the wnit ball of X'po &, Yipoy (Aien €1y (@])ien and (¥})sey nullsequences
in Xyyo and Yipo, such that

{1.6) Th = Zli(hw;, yy) for all heL, (X, Y).
1
(b) Conversely, any

= Zliw;@)y;ex;,)é,,l’;m
1

©
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defines o continuous linear functional on I, (X, X) by formula (1.6). Further-
more, the corresponding linear map

Jowt Xio®a Yo —(Le(Xs, D)y
48 continuous.

Proof. For a proof of part (a), recall first the topological linear
isomorphism ([7], Section 0, (0.6.1))

L(X, ) 2 #,0(Xey Yo)s

h > By: {(@, ') = (b’ ')}

and recall that each B, has continuous restrictions to
(T°, weak*) x(W°, weak*),

U and W zero neighbourhoods in X and Y, respectively, by ([16], Intr. IV,
Lemme D, p. 27). Hence, letting

B = X::;
& ={V°| ¥V a zero neighbourhood in X}, ¢ =0U", F =X,
2 = {W°| W a zero neighbourhood in ¥}, and H = i#,(X,, ¥,),

part (&) comes out to be nothing but a special case of fact (1.5.3) above.
The proof of part (b) is similar to the proof of Lemma 1.1. The reason-
ing there first shows that for every

P = 22,-00;@1/; € Xy D Yipo,
1
the map Ty: L,(X,, ¥)~K,
T5(h) = D) Alha, v7)
1

is well-defined, continuous and linear. In order to show that the continuous
linear extension of

jU,W: X;7°®n Y;V°'>(L5(X::’ Y))gr
n n

doar | D ol@0) () = 3 (hal, ),
1 1

to the completion Xe @, ¥po still maps into (L,(X,, X))’, we also follow
the reasoning of the proof of Lemma 1.1, this time using the general
characterization ([29], Prop. 1.9) of bounded subsets in L(X,, X):
a subset H of L,(X,, ¥) is bounded if and only if H (U°) is bounded in
Y for all zero neighbourhoods U in X, or, equivalently, H is an equi-
continuous subset of L(X,, ¥). We omit the details.
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We now turn to the proof of Proposition 1.3: Condition (i) of part
(a) being clear, we immediately consider the second condition, and assume
that X is quasinormable and semi-reflexive. According to Proposition 1.6,
we have to show that for every zero neighbourhood U in X, there exists
another such, V say, such that U° has the Phillips property with respect
to V. By the quasinormability of X, there exists a zero neighbourhood vV
in X,V < U, such that on U° the strong topology coincides with the
topology induced by the Banach space X.. But the strong topology on X
is equal to the Mackey topology, for X is semi-reflexive. Hence, U° is
a weakly compact disk in X;, and thus weakly compact in the Banach
space Xpo as well. An appeal to Phillips’ result (1.5.2) now completes
the proof.

We close this circle of ideas by deriving (from Proposition 1.3) our
fundamental general results on the representation of continuous linear
functionals on compact operator spaces and on spaces of vector-valued
continuous functions.

1.7. TEEOREM. Leét X and Y be locally convex spaces.

(a) If X and Y are complete, and either of X and Y is semi-reflenive
and quasinormable, or @ Banach space whose dual has RNP, then for every
T e (X Q,Y) there evist zero neighbourhoods U and V in X and Y, respect-
ively, and

b= Zlim:.@y; € X0 &, Yo
1

such that

oo

Th = Zli(hmg,y;) Jor al heXQ,Y.

1

(b) If X is quasi-complete, and esther of X, and ¥ is semi-reflevive
and quasinormable, or a Banach space whose dual has RNP, then for every

T € (K}(X, Y))' there ewist B bounded in X and V a zero neighbourhood in Y,
and ’

P = Z %5 @Y1 Xpoo®, Yo,
1
such that

Th= Y A('a),y) for all heRYX,Y).
1

(¢) If X is semi-reflexive and quasinormadle, or o Banach space whose
dual has RNP, T o completely regular H ausdorff space, and V > 0 a Nachbin
family of weights on T such that T is a Vr-space, then for every

e ©
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8 € (CVy(T, X)) there ewist zero neighbourhoods U and V in OV, (T) and X,
respectively, and

T = D' 15,00 € (OVy(T))yo & X7,
1
.;uch that

SF = > i(@joF,s;) for all F e OV,(T, X).
1

For the definition of the operator space EK°(X, ¥) and of weighted
spaces of vector-valued continuous functions and the most common
examples, consult Section 0.2, (a) and (b). (Any of the examples
C(T, X)ooy C4(8, X), Cp(8, X), and C,(8, X); will be investigated sep-
arately in the sequel.)

The object of the subsequent seetions is to refine the representations
of Theorem 1.7 to algebraical or even topological isomorphisms between
{L.(X;, X)), and X;&,Y, for various special classes of locally convex
spaces.

The present section will be closed with applications of the results
given so far to questions of weak convergence in the operator space
L(X;, Y).

1.8. TEmOREM. Let X and Y be locally convex spaces, and assume that
either of X and Y is semi-reflewive and quasinormable, or & Banach space
whose dual has RNP.

Then the algebraic tensor product X'®Y' is sequentially dense in
(L. (X;, X)) with respect to the strong dual topology on (L, (X, X))

In particular, on bounded subsets of L,X., ¥), the weak topology of
L,(X,, Y) and the X'QX'-weak operator topology coincide: a bounded net
(R)sea 0 L, (X,, Y) converges weakly to b e L{X,, Y) if and only if (h;2")c4
converges weakly in Y to ha' for all ' e X'.

This is a direct consequence of Proposition 1.3.

Remarks. For general locally convex spaces X and Y, we only know
that

(a) X'QY' is weak*-dense in (L,(X;, ¥))’, and that

(b) the families of weakly compact and of X'®@Y’-wot compact
subsets of L, (X,, ¥) coincide ([7], Prop. 1.2). Thus, Theorem 1.8 adds the
information that under the given assumptions on X and ¥, the two top-
ologies even coincide on every bounded subset of I, (X, ¥).

1.9. CoroLLARY. Let X and XY be complete locally convex spaces, such
that either of X and Y is semi-reflexive and quasinormable, or a Banach
space whose dual has RNP. Then on bounded subsets of XQ,Y, the weak
topology (of X &,Y) and the X' QY -weak operator topology coincide.
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1.10. TeEeorEM. Lot X and X be locally convex spaces, Y quasi-complete,
and assume that X; or ¥ is semi-reflexive and quasinormable, or a Banach
space whose dual has RNP.

Then the algebraic tensor product X''QY' 8 strongly sequentially dense
in (BS(X, X)), and o bounded net (hy)s 4 in Kj(X, X) converges weakly to
heE (X, X) if and only if (B 8'");eq converges weally in Y to 2" z" for
all 2" e X",

In particular, these assertions hold for the space K,(X, X) of compact
linear operators from X into Y.

This is a consequence of Theorem 1.8 and the topological linear
isomorphisms K (X, ¥)e= K3 (X, ¥)= L, (X, , ) ([7], Section 0, example
0.2 (b)). For the special cage of Banach spaces X and ¥, this has previ-
ously been proved by Feder /Saphar ([11], Cor. 1.2).

1.11. CoroLLARY. Let T be a completely regular Hausdorff space, and
V >0 a Nachbin family on T such that T is a Vy-space, Furthermore,
let X be a quasinormable semi-reflexive locally convex space, or a Banach.
space whose dual has RNP.

Then (OV,(T)) @ X' is sequentially dense in (0V (T, X)), and a boun-
ded net (F'y);eq tn CV, (T, X) converges weakly to F e OV, (T, X) if and
only if (&' © Fy)s. 4 converges weakly (in OV (T)) to &’ o F for all o’ € X'.

A further quite convenient weak convergence criterion can be de-
rived from Proposition 1.3 by analyzing the following composition of
continuous maps

X x 43,8, Yy — (L, (X,, X))

1.12. PrOPOSITION. Let X and Y be both gDF spaces one of which is
semi-reflexive, or & Banach space whose dual has RNP, or let both be Fréchet
spaces one of which is reflexive and quasinormable. Moreover, lot M and N be
subsets of X' and X' whose linear spans are strongly dense in X' and X',
respectively.

Then, on bounded subsets of L,(X,, Y), the weak topology and the
MRN-weak operator topology coincide.

We note two particularly interesting cases.

NoraTION. Given a Banach space Z, we denote by sexp By the set of
strongly exposed points of its unit ball B,.

1.13. TewoREM. Let X and ¥ be Banach spaces.

(a) If X' and X' have RNP, then a bounded net (M2)sea 0 X, X con-
verges weakly to h e X &, Y if and only if ((hya', §'))1ea converges to (ha', y')
Jor all &' € sexp By and oll y’ esexp By..

(b) If X' and X' have RNP, then a bounded net (B)iea m Ky (X, Y)
converges weakly to he K (X, ¥) if and only if (hya”,vy’) converges to
("'a", y') for all "' € sexp Bx.. and all 4’ € sexp By..

e ©
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For a proof we need only recall that a Banach space Z has RNP if
and only if each nonempty closed bounded convex subset of Z is the (norm})
closed convex hull of its strongly exposed points, cf. ([10], VIIL. 3, Cor. 4,
Pp. 208).

Further consequences of Proposition 1.12 can be based on the fact
([17], Thm. 3.3) that a Banach space Z contains no isomorph of 1! if and
only if every weak™-compact convex subset of Z’ is the norm closed convex
hull of its extreme points.

1.14. COROLLARY. Let (2, Z, u) be a finite measure space, X a Banach
space whose dual has RNP, and denote by K (u, X) the space of all p-conti-
nuous vector measures F: Z->X whose range is relatively compact, equipped
with the semivariation norm.

Then K (u, X) is isomeirically isomorphic to I' (u) ®,X, and a bounded
net (F)x in K(u, X) converges weally to F e K(u, X) if and only if
(sv’oFﬂ(E’)),,e,1 converges to x'oF () for all #' e sexp By, and all H e X.

For a proof of the isometry K(u,X) = L'(u)&,X, the reader is
referred to ([10], VIII. 1, Thm. 5, p. 224).

2. Spaces of compact operators on DF spaces. In this section, our
general resulfs on the representation of the dual of the operator
space L, (X;, ¥) are specified for the case of gDF spaces X and Y.

The following are the fundamental results.

2.1. TaworEM. Let X and Y be gDF spaces such that X or Y is semi-
reflexive, or a Banach space whose dual has RNP.

(a) The linear map
i X3 8. Y, ~>(L,(X;, X))
is surjective: for every T  (L,(X,, X)) there exists
b =D 40y e X, 8,7,
1
such that
Th = D X(kaj,y;)  for oll heL(X,, ).
1
(b) If the map
p: X;8,Y,—~B(X, Y)
18 injective, then j sets wp the following algebraical 1somorphism:
(L(X;, X)) =X;8,%, = N(X, ¥;) = nuclear operators X—¥;.

The map p is injective whenever Xy, or Yy or X, has the approzimation.
property.
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(¢) If X and Y are complele, and
p: X%;8,Y,~B(X,Y)

s imjective, then we have the following isomorphisms:

(el) L,(X,, Y) = X&,Y (topologically).

(€2) (X8,Y) =X, 8, %, = N(X, Yy) (algebraically).

The question of when the isomorphism (L,(X,, ¥)) = X; &, ¥, of
Theorem 2.1 (b) is topological for the strong topology on (L, (X, X)),
is connected with one of the problems in Grothendieck’s work, problem
10 in ([16], II, questions non résolues, p. 137): under which conditions
on two DF spaces X and Y is the completed injective tensor product
X &, Y again DT, or, at least, its strong dual Fréchet? It follows from
a result of H. Buchwalter ([3], Prop. (2.7)) that (X &,Y), is Fréchet
whenever X and Y are semi-Montel gDF spaces. We are able to extend this
result to the situation of two semi-reflexive gDF spaces only one of which
needs to be semi-Montel.

2.2. THEOREM. Let X and ¥ be semi-reflexive gDF spaces such that
X or Y is semi-Montel. Then we have:

(@) L,(X,, ) is semi-reflexive.

(b) (Lo (X;, X)) ¢ X3 ®, ¥y = N (X, X;) (topologically).

(0) (XS, T, == (X%,8, ¥;) /(X &, ¥)* (topologically),
hence (X®,Y), is @ Préchet space.

In connection with this result, recall that the class of semi-reflexive
gDF spaces includes the Mackey duals of Fréchet spaces, and that the
class of semi-Montel gDF spaces is exactly the class of ¢-duals of Fréchet
spaces.

‘We now turn to the proofs of Theorems 2.1 and 2.2. Olearly, prop-
osition (a) and the first part of proposition (b) of Theorem 2.1 are direct
consequences of the general results established in Section 1 (Lemma 1.2
and Proposition 1.3). Thus, what essentially remaing to be proven is the
indicated connection between the injectivity of the map p and the approxi-
mation property for Xj, ¥;, or ¥, . At the beginning of this proof, we
would like to apologize for the annoying fact (both for the reader and for us)
that, although everybody will take this connection for granted, it takes us
lengthy technical arguments to really establish it.

First we need the following result:

2.3. LmvmA. Let X and Y be locally convex spaces such that

(2) Y is evaluable, and

(B) every hypocontinuous bilinear form on X X Y is continuous.

Then (X®,X)" is algebraically isomorphic to L(X, X,). Condition (B)
48 fulfilled whenever X and X are both Fréchet or both gDF spaces.

[
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Proof. It is known that (¥®,Y) is equal to B(X, Y) and that
B(X, Y) is a linear subspace of L(X, ¥;) for any locally convex spaces X
and Y:

B(X, Y)~»L(X, 1}),
B {g—B(z,.)}. .
It remains to prove that under the given assumptions, every u € L(X, ;)
defines a continuous bilinear form on X x ¥. Let w € L(X, ¥, ») and consider
B,: XxY-K,
(@, 9)~(y, uz).

It suffices to show that B, is hypocontinuous: if B is a bounded subset of X, s
then «(B) is bounded in ¥;, and thus, by the evaluability of ¥, equicontinu-
ous. There exists a zero neighbourhood V in ¥ such that u(B) < V°.
Hence, we have:

1Bu(B, V)l = KV,w(B)> |<1.

If ¢ is a bounded subset of ¥, then there exists a zero neighbourhood
U in X such that u(U) < C°. Hence, we have:

1By (U, O)] = KO, u(U)| <1.

Finally, hypocontinuous bilinear forms on X X ¥ are continuous whenever
X and Y are Fréchet, of. ([33], IT. 34-5, Cor. on p. 354), or whenever X
and Y are gDF ([28], Thm. 1.4).

Next, we need the following relative of our map p: given arbitrary
locally convex spaces X and ¥, consider the linear map

@1) P12 Xy®, Ty>B,((Xy),, (Ty)),

n n
2y @,y Y @, o), y).
1 1
(21.1) p, is continuous.

(21.2) Whenever X and Y are both gDF or both Fréchet spaces, then
the space #,((X;),, (¥p),) =< X; ¢ ¥ is complete, ef. (t71,
Section 0, (0.6.2)), and, according to the inclusion B, ((X;),, (¥;).)
< H#o(Xy)es (¥p)s), the map p, has a continuous linear extension

Pt Xy, Tyt (X sy (Z3)s) -

(2.1.3) Let X and ¥ be both gDF or both Fréchet spaces, and let
e X;®,Y,. Then p(7) = §,(3)IX XY, and 5,(3) = 0 whenever
p(%) =0.

2 — Studia Mathematica 74.3
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Proof. Let p(B) = 0, and let (v, y"") e X' x ¥''. There exist cloged
bounded disks B and € in X and Y, respectively, such that

(@”,y") e B> x0° = B°xC°
(c-closures of B and O in (X;), and (X;)., respectively). Since 9,(9)|B x
%0 =0 and p,(3)|B* x0” is ¢Xc-continuous, cf. ([16], I, Intr. VI,
Lemme D, p. 27), we conclude that
P1(8) (2", y"") = 0.

Proof of Theorem 2.1 (b). Let X and ¥ be gDF spacos,
A0, ®ys,

1eX®, Y, U=

e

(Aien €T, (#]) s 20 (¥))iey Dullsequences in X and Y, respectiwlrel'y,
and agsume that p(?) = 0. We have to show that ¥ = 0 whenever X;, or
Y;, or ¥ has the approximation property (a.p.).

Step 1. Assume that X;, or ¥}’ has a.p. According to (2.1.3) we have

1)
0 =HaB) (@, 9") = 3 4lwl, 0") i, v")  for all (87,y") e X XT".
~ :
Since, by Lemma 2.3, (X, &, ¥;) = L(X;, ¥;'), we can interpret (1) in
the following way:
(2) k(@) =0 for all ke X"'QY".

Furthermore, if X; or ¥3 has a.p., then X"®Y" is dense in L,(X;, ¥;),
of. ([15], L. 5.1, Prop. 35, pp. 164, 165). '
Now, let u e L(X;, ¥})) = (X,8.Y;), and &> 0. Then there exists

ke X'®Y" such that (b—u)((@)i) = ¢(3 [Al)7 V™, where Ve,
1

is chosen such that (¥;),y = V°. We conclude that

| < lw—R)E)] =] 3 4w —E)al, vl < ) 14w —T)ai, i) < s.
1 1

Hence, %() = 0 forallw € (X; &, ¥;)’,ie. % = 0. This complotes the proot.
Step 2. Assume that Y, hag a.p.
(2.14) Let X and Y be locally convex spaces such that X and Y, are
evaluable. Then the map

S: L(X;y YI:I)_*L(YIZ; X!,;/)a

Py (v (u(.), v)}
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is a linear bijection, and (%)* = u.

This is a consequence of the fact that & = %'| ¥y, and that evaluable
locally convex spaces Z are topological linear subspaces of their strong
bidual Z,' = (Z,),.

Given gDF spaces X and Y such that ¥, has a.p., We can now use the
symmetry L(X;, ¥;) = L(¥;, X;') of (2.1.4) together with the denseness
of Y"®X" in L,(¥;, X;') to follow the reasoning of step 1 above in order
to establish injectivity of p also in this case. We omit the details.

To complete the proof of Theorem 2.1 (b), it remaing to show that
X; ®Y; is isomorphic to the space N (X y ¥3) of nuelear operators from
X into ¥, whenever p is injective. To this end, consider the map

W L@, Vy~>Ly(X, ¥p),

Zﬂ’w;@) Y; {aﬂ-—»j (z, w,’)y;}
1 1

Since L,(X, ¥;) is Fréchet (X and ¥ are gDF!), 4, has a continuous
linear extension o: X;®, ¥;—L, (X, ¥y). According to the definition
of nuclear operators, the space N (X » X3) is even topologically isomorphic
to X,®, X;/ker . But it is easy to see that ker:— {0} whenever p is injec-
tive. This completes the proof of part (b) of Theorem 2.1.

For a proof of part (c), let p be injective, and let

T =j(®) e (L, (X;, X)),

v € X;®, ¥y, be such that T|X@,Y = 0. This implies that p(¥) = 0, and
thus o = 0, and T = 0. Under the given assumptions this means that
X8,Y = L(X,, Y).

The proof of Theorem 2.1 is now complete.

Proof of Theorem 2.2: Part (a) is a special case of a result in our
previous paper ([7], Section 2, Thm. 2.13).

Part (b): We may assume that X is semi-Montel. Then we noto that

(X5 @, Y,) = L(X;, ¥y) = L(X], X,)

(Lemma 2.3 and semi-reflexivity of ¥), and that L(X,, Y,) = L(X;,Y): ¥
and ¥, have the same bounded sets. Hence, every « e L(X;, Y) transforms
bounded subsets of X; into bounded subsets of ¥, . Bub X/ = X, is Fréchet,
so that u e L(X;, ¥,). We thus have shown that X;&, Y, and (Lo (X,, ),
have the same dual (according to part (a), L,(X,, X) is semi-reflexive!).
Henee, if j(?) = 0,

Ll
¥ = D hei®y e X8, X,
1
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then we have:

o

0 =3§(B)(w) = D Alus), yp) = u(®)

1

for all w e L(X,, ¥) = (X;®,. X},

and thus & = 0. Altogether, we have shown that X; &, ¥; and (I, (g;, ),
are algebraically isomorphic and have the same dual. Since X, X, is
Fréchet and (L, (X, Y)), is metrizable [20], we conclude that both spaces
are topologically isomorphic.

Part (c): According to part (b), (L,(X,, X)) is Fréchet. XQ,¥ is
a closed linear subspace of (the semi-reflexive) space L,(X,, ¥). Hence,
the assumptions of Proposition 2.7 (i), of [26] are fulfilled, and we can
conclude that

BX XY, X8, X) = B((L,), L) (X &, X)*.

We now turn to applications and special cases of Theorems 2.1 and
2.2.

Reeall that, given locally convex spaces X and ¥, we denote by
K¥(X, Y) the space of weakly continuous linear operators from X into ¥
which transform bounded sets into relatively compact sets, endowed with.
the topology of uniform convergence on bounded subsets of X. Whenever X
is quasi-complete, then K3(X, ¥) =~ L, (X, , Y}, by ([7], Example 0.2 (c)).
Note that K, (X, ¥) is a topological linear subspace of Ko (X, ¥). We first
deduce a representation for the continuous linear functionals on K3 (X, ¥).

2.4. THEOREM. Let X be a metrizable space and ¥ a complete gDTF space
such that X, or ¥ is semi-reflexive, or a Bamach space whose dual has RNP.
Then we have:

(a) The map

it Xy &, Y~ (B3 (X, X))

is surjective: for every T e(K}(X, X)) there emist (A);yel' and nullse-
quences (2 ),y ond (Y3)sey 0 X, and X, respectively, such that

Th = Y 4(W'a,y) for all heK*(X, X).
1

(b) If, in addition to the assumptions, X , or Xy, or ¥, has the approwi-
mation property, then the map j of (a) is a linear isomorphism:

(B3(X, X)) = X8, Y; = N(X,;, T;)
(e) If, in addition to the assumptions, X, and Y are semi-reflemive
and one of them is semi- Montel, then we have:
(el) K%(X, Y) is semi-reflexive.
(c2) (K3(X, X))y == X' 8, ¥y = N (X}, ¥y) (topologically).

(algebraically) .
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2.5. OoROLLARY. Let X be a Banach space and ¥ a complete gDF spaco
such that X'’ has RNP or that Y is semi-reflexive. Then we have:

(a) The dudal of Ky(X, Y) is algebraically isomorphic to a quotient of
X8, Y.

(b) If, in addition to the assumptions, X is a reflewive Banach space
and Y 4s semi-Montel, then the space K,(X, X) is semi-reflemive, and
(Bo(X, ¥))y = XS, Y, == N(X;, X}) (topologically).

2.6. COROLLARY. Let X be @ Banach space and Y the o-dual of & Banach
space with the approximation property. Then we have:
(a) (Ly(X, X)) = X, &,Y; = N(X;, ¥;) (algebraically).
(b) If, in addition to the assumptions, X is refleive, then Ly(X, X) ¢s
semi-reflexive, and we have:
(Lo(X, X)) == X &, ¥, = N(X;, ¥;)  (topologically).

The spaces Iy and H*™(@),, f the strict topology of R. O. Buck ([41,
[6]), & a simply connected region in the plane, are (non-trivial) conerete

examples for ¢-duals of Banach spaces with a.p. (for H®(@);, consult
([1], Satz 9)).

2.7. TEnOREM. Let X be a Fréchet space and Y a gDF space.

(a) For every continuous linear functional T on L,(X, X) there ewist

(A)iew = U and nullsequences (o)) ;oy and (¥})ien in X and Y,, respectively,
such that

Th = Di(hag, y;)  for all heL(X, ).
1
(b) If, in addition to the assumptions, X or X, or Y, has the approwi-

mation property, then (L,(X, Y)) = X &, Y, (algebraically).

(¢) If, in addition to the assumptions, ¥ is semi-reflemive, then L, (X, ¥)
8 semi-reflexive and

(Lc('Xi Y))(’; o2 X@n Yt: = -N(-Xéy Ytlz)
_ This is a conscquence of Theorems 2.1 and 2.2 and the topological
somorphism L, (X, ¥) = L,((X,);, ¥) of Bxample 0.3 in [7]. For a DI

space Y, proposition (a) of Theorem 2.5 i a result of Grothendieck [16],
1.4.2, Prop. 22, p. 114).

2.8. COROLLARY. Lei X be a Fréchet—Montel space and Y gDT space.
() If X or X or X has the approwimation property, then

(Lo(X, X)) = X8,Y; = N(X;, Y} (algebraically).
(b) If X is semi-reflewive, then L,(X, Y) is semi-reflexive and
(Lp(X, V) = X8, Y, = N(X;, ¥;)

(topologically).

(topologically) .
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Tn the coutext of vector-valued continuous functions, Singcr [32]
and Bogdanowicz ([2], Thm. 4) determined the dual of 0 (X, X) (K compact
Hansdortf, X Banach), and Wells ([34], Thm. 1) and Fontenot ([13],
Thim. 3.13) the dual of 0,(8, X), (8 locally compact or completely rogular
Hausdortf, X a locally convex space, § the striet topology of 1. O.- Buc%;
([4], [B]))- In any case, the dual turned out to be a space of certnin X'-
valued measures. It appears to be one of the nicest applications of (m.r goneral
duality results, that we are able to derive a much more spocific rosult
for the special case that the range space X ig a semi-reflexive gDF space or
a Banach space whoge dual has RNP.

2.9. TarorEM. Let S be a locally compact Hausdorff space, X a semi-
reflexive gDF space, or a Banach space whose dual has RNY, ftnd denote
by Cy(8, X)s the space of bounded continuous X-valued fumctions on 8,
endowed with the sirict topology p of R. 0. Buck ([4], [6]). Fawthermqre, let
M, (8) be the space of bounded regular Borel measures on 8, endowed with
the total variation norm.

Then we have:

(Ca(8, X)) = My(8)E,X;  (algebraically).

Hor every T e(0,(8, X))’ thers ewist (A)yel', and nullsequences (f)an
and (@]),cy 0 My(8) and Xy, respectively, such that

IF = D% [ (@oF)du; for all F e 0y(8, X).
1

This result is just a special case of Theorem 2.1 (¢): C;(8), and _M,,(S)
have the approximation property (for C,(8),, see [6]), and, according to
the results of Section 4 of our previous paper [7], we have

05(8, X)p 22 L(((0y(8)g)es X) (22 0y(8),8,X)-

2.10. TurorEM. Let 8 be o locally compact o-compact Hausdorff space,
X a Banach space whose dual has RNP, and denote by 0,(8, X); the space
of continuous X-valued fumctions on 8 with compact support, endowed with
the usual inductive limit topology. Furthermore, denote by M (S) the space of
Radon measures on 8, endowed with the strong dual topology of (0,(8)) .
Then, for every T e(0,(8, X),)', there emists

§ o= 2 @0 € M(8)&, X'
1

such that

)

TF = Y5 [ @ioF)du, for all Fe0,(8, X).

1
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Again, this is an obvious special case of Theorem 2.1, for we have
the topological isomorphism 0,(8, X); = I, (X, C,(8),), ct. ([7], Section 4).
We close this section with an application of Theorems 2.1 and 2.2 to
spaces of holomorphic vector-valued functions with the strict topology B.

2.11. TEEOREM. Let G be a simply commected region in the complex
Dplane, and X o complete gDF space, and denote by

My (@) = M, () [(H™(6h)*
the (strong) dual of H*(@)s. Then we have:
(a) (H*(6, X)p)' = M, (S, X, (algebraically).

For every T e (H*(&, X)) there emist (A),ey €', and nullsequences
(ihiew and (@) in My, (@) and Xy, respectively, such that

TF = D) [(@oF)du; for all F e H*(G, X).
1

(b) If, in addition to the assumptions, X is semi-reflewive, then H (G, X)g
s semi-reflexive, and we have:

(H>(G X))y = Mo ($)&, X, (topologically).

This result is a special case of Theorems 2.1 and 2.2: H* (@), is a
semi-Montel gDF space [26], and, for G simply connected, has the approxi-

maition property ([1], Satz 9). According to ([21], § 43.4, (9)], M, (G" has the
a.p. a8 well.

3. Spaces of compact operators on Banach spaces. In the context
of Banach spaces, the general duality results of the foregoing sections
nicely specialize to isometrical representations of duals of spaces of compact
operators. The following i the fundamental result. (The dual of & normed
space Z, endowed with the dual norm, is denoted by 2 ")

3.1. TeeorEM. Let X and ¥ be Banach spaces such that X’ or X' has
RNP. Then we have:

(a) The map
Ji X'@, X' —~(L,(X;, X))
48 surjoctive, and (L,(X;, X))' is isometrically isomorphic to (X'S, Y’y [kerj.
For every T e (L,(X,, X)) there ewists
i = D hb@ye X' &, Y, 5], =TI,
1
uch that

)
Th = D4 (haj,9))  for all b eL,(X,, X).
1
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(b) If, n addition to the assumptions, the map
p: X'Q, Y ~B(X,Y)

is injective, then we have the following isometrical isomorphisms:

(b1) X&,Y = L,(X,, ¥) = the space of compact weak*-weakly con-
tinuous linear operators from X' into Y.

12) (XQ,X) = N(X, ¥') = the space of nuclear operators from X
into X' )

(b3) (X &, X)" = L(X', X") == the space of bounded linear operators
from X' into X''. . o

The map p 18 injective whenever X' or Y’ has the approvimation property.

In view of the applications of Theorem 3.1 to quite recent results in
Banach space theory, it seems particularly remarkable to note that,
essentially, this theorem can be traced back to Grothendieck’s work
([16], I.4.2, Thm. 8, p. 122), compare ([14], Thms. 5.2 and 5.3).

Here, Theorem 3.1 appears just as a special case of Theorem 2.1.

We now discuss consequences and special cases of Theorem 3.1.

3.2. TuEOREM. Let X be a normed space, or, more generally, a gDF space
whose strong dual X, is a Banach space, ¥ a Banach space, and assume
that X'’ or X' has RNP. Furthermore, consider the linear map

g X" @,,Y'»(K(X, Y))’,
n n
Z '@ y; {h > 2 (W', 'yf;)}.
1 1
Then we have:
(@) (K(X, X)) = X"8, Y'[kerj (isomelrically).
For every T e(K(X, X)), there emists
5= Yol @ue X" &, Y, || =I5,
1
such that
Th= 340 a4}  for all heK(X, T).
1

(b) The map j is injective, whenever the map

p: X'®, Y —-B(X', Y)

18 injective, in particular, whenever X' or ' has the approzimation property.

In any of these cases, we have the Jollowing isometrical isomorphisms:
(bl) (E(X, T)) = N(X', T').
(b2) (K(X, Y} =L(x, 1.

e ©
lm Duals of spaces of compact operators 237

This follows from Theorem 3.1 and the isometrical isomorphism
K(X,Y) = L(X,, ¥) of ([7], Example 0.2 (a)). For the case of Banach
spaces X and Y, Theorem 3.2 quite recently has been (re)proven (see the
notes preceeding Theorem 3.2) by Feder and Saphar ((11], Thm. 1) in
a different way, using further deep results on the Radon—-N ikodym property
for Banach spaces.

Note. In a series of papers, Ruckle [24], Holub [19], Kalton [20}
and Heinrich [18] dealt with the conjecture that, for reflexive Banach
Spaces X and Y, the space L(X, ¥) is reflexive if and only if every bounded
linear operator from X into Y is compact. Roughly, this connection holds
Wwhenever, in addition, X or ¥ has a.p. For a detailed discussion of the
problem we refer to Section 2, Theorem 2.8, of our previous paper [7]-
Theorem 3.2 allows to add the following more specific information :

3.3. CoroLLARY. Let X and XY be reflewive Banach spaces.

(a) If L(X, ¥) = K(X, Y), then L(X, Y) is reflexive.

(b) Conversely, if K (X, ¥) is weakly sequentially complete and the map
j: X8, Y'~(E(X, X)) of Theorem 3.2 above is injective, then we have
L(X,Y) =KX, Y).

In particular, L(X, ¥) = K(X, Y) if and only if K(X, ¥) is reflewive
and j is injective.

This result contains the corresponding omes of the authors cited
above as special cases. It is a consequence of Theorem 3.2 and of ([71,
Thm. 2.8). Furthermore, it reduces the question of whether the conjecture
"L(X, X) is reflexive if and only of L(X,Y) = K(X,Y), (X and ¥
reflexive Banach spaces) is true to the problem of injectivity of j.

PROBLEM. Given reflexive Banach spaces X and ¥, is the map
jr XQ, Y'»>(K(X,Y)) of Theorem 3:2 injective? More specitically :
given reflexive Banach spaces X and ¥, and

7= hneyiceX8, Y,
1

—

Aoy

@

v €V, (@) and (¥))ey nullsequences in X and ¥’, such that & ()
i(fowg, yi) = 0 for all ke K(X,Y), is it true that then & (u)

— N7

Ay(uwgy yy) == 0 for all we L(X, ¥) ag well?

~vg ~DM8

Trivially, this is true whenever X or ¥ has a.p. That it very well
can happen without X or ¥ having a.p. can be seen by combining a result
of Pitt’s with the counterexamples to the a.p.: it is a consequence of
([22], Thm. 1) that L(12, 1) = K (17, 17) for 1 < p < ¢ < co. Furthermore,
aceording to results of A. M. Davie [9] and T. Figiel [12], there exist
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closed linear subspaces of I without a.p. for any p with 2 < p << co. Thus,
we arrive at the desired example if we choose subspaces I and & of I and
12, respectively, without a.p., for p and g such that 2 <p < ¢ < co. For
then we still have L(N, M) = K(N, M), as can bo seen by employing
techniques of Rosenthal’s ([23], proof of Theorem A2, pp. 206, 207). (We
are grateful to our colleague Lutz Weis for working out this example.)

We close this section with applications to spaces of vector-valued
continuouy functions and to spaces of compact operators on function
spaces with the strict topology.

3.4. TEuoREM. Let 8 be a locally compact Hausdorff space, X a Banach
space whose dual has RNP, and denote by Oy (8, X)., the space of continuous
X-valued funetions on S vanishing at infinity, endowed with the sup-norm
topology . Furthermore, denote by M, (8) the space of bounded Radon measures
on 8. Then we have

(C(8, X)) = My(8)&, X' (isometrically).
For every T & (0, (8, X)), there exists

b o= D hu®a; e My(8)8, X',  |§l, = I,
1
such that
TF = 3 %[ (@,0oF)du; for all Fe0y(S,X).
1

This follows from Theorem 3.1 (b) and the known facts that 0,(S, X)s
= 0,(8)®, X, and that M, (8) has a.p.

TERMINOLOGY AND NOTATION. (a) For a completely regular Hausdorff
space T, B,, B, and B, denote the substrict, strict, and superstrict topology
of [31], respectively, on the space C,(T) of bounded continuous sealar-
valued functions on T. (Note that, whenever T = § = locally compact,
B, =P =Budk’s original strict topology). By M (T), & e {Byy By Ba}»
we denote the respective duals of 0, (T);, the spaces of tight, z-additive, and
o-additive measures on T, respectively.

(b) Given a region & in the complex plane, we denote by H> (G, (resp.
H>(@),,) the space of bounded holomorphic functions on ¢ endowed with
the strict topology # (vesp. the sup-norm topology).

We are now ready to state the following special case of Theorem 3.2:

3.5. THEOREM. Let T be a completely regular Hausdorff space, G o plane
region, and X a Banach space whose dual has RNP and the approwimation
property. Then we have the following isometrical isomorphisms :

(a) () X(0)(T),, X) = My(T) &, X,

(]1) (K(Ob(T)u X))' = N(MC(T)I X')y
(i) (&(Cy(T);, X)) = I{(Me(T))', X) (L e {By , B, B}
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(0) () L(H*(G),, X) = K(H (&), X) = My(6)®, X,
(i) (L(H= (@), X)) = N(M, (&), X),
(ifl) (L(H>(@)g, X)) = L{H*()y, X").

4. Spaces of compact operators on Fréchet spaces. This section is
devoted to a study of spaces of compact operators acting between Fréchet
spaces X and Y. Again, we start with the fundamental duality result for
the space L,(X;, Y).

4.1. TaroREM. Let X and Y be Fréchet spaces one of which is reflexive
and quasinormable, or a Banach space whose dual has RNP.

(a) The c-dual of L,(X,, Y) is topologically isomorphic to X, &, ¥,

(Le (X5, X)), = X8, Y.
(b) The linear map
j: XZ’: ®n Y;*(LB(X;’ Y))’

is surjective. More precisely, we have: for every T e (L,(X,, X))’ there ewist
UeUg,VEUy, and :

5 = D 10i®Y; € Xy, Yo
1

such that

Th = D 4(hal,4) for all heL,(X,, ¥).
1
(¢) If the map
p: X;8.Y;~B(X, Y)

s injective, then we have:

(1) X&,Y = L,(X,, X) (topologically),

(€2) (X Q,Y) =X, 8, Y, (agebraically).

D 48 injective if any of the following additional conditions on X and ¥ are
Julfilled:

Case 1. X is Fréchel-Monidl, Y, is barrelled, and X or ¥, has a.p.

Oase 2. XY is Fréohet—Montel, X; is barrdlled, and ¥ or X,  has a.p-

Remarks. 1. We are not able to establish a connection between in~
jectivity of p and the approximation property as nice and general as
in the case of gDF spaces X and ¥ (Theorem 2.1!), but need the addi-
tional assumption that at least one of the spaces X or ¥ is Montel. As will
become clear from the proof of part (¢) of Theorem 4.1 below, the reagon
for this lies in the fact, that, in general, for the elements 7 e X;&, ¥;, we
do not have a series representation in the form of an (infinite) absolutely
convex combination of the tensor product of two nullsequences in X; and


GUEST


240 H. 8. Colling and W. Ruess

Y;, respectively. Note that, conversely, we arrive at such a represcntation
whenever the map j: X; &, ¥;—(L, (X, X)) is injective (Lemma 4.3
below).

2. Again, in general ,we are also not able to extend the alggbmic iso-
morphism of part (c2) to a topological isomorphism between X;&, ¥, and
(L.(X;, X))s- But we do get the desired result in a special gitnation,
analogous to that of the corresponding result for gDF spaces X and Y in
Section 2 (Theorem 2.2).

4.2. THEOREM. Let X and Y be reflewive Fréchet spaces such that X or ¥
s quasinormable and X or Y is Moniel. Then we have:

(@) L,(X,, X) and X®,Y are reflewive Fréchet spaces.

(®) (L, (X, D =2 X &, Xy (topologically) .

Note. The assumptions of Theorem 4.2 ave fulfilled whenever X and ¥
are reflexive Fréchet spaces one of which is even a Fréchet-Schwartz
space.

Proof of Theorem 4.1. Part (a): We have the following topological
isomorphisms:

L,(Xé, Y) ngb(X:,;’ Yé) = ('Xc':éu Yé)r;r

the second one being a special case of Theorem 1.9 of [28]. According to
that same result, X.®, ¥, is semi-Montel gDF, hence we have (L,(X;, X));
=~ X,8, Y, topologically, for semi-Montel gDF gpaces are exactly the
¢-duals of their strong duals.

Part (b) is a consequence of Theorem 1.3, Proposition 1.7 and Lemma
1.8.

Part (c): In case p: X, &,Y,—~B(X, Y) is injective, the map

i Xy @, XLy (X, X))
is injective too, and, as in the proof of the corresponding fact in Theorem 2.1,

it is easy to see that
X®,Y = L(X,, Y).

Wenow turn to the connection between injectivity of p and the ap-
proximation property. We give a proof for case 1. The other case follows
by symmetry.

_ Case 1: X Montel, X or ¥; has a.p. Let % e X;&,¥; such that
2(?) = 0. Then, according to Proposition (2.1.3) in Section 2, we have:

1) k(%) =0 for all ke X"QY".

Furthermore, since X has a.p. and is Fréchet-Montel, X; = X, has a.p.,
too, cf. ([21], § 43.4, (10), p. 248). Hence, under the assumptions on X and
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Y, the space X"®X" is dense in L,(X;, ¥;'). At this point, if we would
know that ¥ has a series representation

§ = D A0i®y  with (el
1

and ()i a0d (¥)iy Dullsequences in X, and ¥, respectively, then
wo would be able to follow the arguments of the proof of the correspond-
ing part of Theorem 2.1 to conclude that o = 0. Since such a sories
Tepresentation is not guaranteed (X, and ¥, are DF spaces!), we use here
the additional assamption that X is Montel, instead. We thus can start
from the situation, that ¢ is an element of the completion of the tensor
product X;®, ¥;, where X; is a Montel DF space and ¥, a DF space.
According to Theorem 1.9 of [28], we conclude that there exist a closed
bounded (and, henee, compact) disk B in X; and a bounded digk ¢ in ¥}

such that o e ac(BRC); there exists a net
7}
U = 2%;1%31@?/;1 eac(B® C)
1

such that (v,),.4 converges to ¢ in X;®,Y,. Now let ueL(X;, X))
= (X;®, ¥;)" (Lemma 2.3), and &> 0, There exists k € X @Y such that
{2) (w—F)(B) = e0°.

According to (1), we conclude that

"
I (®)] < [ —k)(8)] = Lm |(w—F)(v,)] <.lim2 loal | (0 —B)aa, yia)| <.

Hence 7 = 0, and the proof of Theorem 4.1 is complete.

Proof of Theorem 4.2. Part (a) is a special case of a result of our
previous paper ([7], Thm. 2.13).

Part (b). Step 1:j: X; &, ¥y~ (L,(X,, X)) is injective: let 5 ¢ X; &, ¥;
such that j(¥) = 0. There exists a (bounded) net
na

Y, = Zw(’i.@) Yu € Ly, ¥,
1

such that (v,)y,4 converges to 4 in X; @, Y;. According to the continuity
of j into (L, (X;, X)), (Lemma 1.1), we conclude that
ny,

(1) 0 =j(#)(h) =limj(v)(h) =1lim Y(hoj, vis) for all h e L(X], T).
1

Furthermore, we have
(@) (X8, T;) = L(X;, T):
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first, according to Lemma 2.3
(X, ®.Y3)" = L(X, Y)

(X and Y are both reflexive Fréchet spaces). But, ginee X or Y is Montel,
we also have the identity L(X3, ¥) = L(X;, ¥). In case X is Montel,
thisis clear. In case Y is Montel, we use Theorem 3.1 (4) of [28]. (1) and (2)
together imply that 4 = 0.

Step 2. According to step 1, § is & continuous bijection from X, 8.
onto (L,(X;, ¥)),- But both these spaces are complete reflexive (hence
also barrelled) DF spaces: for (L,(X;, ¥)),, this is a consequence of part
(a), for X;&, ¥;, consult ([16], T.1.3, Cor. 1, p. 44, and Cor. 2, p. 45])
Hence, the closed graph theorem 3.8 (2) of [25] allows us to conclude that
j is a topological isomorphism. This completes the proof of Theorem 4.2.

We cloge this circle of ideas with a result on the representation of
the elements of X; ®, ¥; for X and ¥ being Fréchet spaces.

4.3. LEMMA. Let X and Y be Fréchet spaces one of which is reflevive
and gquasinormable, and asswme that

Jt Xy @, Ty (Le( X, X))
18 injective.

Then, for every © € X;&,Y;, there exist UeWUy, VelUy, (Aunel',
and nullsequences (€))iy 0@ (Yiien i Xyo and Ypo, respectively, such
that

§ = 3 ey,
1

(in the topology of X, &, ¥;)-

Remark. Assumptions on X and Y under which j is injective, are to
be found in Theorems 4.1 and 4.2.

Proof of Lemma 4.3: Let § & X; @, Y;. Then T = j(5) e (L,(X,, X))’
(Lemma 1.1). According to Proposition 1.7 and Lemma 1.8, there exist
UeUx,V €Uy, and

Wb = 2 Y 2iQv; € Xpye@n Yo
1

such that T = jy (). Clearly, the sequence ( Y A4;®¥)ey is Csuchy im
1

X, &, Y5, hence it converges to an element i, € X; ® ¥;. The continuity of
the maps jy» and j into (L,(X;, X)), allows us to conclude that j(i,)
=T = j(?). Hence, #, =4, for j is supposed to be injective.

‘We now turn to applications and special cases of Theorems 4.1 and
4.2.
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4.4. TaroreM. Let X be o gDF space and Y a Fréchet space such that
X, or Y is reflewive and quasinormable or a Banach space whose dual has
RNP.

(2) The lVinear map j: X;'Q, Y, (K, (X, X)) is surjective. More
precisely, we have: for every I (K,,(X , Y))’, there ewist B bounded in X,
Vedy, and

o
b= D i@y € (Xpo)§, Yo
1
such that

Th = 3 J(W'a],4)  for all he K (X, T).
1

(B°* is the bipolar of Bin X" = (X;).)
(b) If, in addition to the assumptions, the map

p: X/ @, Y;~B(X;, X)

18 injective, then we have:

(1) Kp(X, Y) e X, 8, Y (topologically).

(b2) (Ky(X, X)) = X} @, X, (algebraically).

Conditions ensuring injectivity of p can be read from part (¢) of Theorem
4.1.

(e) If, in addition to the assumptions, X, and Y are veflewive, and X,
or Y is Moniel, and X, or ¥ is quasinormable, then we have:

(el)y Ky (X, X) 48 a reflexive Fréchet space.

(e2) (Ey(X, 1)) a2 X3 &, Xy (topologically).

This is & consoquence of Theorems 4.1 and 4.2, and the topologicak
isomorphism XK, (X, ¥) o= L,(X,, Y) of ([7], Example 0.2 (b)).

4.5. IixAmprns. Theorem 4.4 can be used to determine the form of
continuous linear functionals on the following spaces of ecompact operators:

(4.5.1) K,(X,Y¥), X a Banach space whose bidual has RNP, and
Y o Tréchet space.

(4.5.2) (i) K, (0p(T);, X), T complotely regular Bausdortt; { & {8y, 8, f1}-
(1) 0, (03(8)ey X), 8 locally compact Hausdortt
(ii) J5,(0,(8);, X), 8 locally compact Hansdortf and o-compact.
And, in all three cases, X a reflexive quasinormable Fréchet
gpace, in particular, a Fréchet-Schwartz space.

We close this section (and this paper) with a representation theoremy
for the dual of 0(8, X)g-
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4.6. TurorEM. Let S be a locally compact o-compact Hausdorff space,
X a reflevive quasinormable Fréchet space, or a Ba/n:aoh space whosg dual
has RNP, and denote by 0(8, X),, the space of continuous X-valued func-
tions on 8, endowed with the compact-open topology. Furthermore, denote
by M,(S) the space of Radon measures on 8 with compact support.

Then we have:

(@) (C(8, X)o) 18 @ quotient of M, (8) ®.X,. More pm'clisoly, we have:
Jor every T & (0(8, X)), there ewist zero neighbourhoods U in 0(8)y, and V
in X, and

b= Z}W‘i@”é € M,(8)yo @, X o
1
such that

TF = )4 [ (@0 F)du, for all Fe0(8, X).
1

(b) If, in addition to the assumptions, X is a Fréchei-Schwartz space
with the approzimation property, then we have:

(G(S: X)co)/ = ]'.’[O(S) ®,,X;,

This is a consequence of Theorem. 4.1 and the topological isomorphism
O(S’ X)DD = O<S)CO ®BX'

(algebraically) .

References

K.-D. Bierstedt, Gewichiste Riume stetiger velitorwertiger Funlilionen und das
injektive Tensorprodukt II, J. Reine Angew. Math. 260 (1973), 133-146.

W. M. Bogdanowicz, Represeniation of linear continuous fumciionals on the
space O (X, X) of continuous functions from compact X into locally convex ¥, Proc.
Japan Acad. 42 (1967), 1122-1127.

H. Buchwalter, Produit topologique, produit tensoriel et c-replétion, Bull. Soc.
Math. France 31-32 (1972), 51-75.

R. C. Buck, Operator algebras and dual spaces, Proe. Amer. Math. Soc. 3 (1952),
681-687.

— Bounded continwous functions on a locally compaot space, Michigan Math. J. &
(1958), 95-104.

H. 8. Collins, J. R. Doxrroh, Remarks on certain funolion spaces, Math. Ann.
176 (1968), 157-168.

H. 8. Collins, W. Ruess, Weak compactness in spaces of compact operalors,
to appear in Pacific J. Math.

~, — Duality for spaces of compact operators, preprint 1980,

A. M. Davie, The approvimation problem for Banach spaces, Bull. London Math.
Soc. 5 (1973), 261-266.

J. Diestel, J. J. Uk, Jr. Vector measures, Amer. Math. Soc. Math. Surveys 15
(1977).

M. Feder, P. Saphar, Spaces of compact operators and their dual spaces, Israel
J. Math. 21 (1975), 38-49.

[1]
{21

3]
{4]
5]
{6]
71

[8]
[91

[10]

{11]

icm

©

Duals of spaces of compact operators 245

[12] T. Figiel, Factorication of compact operators and applications to the approwima-
tion problem. Studia Math. 45 (1973), 191-210.

R. A. Tontenot, Strict topologics for vector-valued Sunctions, Canad. J. Math. 26
(1974), 841-853.

J. Gil de Lamadrid, Measures and fensors, Trans. Amer. Math. Soe. 114
(1965), 98-121.

A. Grothondieck, Sur les espaces (F) et (DF), Summa Brasil. Math. 8 (1954),
75-122,

— Produits tensoricls topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16
(19565).

R. Haydon, Some more characterieations of Banach spaces containing 1%, Math.
Proc. Cambridge Philos. Soc. 80 (1976), 269-276.

8. Heinrieh, On the reflemivity of the Banach space I (B, TF'), Functional Anal.
Appl. 8 (1974), 186-187.

J. R. Holub, Reflewivity of I (B, F), Proc, Amer. Math. Soc. 30 (1073), 175~177.
N.J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278.

G. Kothe, Topological wector spaces II, Grundlehren der math. Wiss. 237,
Springer-Verlag, Berlin, Heidelberg, New York 1979.

H. R. Pitt, A note on bilinear forms, J. London Math. Soe. 11 (1938), 174-180.
H. P. Rosenthal, On quasi-complemented subspaces of Banach spaces, with an
appendiz on compactness of operators from LP () to L7 (»), J. Functional Ana-
lysis 4 (1969), 176-214.

W. H. Ruckle, Refleivily of L(E, F), Proc. Amer. Math. Soc. 34 (1972),
171-174.

W. Ruess, Olosed graph theorems for generaliced inductive limit topologies, Math.
Proc. Cambridge Philos. Soc. 82 (1977), 67-83.

— On the locally convew structure of strict topologies, Math. Z. 153 (1977), 179-182.
— Halbnorm-Dualitiit und induktive Limestopologien in der Theorie lokalkon-
vexor Riume, Habilitationgschrift Bonn 1976.

— [Weally] Compact operators and DY spaces, to appear in Pacific J. Math.

— Compactness and collective compactness in spaces of compact operators, J. Maith.
Anal. Appl. 84 (1981), 400-417.
L. 8chwartz, Théorie des distributions & valeurs vectorielles I, Ann. Inst. Four-
ier 7 (1957), 1-139.

F. D. Sentilles, Bounded continuous functions on a completely regular space,
Trans. Amer. Math. Soc. 168 (1972), 311-336.

L 8ingor, Sur les applications lindaires intégrales des espaces de fonctions conti-
nues I, Rev. Roum. Math. Pures Appl. 4 (1959), 391-401.

. Trdvos, Topological vector spaces, distributions and kernels, Academic Pross,
New York, London 1967.

J. Wells, Bounded continuous vestor-valued functions on a locally compact space,
Miehigan Math. J. 12 (1965), 119-126.

[13]

114]

[24]
125]

[26]
[27]

[28]
[29]

30]
f31]
[32]
[33]
[34]

Regeived Oclober 17, 1980 (1645)

3 — Studia Mathematlca 74.3


GUEST




