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The jideal property of tensor products of
Banach lattices with applications to the
local structure of spaces of
absolutely summing operators

by
N. J. NIELSEN* (Odense)

Abstract. Lot B be a Banach space and X a Banach lattice with best convexity Px
and best coneavity gx. Under certain assumptions on py and gx we give a NECERFATY
and sufficient condition for the pair (B, X) to have the property that for every bounded
operator § on X, I®S is a bounded operator on the lattice tensor product B®,, X.

This condition shows that for certain B and X we have for every subspace I of
X that = (8%, F) is equal to the closure R, F of EQF in E®,, X. This is then used
to investigate when my(2*, F') has local unconditional structure and when it has the
uniform approximation property.

Introduction. In this paper we study the question when a pair
(Z, X) of a Banach space H and a Banach lattice X has the property that
there is a constant K so that for every bounded operator § on X, I®S
is a bounded operator on the m-tensor product B®,, X with [IQ8|| < K|S},
where I denotes the identity operator on B. We then apply these results
to the study of the local structure of spaces of absolutely summing operators.

In Section 1 of the paper we give a necessary and sufficient condition
for a pair (B, X) to have the property above (called the ideal property in
this work) for a rather large class of Banach lattices X. We prove c.g.
that if the best coneavity gx of X is attained and pyx << gx < 2 (px the best
convexity of X) then (¥, X) has the ideal property if and only if every
bounded operator from ¥, to B is gi-summing. A similar result holds by
duality when 2 < py << gy It X contains () and (1) uniformly on disjoint
block for some p,q, p <2< ¢, then (B, X) has the ideal property if
and only if I iy igsomorphic to a Hilbert space. Section 1 alyo containg
several results on tho local structure of B®, X in case (¥, X) has the
ideal property.

* This work was done during the author’s visit to the Department of Mathemsat.
ies, Ohio State University, August, 1979-August, 1980, In that poriod he was on
leave from Odense University, Denmark and was supported by the Danish Natural
Science Research Couneil and Odense University.
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Tn Section 2 we investigate when a pair (E, I") of a Banach space
T and a subspace F of a Banach lattice X has the ideal property relative
to X, i.e. that there is a constant K so that for every bounded operator
§: F->X I®S is a bounded operator from B®, F to I®,X with |I@S|
< K|8||. Here B, F denotes the closure of EQF in IR, X .

Since in most cases where (F, F) has the ideal property an operator T
belongs to E®,, I it and only if it is absolutely gumming, the results of
Sections 1 and 2 give some estimates of the absolutely gumming norm of
operators from B* to F. These estimates are also presented in Section 2.

The results of Sections 1 and 2 reduce the investigation of the local
structure of the space my (B*, ) of absolutiely summing operators from B*
to T to the study of E®,,F in case (¥, F) hasg the ideal property relative
to X and this is in general much easier. This investigation is done in Sec-
tion 3. We present here results on when ay (B*, T)has local unconditional
structure and when it has an unconditional basis. Some of these theorems
were already proved by Gordon and Lewis [4] using other methods.

The results of the Sections L and 2 are then combined with [7] to get
theorems, which state that for certain B and F =, (#, F) has the uniform
appoximation property. As a corollary we obtain e.g. that if 1<s<2
<r< oo,r s unless s =1,2 and F is an Z,-space, F' an Z-space
complemented in F** then m(Z,F) has the uniform approximation
property.

Section 4 confaing some further remarks on m-tensor products and
some open problems.

0. Notation and preliminaries. In this paper we shall use the termin-
ology and notation commonly used in Banach space theory as it appears in
[16]and [17]. All vector spaces are assumed to be over thereals unless other-
wise stated.

If E is 2 Banach space and (#;) < ¥ is a finite or infinite sequence
then we let [#;] denote the closed linear span in B of tho sequence (z;).
The term “subspace of a Banach space” shall always refer to closed linear
subspace.

It 1< p < oo then we write Bes L,, respectively Be—QL,, if thero
is a meagure xso that ¥ is isomorphic to a subspace of Ly (), respectively
to a subspace of & quotient of L, (u).

In the paper we shall use several operator ideals and our general
reference to this theory is [26]. If B and F are Banach spacesand 1 < p <
then N,(E, ') denotes the space of all p-nuclear operators from B to F
with the p-nuclear norm =,, I,(E, F) denotes the space of all p-integral
operators from  to F equipped with the p-integral norm i, and II,(H, ')
denotes the space of all p-summing operators from H to F with the p-sum-
ming norm s,. Finally, I',(E, F) shall denote the space of all operators
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T: B—-F, for which there is a factorization T = BA,A: E—C(S),
B: O(8)—F, where 8 is a compact Hansdorff space and 4 and B are
bounded. We put p.(T) =inf{|4||B|} where the inf is extended
over all possible factorizations of the form above. y, is a norm on I', (B, F)
turning it into a Banach space.

If o7 (B, F) is one of the operator ideals above we denote by «/(H, F)
the closure in o (B, I') of the space of all finite dimensional operators
from X to I.

B(E, F) is the space of all bounded operators from H to F equipped
with the operator norm. We put B(E) = B(E, B).

It X is a Banach lattico and f is a continuous L-homogeneous real
function on R" then it follows from [17], Section 1 that for all finite set
(#))}=, € X the expression f(wy, @4, ..., 4,) can be given a unique meaning
ag an clement of X. This calculus of 1-homogeneous expressions in Banach
lattices was first developed by Krivine [10] and it is among other things
used to define the concept of p-convexity and g-concavity of Banach
lattices [10], [17].

Throughout the paper we put

px = sup{p| L<p< o0, X is p-convex},
gx = inf {g| 1< g< o0, X iy g-concave}.

If B is & Banach space and X is a Banach lattice then we recall that
an operator T e B(H, X) is called order bounded it T maps the unit ball of B
into an order bounded subset of X. The gpace of all order bounded oper-

ators from H to X is denoted by #(H, X). If T € #(E, X) then the order
bounded norm ||}, of T is defined by

T, = inf{lll| 2 X, |T»| < |v|z for all »eX}.

% (B, X) is a Banach space under the norm || [, [23].
Further we let B®,, X denote the closure of F®X in #(F*, X).
The properties of this tensor product was investigated in [7]. If ¢, e, ...

cey 6, € T a0d WO U f(by, oy ony ) = [gtjej||ﬂ for all (t, ta, ..., 1,) & R
then f is continuous and 1-homogeneous and therefore the expression
Hﬁ‘m] 6,”,,; has & well-defined meaning as an element of X for all @, @,, ...
.jt‘.l, ¢, e X It T = i‘oﬂ)wj e B®X then it follows from [7], Lemma 1.1
that 120y = i S5la

paper.
We shall call X a P-lattice if there iy a positive bounded projection
of X** onto X. A fact which shall be very useful for us is:

- This fact will be used extensively in this
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0.1. Levma. If X is an order continuous P-lattice then X is weakly
sequentially complete (hence there is a band projection of X ** onto X).

Proof. From [17], Theorem 1.c.4, it follows that is is enough to show
that every norm bounded increasing sequence in X iy convergent. Hence
let (#,) = X with @, < #,,, for all # and sup|lz,[| < co. Define

n

{1) (@) = lima*(z,) for all a* e X*.

n
Clearly a** e X**.

Tt P is a positive bounded projection of X** onto X then @, < Pa** for
all n e N. Since Po** ¢ X and X is order continuous, it follows that (,)
is convergent. m

It (2,5, ) is a measure space and F is a Banach space then for
1< p < oo welet L,(u, E) denote the space of those measurable functions
f: QB for which [ |fIPdu < oo (esssup||fil < oo if p = o0). It is readily
verified that for 1< p < 0 we have E®,L,(u) = L,(s, B) [7]. The
abreviation RNP stands for the Radon—Nikodym property.

Finally, if 1<p < oo we let p’ denote the dual number to p, ie.
1p+1ljp’ =1.

1. Some general results on ¥®,, X . Throughout this paper £ and F
will denote Banach spaces and X and Y Banach lattices. If I' ¢ X is
a subspace we put

I®,,F = BQFI®n*,

1.1. DErFINITION. We shall say that the pair (B, X) has the ideal
property if there iy a constant K, so that for every I € B®, X and cvery
8 e B(X) ST € EQ,, X and 87|, < K |S|}T),,, in other words if I®S is
a bounded operator on F®, X for every S e B(X), where I denotes the
identity operator on B. Xf F < X is a subspace of X then we say that
(B, F) has the ideal property relative to X if the above holds for every
8 e B(F, X).

Kwapien [13] proved that if x is a measure and 1< p < oo then
(B, L,(u)) has the ideal property if and only if H=>QL,.

Other examples are: X = L;(u), X = 0(8), § compact, X = ¢,(I')
and B arbitrary; X arbitrary and E isomorphie to a Hilbert space. The case
X = L, (u) follows from a result of Grothendieck [b] which states that
B®, Ly () = No(B*, Ly(u)) for all B (it also follows from Kwapien’s
result above), the case where X = € (8) is immediate and the cagse X = ¢o(I")
follows from [23], Chapter 4, since an operator with rangein ¢,(I") is order
bounded if and only if it is compact. If F ig isomorphic to a Hilbert space
and X is arbitrary then the result follows from Grothendieck’s inequality
but we shall treat it below for the sake of completeness. Later in this
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section we shall show that for certain X (F, X) has the ideal property if
and only if B(l;, B) = II,,(1,, B*), where p depends on X.

It follows immediately that if (¥, X) has the ideal property then
so does (Hy, X) for every subspace F, of ¥ and if (B, X) has the ideal
property with the same constant for every separable subspace B; of B,
then so does (B, X). By [30] (BQ,X)* = #(&, X*), where the duality
is given by

(1) {8, Ty = trace(8*T) ftor Tel®,X,SecqH,X%.

Using (1) it is readily verified that (¥, X) has the ideal property if and only
(B*, X*) bag. Combining these results wo get that it (F, X) has the ideal
property so doos (I', X)) for every subspace F of a quotient of B.

The following theorem which can be found in [23], Proposition 4.9
will e very useful for us in the sequel.

1.2. TunoreM. Let X be a P-lattice. If T e B(I, I') with T* absolutely
summing then ST e # (B, X) for every S € B(F, X) and ST, < 8|7, (T™) .

If 7 is finite dimensional then it is easily seen that Theorem 1.2 holds
for every Banach lattice X.

1.3. ProposrrioN. If T'el,®,X then
&Y Kgtay (T%) < T, < 7 (T7),

where Ky is Grothendieck’s constant. If in addition X is weakly s equentially
complete every T & B(ly, X) with T e IT, (X*, 1,) belongs to 1,@,, X .

Proof. Let T el,®,X. We can then find a compact Hausdorff
space § and operators Ty: L,-»C(8), Tp: 0(8)—>X so that |T,<1,
1Tl = 1Ty To 22 0 and T' = T,T, [23]. By Grothendieck’s inequality [15]
TY e IL{0(8)*, 1) and

M) 3 (T*) < 1Tyl (T7) < KN Toll 1Tl < K1 Ll -

The other inequality in (i) follows from Theorem 1.2 for finite dimensional
operators and hence by continuity for all Tel,®,X.

It X is weakly sequentially complete and T eB(l,, X) with
T ¢ IT,(X*, 1,) then T & #(l,, X) by Theorem 1.2, and since I, has the
Radon~-Nikodym property @ (ly, X) == 1,8,X by [7], Theorem 2.6. m

The following lemma, the roots of which go back to Grothendieck [5]
and Kwapien [127], shall be very useful for nus in the sequel.

1.4, LovmA. (1) Let B and I' be Banach spaces so that HesLy. If
T e IL,(B*, 1) then I™ e I, (F*, B*).

(i) If 2 < p < g and BesQLy, then B(ly, B) = II (1, B).

Proof. (i): Without loss of generality we may assume that B is
a subspace of I, (u) for some measure u. Tf T eIl (", F) then T'e
€ B(F™*, L, (u)**) by Theorem 1.2 and therefore T™ e IT, (F*, B*).
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(ii): Ttis easily seen that it isnoloss of generality to assume that His
separable and hence isomorphic to a subspace of a quotient of L, (0, 1).
Since the statement is hereditary it suffices to prove it when Fis o qu-
otient of I,,(0, 1), 80 let us assume that.

SmceEls of co’uypep it follows from [20] and [22] that B(L,(v), B}
= IT,(Ls (»), B) for every measure » and hence by the Persson-Pietsch
duality theory [261 I, (H, @) = II,(F, @) for every Banach space ¢ We
shall use it for G =1;.

Since T* is a subspace of L, (0,1) I is isomorphic to a subspaco of
L,(0,1). Hence if T ell,(¥,1 ) then T e lll(lm, B*Y by (i) and hence
TeRB,1,). Oearly B(E, 1) = I ®m11 = B'®,1, = N, (#, ;). Combining
this with the above we get Nl(ls, ly) == ]l (B, 1) = N, (l, 1) and there-
fore by duality B(ly, B) = II,(l,, I7).

We can now show:

1.5, TEmorEM. 1° If 1< q<2, X is g-concave and B, ")
= I, (I, T), then .

(i) T € B®, X T e I(B*, X)«T" e II,(X*, B).

Dually,
2° If 2<p< oo, X is p-comver and B(ly, W) = IL,(1,, H), then

(i) T € B, X T e IIL (X", B) T e I, (B*, X).

If, furthermore, X is weakly sequentially complete the superscripts “f con.
be removed in (ii).

Consequently, if B and X satisfy either 1° and 2° (K, X) has the ideal
property.

Proof. We shall only prove 1°. (ii) in 2° can either be obtained from 1%
by using duality theory or proved directly using [7], Theorem 1.3 and
it generalization [27], Theorem 1.2. The second statement in 2° follows
from the above and [7], Theorem 2.6.

Note that the assumptions on H in L° imply that Fews QL, so that B
is reflexive.

Let I'e E®,X. Then there oxists o compaet Tausdortt space §
and operators Ty: B'—C(8), Ty: O(8)—>X so that T = TWT'y, |11 <1,
Iy2 0, Ty = 1T,

Since X is g-concave, T',is g-integral by [17], Theorem 1.d.10 and hence
T is g-integral as well.

Assume next that T' e I,,_(E*, X). Let u be & measure so that there is
& quotient map § of Ly(u) onto B*. Since § is ¢’-summing, by assumption
it follows from [26] that TS and hence also §*T* are l-intogral. 8% is an
isometry and therefore T% e IT,(X", B).
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It T* e I (X", B) then T e #(B*, X) by Theorem 1.2 (X iz weakly
sequentially complete sinee it is g-concave), but the reflexivity of B imply
that #(I*, X) = E®,, X ([7], Theorem 2.6). m

In case of ¢ =1, i.e. X an Ly-space we get Grothendieck’s result.

1.6. ProvosrioN. Let (2, &, u) be a measure space and T e
e B(B*, Li(w)). Then

1° T el L) T e I(B*, Ly(w) T e I L, (5), B**).

20 If in addition 11 is isomorphic to a dual space and has the RNP then
we have for overy T & B(H*, Ly, (u)) with T¥(Ly(p)) = B:

) T & B, In(p) T e I,(I*, I(w) «T* & IT, (L., (u), B).

Proof. 1° can casily be proved using the methods of Theorem 1.5 and
Theorem 1.2, 80 let ug here only prove 2°.

It is clearly no restriction to assume that B = F* for some Banach
space I, It T cB(F** Ly(p)) with T eIl (L (p), F*) then by 1° T e

BE*™, Ly(u) ), but sinee T*(L,(u) < F* we mcny 1dent1fy T with T|F
Y (l’ Ly () in a canonical manner. However since F* has RNP, Theorem
2.6 of [7] shows that F*®,,Ly(s) = B(F, L(s). =

In ease Bews Ly, for some p <2 or F ig a quotient of an L,-space for

p>2 wo get from Theorem 1.5:
7. TuporEM. (i) Let 1<g<p<2 or 1<qg< o0 and p =2 or
=p = 1. If X 18 gq-concave and Be— L, (and B ds isomorphic to a dual
space with the RN if p = 1) then we have for every operator T € B(B*, X)
(T*X* < Bifp = 1)
T € BQ, X <«T ell,(B", X) (=T eIl,(B*, X) if ¢<
Dually,

(i) Let 2<p<q< o or p =2 and 1< qg< oo. If X is g-convex
and 1} is isomorphic to a quotient of an L,-space then for every operator
TeB(I*, X)

Te DR, X1 e If(X*, B) («T* eI, (X* ) if = 2).

Proof. It is clearly enough to prove (i). Slnco our assumptions there
imply that B(ly, B*) = L, (1, B), it follows from Theorems 1.3, 1.5 and
1.6 that it is enough to H’lmw that

T el‘fq(ﬂ“‘, Xywl & (B, X)»T" e IL(X*, ) it ¢<2, and

(2) T ell,(B*, X)»1I" e Il,(X*, B) if B is isomorphic to a Hilbert
space and 2 <5 ¢ << oo,

Sineo g < p the first implieation of (1) follows from [22], (this result
was also used in the proof of Lemma 1.3), Since Be-s Ly, the second impli-
cation in (1) follows directly from [12], Theorem 4. m
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We can now prove the following partial result on the ideal property.

1.8. THEOREM. (i) If px < gx < 2 and X is gx concave then (B, X) has
the ideal property if cmd only if B(ly, B*) = IIQ, 1y, ).
X

Dually if 2 < px< gz < 0 and X is px-convex then (H, X) has the
ideal property if and only if B(ly, B) = 1L, (I, B).

(i) If (B, X) has the ideal property and X 148 py-convex with py
< gy<2 (resp. X is gy-comoave 2<pPy< (yx< o) then B(l,, B
= ﬂqx(lu 7*) (resp. B(ly, B) = II, (b, B)).

(iii) If px < 2 << gy and either py or gy 18 altained or X conlains (1)
fumforml Yy complemented on disjoint blocks then (8, X) has the ideal property
if and only of I is isomorphic to o Hilbort space.

Proof. The “if” part of (i) and (iii) follows from Theorem 1.2 and
Theorem 1.5.

The “only if” parts of (i)~(iii) are based on the following argument:

Assume that (B, X) has the ideal property and that X is gx-concave
or gy = oo. It follows from [7], Proposition 1.6 that every T e EQ, X
has py-summing adjoint. Since gy is attained we get from [11] and [29]
that for every # there is a sublattice F,, of X spanned by » mutually
disjoint positive vectors, 2-equivalent to tho unit vector basis of I and
8o that the F,’s are uniformly complemented in X. Together with the
above this shows that there is a constant K, so that for every » and every
T € B®yly, we have
1) T (T*) < Ky | Ty -

An approximation argument yields that (1) holds for every T e E@m g

Proof of (i). If py < gx < 2 then it follows from [22] that there is
a constant K, so that m (8) < Kym, (8) for all 8 ell, (l , 7). Honce

combining this with (1) and Theorem 1.2 we conclude that T € B®ylyy &
and only if T* eﬂl(l ,E) In particular, (#, 1,,) has the idoal prop(nty

and thereigre ]’c-»,QI} «x 0¥ [13] 80 that H is reflexive. By dnality we get
that T' e B ®ml ‘e if angd only if T'e I',(H, Zq, ). Lot Iy be a constant so
b

that |1, < Kype(T) for all T e I, (B, 1) .

Now let § e B(ly, B*) and let V e B(l,, Za}c)' Then V8* e Iy (¥, Zﬂk)
and hence
2) 1V8*l < Koo (VS*) < K| VI IS
Since (2) holds for every V e B(l,, qu) it follows from [237], Corollary 4.6,
that 8 is gx-summing with nqk(»S') < K, ||8]|. Hence we have proved the
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first part of (i). The second part follows either by duality or using similar
arguments as above.

Proof of (ii). We assume that 2 < px < gy and that X is gg-concave
or ¢x = oo. In the case gy = co we get directly from (1) that every
compact operator from 7, to H is py-summing and by using the Persson~
Pietsch duality theory twice we obtain B(iy, B) = II, (I, B). Assume
next that gx << oo and let S e B(l,, F). Since px < gx we get from [22]
that there ig & congtant K, so that

(8) b (V) < K|V for every VeB(l

Hence if V e B(l,, 1, ) we can for every ¢ > 0 find a measure p and
operators A lo—nl, (u), B: Ly (p)—1,, s0 that 4 is order bounded with
Al <ty (V) ¢, B < Land V = BA. Asbefore we can conclude that B
is reflexive and therefore AS* € #(E*, Lyy (u) = B®,, L, (). From (1) we
get therefore that BAS™ = V8" e #®,l,, with:

{4) ”VS*”m & ”JJX(SM-A*B*) Z’X(
< K H (Ve 18]

o o) -

X

8 A% < K IIAS™ ), < Ko |18 1All,

And again, we conclude from [23] that § is px-summing.

Proof of (iii). It is clearly enough to prove the only if part of (iii) in
case either gy is attained or X contains (¥;) uniformly and uniformly
complemented on digjoint blocks. Put » = g5 under the first assumption
and r = 2 under the second. The argument leading to (1) together with
an approximation procedure give that if (¥, X) has the ideal property
then there is a constant K so that

(b) w0y (TH) < npx(T*) < K\ T),, for all T e E®,,L,(0,1).

If r = co then we can argue a8 in (ii) to get that B(ly, B) = II,(l;, B).
Hence if 8 it a quotient map from an Ly-space onto ¥ it factors through
a subspace of an .Ly-space and therefore F is isomorphic to a subspace of
a quotient of o Elilbert space.

If << oo then (5) implies that Bes QL, so that B is of type 2. Let (r,)
be the sequenco of Rademacher functions on [0,1] (¢,) the unit vector
bagis of I,. There is a constant K, and an oper atom S e B{L,(0,1),1 a) 80

that |8 < Iy, 87, = &, I (@)} = B a0d T = Zw}®r, then by (B),
(©) (3 ) == STl < ISULE ()< T K| T

st‘s(f HZ ) @)
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(6) shows that Z is also of cotype 2 and hence H is isomorphic to a Hilbert
space by [14]. =

Remark. Note that the condition that gy (or py) is attained only was
used in the above proof to conclude that operators defined on the spaces
F,, could be extended to the whole of X preserving the norm up to a con-
stant. We conjecture that (i)—(iil) hold also if py or ¢y are not attained but
we were unable to find a proof.

Another question is what happens if py = ¢x. In that case we con-
jecture that (i)-(ii) still hold unless X is lattice isomorphic to an L, -space
and that (iii) still holds. We shall comment further on it in “%(sctlon 2.

The condition B(l,, B*) = (ll, B is not completely satisfactory

in view of the foregoing results tmnrl Wo can pose

1.9. Prozrem Let 1 < p < 2 and assurme that B(l, B*) = IT,(1,, B*).
Does B=—sQL, forsomer, p < r< 2%

If the answer to this question is affirmative then it follows from
Theorem 1.5 that we can write “if and only if” in condition. (ii) of Theorem
1.8.

The condition B(l,, B*) = II,.(I,, B*) for some p, 1< p< 2 implics
that H=—QL, and that F is of type p-stable (and hence of type » for some
7> p). Indeed, wo can find a measure 4 and & quotient map 8 of L, (u)
onto B, which is p’-summing. The first statement follows immediately
from this and if T e B®,,l, then T8 e I, (B*, 1,) and therefore T € ITy(1,, B).
Now let (f,) be a sequence of stochastically independent p-stables on [0, 1}
and let < p. (f,) spans 1, in L, (0, 1) and hence if (e,) denotes the unit
vector basis of I, we can find V e B(l,, L,(0, 1)) so that Ve, = f, for all n.
The above gives that there is a constant K (independent of V) so that

IV TN, < o (T*VH < ENV(T],,  for all T e B®,1,

If (g)f; e Xand T = Z‘mj@mj, this gives:
=1

1 n n
(]| X0 @ = 1smy, < misi( 3 i)™
0 g=l <

which shows that ¥ is of type p-stable. Ience wo can also poge

1.10. ProBrmM. Let 1< p< 2 and let ¥ es@QL, be p-stablo. Docs
there exist an » > p so that BesQL,?

It follows from Rosenthal [28] that the answoer to Problem 1.10 is
affirmative if actually eI, The same is true if B is isomorphic to
a quo‘ment of an I,-space. In(lued then B* =L, and is of better cotype
than p’ and thereforeD iy 1somorphte to a Ileb(srt gpace by [9].

In Section 2 we shall give a necessary and sufficient condition on
& Banach space B and a Banach lattice X in order that (E, F') has the ideat

©
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property relative to X for all subspace F < X and we shall give some
applications of the foregoing results.

The rest of the theorems in this section are results needed in Sections 2
and 3.

We start with the following proposition which follows from [7],
Theorem 1.3 and Proposition 1.6 together with [27], Theorem 1.2.

1.11. ProrosiyioN. Let X be py-convexr. If F = X is a subspace so
that (B, ) has the ideal property then T eE®,F«T"ell (I, ).

We can now prove

1.12. TrnoREM. Let (f,) = B, (8,) € X be unconditional basic sequences
so that (B, [x,]) has the ideal property velative to X. If both B and X are
of finite cotype then {f,Rx,| n, % e N} is an unconditional basic sequence
in B@,X.

Proof. Since [f,1®,X embeds isometrically into F®,X we can
without loss of gonerality assume that [f,] = H. Put F = [#;] and let K,
respectively K, be the unconditional basis constant for (f,), respectively
() and let (@}) = ™ be the biorthogonal system to (wy). I (1, ) is a finite
sequence of sealars and (a,) and (B,) are sequences of signs, then (compare
with Lemma 2.3 of [7])

H‘Zl: anﬂktn,kfn ®w7“Hm = H H Z an(;: ﬂlctn,k‘”h)anEHX
< K1“ f 2‘ Z ﬁktn.kmk’anEHX =K, Hzl;ﬂktn,kfn® %”m

We define § ¢ B(F, X) by

oo
(2) Sz = Zﬂkw’,ﬁ(w)wk for all z e F.

" fgel

By assumption there is a constant K, so that
(3) 8T, < KIS Tl < B Ko |Tl),,  for all T e B, T
Oomparing (1) and (3) we get

(4) ” 2, arrﬂlctat,laj;L@wk”m < KleKﬂ”‘Zktn.kfn® mk“m
ke Tl N

Since both. @ and X are assumed to be of finite cotype it follows
from Theorem 2.9 of [7] that the Banach lattice H®,, X is of finite cotype
and therefore we can apply the two-dimensional version of the Maurey—
Khintchine inequality ([L7], Theorem 1.d.6 and Proposition 2.d.6).
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Hence there is a constant K, so that if (»,) denotes the Rademacher system
on [0,1] then

© K| tal 18l ],
sk

m

<f f | 3 a0}t i@ o | s < K 3 o 1™
00 n,k

nele

This together with (4) shows that for K = K, KKK,
©®  E( 3 et femd) ], <] X R R-TAR
nk {314
< T3t P 18wl -
n,le

(6) shows immediately that (f,®%,) is an unconditional basic sequence. m

Recall that if K > 1 then a Banach space H is said to have the K-local
unconditional structure (K-lu.st.) if for every finite dimonsional subspace
F < B there is a finite dimensional subgpace F < Fy = B, having an
unconditional basis with constant less than K. We shall say that I has
Lawst. if it has K-l.u.st. for some constant I.

The concept of Lu.st. was defined originally in [2]. Gordon and
Lewis [4] define l.u.st. differently (called GL-lu.st. in this paper).

1.13. CoROLLARY. Let B and X be of finite cotype and F < X o sub-
space so that for every finite dimensional subspace Iy = F, (B, Fy) has the
ideal property relative to X with a uniform constant K. If B and I have
Lu.st. then BQ,, T has Lu.st.

Proof. Assume that F has the K,-l.u.st. and F has the K,-l.u.st. and
let @ < E®,,F be a finite dimensional subspace. By choosing an Auerbach
basis for @ and approximating its elements with elements from EQL we
can for a given e > 0 find finite dimensional subspaces B, < K and I, = F
and an isomorphism 8§ of @ into B,®,,Fy so that |8z —a| < ezl for all
@ €G. A standard pertubation argument [8], Lemma 2.4 then ghows that
we can assume without loss of generality that G € H,®,, I .

By assumption we can find finite dimensional subspaces ¥y & B, & T,
F, < ¥, = T so that H,, vespectively Fy, have a busis with unconditional
constant K, respectively K,. Proposition 1.12 shows that H,®,, I, hay
an unconditional basis with & constant KK, I,, where K only depends on
L and F. m

Remark. A similar result hold for GL-lu.st.
2. Further results on the ideal property and some estimates of ideal

norms. In this section we ghall first give some immediate consequences of
the results in Section 1 especially eoncerning factorization theorems and
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estimates of norms of absolutely summing operators. Later we shall also
for certain X give a necessary and sufficient condition on ¥ in order that
(B, I) has the ideal property relative to X for all subspaces F' < X. This
will among other things show that if 1 < ¢ < p < 2, He—sL,, X is g-concave
and F < X is a subspace then x,(E*, F) = EQ, F. This fact shall be
important for us when we investigate the local structure of these spaces
in Section 3.

An immediate consequence of the results of Section 1 ig that it ¥ and X
both have unconditional bases and H=sQL, 1 < p < 2 and X is g-concave
for some ¢, 1 < ¢< p then B®,,X has an unconditional basis. The same
is true if 2 <5 p < ¢ < o0 and Hes@QL, and X is g-convex.

Together with an interpolation argument this can c.g. be used to
prove the woll known rexult that if X is a rearrangement invariant funetion
gpace on [0,1] of type strictly larger than one and B> QL, for some
p,1< p< oo hay an unconditional basis then E®,X = X(H) has an
unconditional basis.

The next three results are special cases of Theorem 1.6 and Theorem
1.7. The first should be compared with [25].

2.1, ProrosmrToN. Let 1<g<p<2 or 1< qg< oo and p =2. If
B QL, and X 48 g-concave and cither B or X have lhe bounded approwi-
mation property then T e B®,, X if and only if T is g-nuclear.

Proot. Under the agsumptions above we have that N q(E*, X)
= I(B*, X). Now apply Theorem 1.5. =

2.9, ProvOSITION. et L<g< p<2o0rp =2 and 1 < g < oo and let
(2,2, ) be a finite measure space. If B = Ly(u) is of type p and X is
g-concave then there is a measurable function @: Q-+[0, o], [@dp <1

n
and @ constamt K so that if T = 3 f,@u; € DQX then
j=1

O &{f | Shmaemdun)e <,
sl

= /] jé?f,(t)w,‘w(t) < /| énm%]\dmn.

Troof. By a result of Rosenthal (28] there is a g e Ly(p) ¢ > 0 a.e.
Jodp < 1 and o constant K so thab

(1) (J g =) < Xy [ 1fldu  tor all fe 1.
By Theorem 1.5 there is a constant K, so that
(2) (1) < Ey||Tlhy  for all T'e B®,X.

Put v - pdp and let 8: H->Ly(v) be defined by Sf =fp~ for all feH.
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n
By combining (1) and (2) with [23], Corollary 4.8 we get for T'== jz i®
=
®u; e IQX

e |/ )|if1f]-<t)wjn»“¢1'-“(t)du(t))"“ = 8T, < 1817y (T) < B K | Ty,

= I | é;fj(t)w,l () <IGK, [ | é:fy(t)

which proves the proposition with K = K, K,.
9.3. PROPOSITION, Let L ¢<p<2 orl<g<cound p =2 and let
(cn) denote the unit vector basis of 1y, (en) Hw wnit vestor basis of
If X is g-concave and ¢ < p, then T ell;(l,, X) if and onlzj if T e
H WX L) Gf p =2 T ell(l, X) ’bf and only 4,]” ™ e Il (X*, 1) and

there is a constant K, so that if T = Ze,@l’oj., then
j=1

du(t)

(i) Elm(T)< H(Zw@m) " < Bm(1) < Emo(T) if  g<p
J=
and

(i) K*lnq(T)<H(i’|fej.\2)”zﬂgffnq(f) if p=2and 1< q< co.
FEDS

Proof. The first part follows immediately from Theorem 1.7. The
second part also follows from that theorem by noting that if T has the form

above then |T|,, = [] |1'e, )| -

The following theorem, which shall be very useful to us in this section,
shows that to some extent Theorem 1.7 can be generalized to the case
where X is substituted with a subspace B of X:

2.4. THEOREM. Lot 1 < q<p<20rp=2 and L < g << o0, Dews Iy X
g-concave and let ' < X be a subspace.

1° For every T € B(E*, I") we have
() Te®, +T*eIH(I*, )T e II(D*, T)
(T eIl{(B*, 1) if 1< qg< p2).

2° If either B or ¥ and X have the bounded approwimaiion property, or if
I is complemented in X then we have

(i) BQ, T = IL(B*, F) (= IL(E*, F) if ¢<p<2)
and
(i) T € BQ,,F<T* e I, (1™, ).
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Proof. From Lemma 1.4 and the proof of Theorem 1.7 it follows that
the implications

(1) Tell(B*,F)=T*cI,(F* B); T ell(E*, F)=T eII,(E*, F)
i g<p<2; and Tell(l, F)=>T"ell,(F*,1,)

do not depend on F. The proof of Theorem 1.7 now shows that (i) holds.
Assume next that the assumptions in 2° are satisfied. In view of the above
remarks it is enough to show that it 7' € ¥ ®, X = IT,(B*, X) = IT(B*, X)
and T(F*) € 7, then T e BQ,,F.

It B or ¥ and X bave the bounded approximation property then
a result of Persson and Pietsch [26] show that IIJ(E*, X), respectively
IT(E*, F) is equal to the space of all quasi- q-nuclear operators from
B* to X, respectively to .

Hence T' is quasi-g-nuclear considered as a map into X and therefore
quasi-g-nuclear into F as well, and hence T ¢ II}(F*, F) = BQ,,T.

Assume that there is a projection P of X onto F. By Theorem 1.7
there is & constant K so that ||[PS|,, < K |\P|||S], for all 8 € B®,, X .

If now (T,) € B®X converges to T in the m-norm, we have that
{(PT,) < EQF and the inequality above shows that it is a Oanchy sequence
in the m-norm. Clearly its limit has to be 7. m

As a corollary we get:

2.0, CoroLLARY. Let I and X satisfy the assumptions in the beginning
of Theorem 2.4. There is a constant K so that for all subspaces F = X (B, F)
has the ideal property with constant K relative to X.

For the sake of completeness we state the result on L,-spaces corres-
ponding to Theorem 2.4.

2.6. TunoreM. Let (2,5, u) be a measure space and 1< p < oo.
If .EC——>L and I is isomorphic to a subspace of L, (u) then we have for every
T eB(E*, F) (with T*F* < B for p = 1)

T ¢ B8, T <T e Ill,(B*, F)«T" e II} (F*, B).

Furiher, if etther B or F have the bounded approwimation property and

for p =1, B = @" for some Banach space G and has the RNP, then
B®,F =IL,(E* F) for 1<p< oo,
D@mﬁ’ ~—H (G, F)  for p=1

A dnoct apphca,tlon of Theowms 1.2, 1.5, 1.7, and 2.4 give

2.7. CorOLLARY. (i) Let 1<g<p<2 or p =2 and 1< qg< oo,
Bes I, F' a subspace of a g-concave Banach lattice X and Y a weakly se-
quentially complele Banach laitice. If 8 € B(F, X) then I®S is a bounded
operator from BER,, T to B®,, ¥ . This remains valid if B<sQL, and F = X.

4 ~ Studia Mathematica 74.3
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(i) If 2 < p < ¢, B—>QL,, X is g-conver and Y is weakly sequentially
complete then for every 8 € B(X, Y) I®AN is a bounded operator from B, X
to B®,, Y.

Since L, (0, 1) embeds into L;(0,1) for all 1< g <2 Corollary 2.7
shows e.g. that it B < L,(0,1) is a subspace, 1<p<?2 and 1< q<p,
then L,([0, 1], H) embeds into Ly([0, 1], B) which in twrn embeds into
L,([0, 11%) (which is isometrie to Ly(0, 1)).

Theorem 1.7 and Corollary 2.7 also show that if 1 < ¢<p <2 and X
is g-concave then there exists & constant K so that for every subspace
T = X, every Banach lattice ¥ and every SeB(F,Y)

“ 3| < 3

for all finite sets (#;), S F. (The remark just after Theorem 1.2 shows
that we can take Y arbitrary since (*) only involves finite expressions.)

We now wish to find a necessary and sufficient condition on. ¥ and X
in order that (B, F) has the ideal property relative to X for all subspaces
FeX.

‘We need the following definition.

9.8. DEFINITION. Let 1< p < 2. X is soid to contain (1) uniformly
p-stable-Tike if there is a 4 3> 1 so that for every n there exists (wy,)fu, € X,
J-equivalent to the unit vector basis of I} with the following property :

(%) For all m there is an n and scalars a;, ag, «. .y 0y, S0 that

3ot (S )
=1 S

2.9, Bxaweim. ¥ 1<r<p and (f,) < L,(0,1) is a stochastically
independent sequence of p-stables then (f,) is equivalent to the unit vector
basis of 1, and from [82] it follows that (x) of Definition 2.8 is satisfied.

2.10. ProrosrrioN. Let X be a Banach lattice so that py < ¢x <23
then X contains (17.) uniformly gx-stable-like.

Proof. Let (f;) € Ly, (0,1) be a sequence of stochastically indepen-
dent ¢x-stables and let # be given. We can then find an m and an isomor-
phism 8: [f;],—15 so that |8 < 2, 187 < 1.

By Corollary 2.7 there is a constant K (independant of n, m, and §)

80 that ) n
%H(Z lay (2 ‘ffqu)lmx 1’X<“(2 lajlaxl»gfﬂqx)”ax
= Jual

< 2K “(i loy|7x lfﬂ”x)llax

=1

1)

DX

nx

for all scalars ay, ayy ...y 0y -
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From K'riyine [11] and Rosenthal [29] it follows that there cxist
mutually disjoint positive elements @y, @, ..., , € X, so that ()0 18
2-equivalent to the unit vector basis (g%, of by Let Ve By, X) so
tha,13 Ve, = a;, L<j <m and pub g; = V8f;, L <j<n. Olearly, (y,)r, is
equivalent to the unit vector basis of lzx With a constant independent of n.
Fror'n ), Example 2.9 and the fact that V is a lattice isomorphism of
L 11_11:0 X it follows that the conditions of Definition 2.8 are satisfied. m

‘We now need the following lemma :

2.11. LEMMA. Let 1<p<2 and lot K> 1 be o constant. Assume
fwﬂm_ﬁ that‘A.T contains o finite basic sequence (m;)i., consisting of normalized
mutwally disjoint elements, which is K-equivalent to the unit vector basis of
.

If (Zp,. [#;1) has the ideal property relative to X with constant M, then
Sor all basic sequences (y,)i-., which are N-equivalent to the unit vector basis
of 1 for some constant N we have

H(g"; loyl?ly17)|| < x2arw (Z"‘ a7}
- Je=1

for all n-tuples (a;).., of scalars.

Proo'f. Agsume that (y;)7-, is a basic sequence in X, N-equivalent
to the unit vector basis of Ij. Then there is an operator §: [#;]->[y,] so
that L?ﬁj =1 f01.' Jj<mand |8 < KN. Since (I, [;]) has the ideal property
(relative to X) with eonstant M, we conclude that for all sealars a;, dy, ..., a,

@ | ,2 oyl ?las1?) ]| < 2811 2 Loy}
= =1

< HENM sz'“z ajij < K*MN (anl [ctj]"')lk'J .
= 7=

@

We are now able to prove
' 2.12. THEOREM. 1° If 1 < qx< 2 and X containg (Ty) uniformly qx-stable-

like (which happens e.g. when py << qx) then the following statements are
equivalent :

() Ar, gx<r<2, gx <7 <2 s0 that e L,.

(ii) There is a constant K, so that (B, I') has the ideal property relative
to X with constant K for all subspaces F of X.’

2° If 2< gy < o0 amd px < qx unless gx = 2 then (ii) above holds if
and only if B is isomorphic to a Hilbert space.

Proot of 1°. It follows from Corollary 2.5 that (i) =(ii).

Next assume (ii). Put ¢ = ¢y and let (s,) denote the unit vector basis
of 1. From [11] we get that for every m there exist mutually disjoint
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positive normalized vectors o, 2P, .., 2peX and an isomorphism
V,: B>}, = F, so that V,6 = af for j < n and [V, wal<2.

Our assumptions together with the argument in part (i) of the proof
of Theorem 1.8 show that there exists a constant K so that if T' € B®,,1,
then T* € IT,(,, B) and

(1) nq(l’*) < K\T|,, tor all TeB®,l,.

Therefore (¥, 1,) has the ideal property 80 that BesQL, ([13]) and
hence B is reflexive.

We wish to show that HesL, and according to [13], Corollary 6
and Remark 1, we have to show that

(2) T e II(B*, 1) =T* e I, (L, , B).

Hence let T € [[,(E*, 1,). (1) gives that if we show that I e B®,l,
then we are done. Let (z;) < F so that

3)

and put for every

0
To* = 2 a*(z;)¢; for all a*e B*

i=

n
T, u* = Z'm*(mj)e, for all o* e B*.
j=1
Let & > 0 be arbitrary. From the Pietsch factorization theorem [26]
we conclude that for every m there is a &, a subspace G, < I and operators
4, eB(E*G,) B,eB(G,,1) so that T, =B,4,,B,<1 and 4, is
order bounded considered as a map of B* into ¥ with |4, < 7,(T) +e.
Hence V, T, = (V,B, Vi) V4, ¢ B®,, X with
(B) VTl < ENVRllIBI IV NV Aplm
S E VBNV NVl < 2E [Vl (7, (T,,) + )
< 2K V||, (T) +¢),
where we uged that V; is a lattice isomorphism into X. By [23], Prop-
osition 2.7, V¥, T, is order bounded into the sublattico ¥, as well with the
same norm and hence ginee V! is a lattico isomorphism we get for every n

(4)

n
© 3 90 = Wl < NV T Tl < 4Ky (T) ).
J=1
Since the right hand side does not depend on # (6) shows that T e
€ E®,,1,. This shows (2).
Lemma 2.11 and our assumptions show that B cannot contain a sub-
space isomorphic to 7, and hence by [28], Theorem 8, there exists an r,
g <<r<2 so that B« L,. Hence (ii) =(i).
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Proof of 2°. The “if”-part follows from Corollary 2.5. Assume that
Px < x << © O Py = (x = 2 and that (ii) holds. An argument similar
to the one in (i) shows that Bes L, .

The assumption (ii) implies the arguments of the proot of Theorem 1.8
can be used to show that B(l;, B) = II,(l,, F), where p = max(px, 2)-
If p = 2 we conclude directly that & is isomorphic to a Hilbert space and if
P = pyx > 2 then B does not contain a subspace isomorphic to lpy (c£. the
remarks after Problem 1.9) and therefore F is isomorphic to a Hilbert
gpace. m

Remark. Note that if py < gy = oo then no Banach space B will
satisfy condition (ii) of Theorem 2.12.

The next result should be compared with Problems 1.9 and 1.10.

2.13. PROPOSITION. Let 1< g5 << 2 and assume that X contains (l’;x)
uniformly qx-stable-like and that X is qy-concave. If (H, X) has the ideal
property then B=—QL,  and B is of type » for some r > q5.

Proof. We can argue like in Theorem 1.8 to obtain that E%QLQX. Put
po = sup{p| B is of type p}. Clearly p,> gx, but by [22], B contains
(lgo) uniformly so that (Tyy5 X) has the ideal property, and hence by our
assumptions and Lemma 2.11 p, 7 ¢x. &

2.14. ExAampLE. Let X be a rearrangement invariant function gpace
on [0,1] so that py = ¢y = »<< 2 and so that X contains an element f
with a p-stable distribution. Then the following statements are equivalent
for an 7,1 <r<2.

(i) 3K so that for every subspace F < X and every S e B(F, X}

(37 1smr] < s 37 1
for all finite sets (mj)}':: fg x. 7=1

(i) > p.

The equivalence still holds if we in (i) put ¥ = X and assume that ¢x is
attained.

As examples of X’s satisfying these conditions we can consider the
Orlicz function M (w) = 2 logw|™%, @ e[0, o], where a>1 and put
X = Iy, (0, 1), Tt is readily verified that X containg p-stables and that
Gy = p is attained.

Let us end this section with an application to convexity and concavity
of Banach lattices.

2.18. TERoREM. Lét L < r £ ¢ < oo and let X be g-concave.

(i) If X is r-conven and HesQL, witheither 1l < g < p<20rp=2<¢
then IT, (X*, B) = II.(X*, B).

) If 1<r<p<2 ond IL(X1,) =IL(X* 1) then X is of
type r.
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Proof. (i): It T e IT,(X*, I) then 7" is order bounded by [7], The-
orem 1.3 and [27], Theovem 1.2 and therefore T* ¢ H®, X" as well. The-
orem 1.5 now gives that T' € I (X*, B).

(ii): Under the assumptions of (ii) we can find & constant K > 1 so that

@ m(T) < Km (T)  for all T e IL,(X*, 1,).

Let (e,) be the unit vector basis of T, and let (7,) be the sequence of
Rademacher functions on [0, 1].

I ()1, € X is arbitrary and T = Z‘m,@ej then it follows from (1),

Maurey—Khintchine's inequality [17] bmd the assumption 1 <r=p<<2
that there is a constant K, so that

@) f}{érj(t)wj\\dt < KIH(;{’ |
<K 3 19587)"]| = Eal Tl < Kama(T)

< KEym,(T) < KKl( Z ll " )W-

fml
(2) shows that X is of typer. m

3. Applications to local structures in spaces of absolutely summing
operators. The results of the two previous sections not only give us con-
ditions on B and X for (H, F) to have the ideal property for all subspaces
F < X but allow us also to use the results to describe the structure of
spaces IT,(H*, I') and other classical operator ideals. In this section we
wish to study this in further detail.

We start with:

3.1. TomoreM. Let 1 < ¢ < p < 2 Hews I, X g-concave and I' a subspace
of X. Then the following statements hold.

(i) If B is a Banach lattice then IT, (B, X) (= IT,(8*, X) ~ IT,(X*, B),
1<8<q) is a Banach lattice under the usual ordering of operators and
under a suitable renorming.

(i) If B and I both have lu.st. then IH(E*, 1) and Ilf(r*
have lu.st.

(iii) If B and I both have wnconditional bases then l[i(E", Iy and
I, (lf‘* » B) hawe unconditional bases as well.

Proof. (i) is clear, since IT,(H*, X)
a Banach lattice in the case considered.

(ii) and (iii) follows from the Theorems 1.7 and 2.4 together with
Theorem 1.12 and Corollary 1.13. m

) both

= BQ, X and the latter is
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‘We note that Theorem 1.5 ensures that if B« QL,, 1< p <2, X is
y-convex for some 7, p’' < 7 < oo and F is isomorphie to a complemented
subspace of X then the eonclusions of Theorem 8.1 hold for I7, (T, E).

From Theorem 1.5, (ii), we obtain a dual version of the above; it
reads:

3.2. THEOREM. Let 2 < p < ¢<< o0, lot Be—s-QL,, and let F' be isomorphic
to a complemented subspace of a g-convex weakly sequentially complete Banach
lattice X. The conclusions of Theorem 3.1, (i) hold for I',(E*, X), (ii) holds

Sfor T4 (B, Fy and (iii) holds for I'y, (B*, F).

Proof. A direct application of Theorems 1.5, 1.2, and Corollary
1.13. =

The result corresponding to Theorem 3.1 in case H = I, looks like
this

3.3. THROREM. Let F' be a Banach space so that F* does not contain (I%)
umniformly.

If F has l.u.st. then II (T, 1,) has Lust. If further F* has an wncon-
ditional basis then II,(F, 1,) has i as well.

Proof. By [8], Corollary 2.2 and Proposition 2.6, F* is isomorphie to
4 complemented subspace of a Banach lattice X not containing (I3,) uni-
formly. Hence X is g-concave for some ¢,1 < g< oo and it follows that
II,(F,1,) is naturally isomorphic to 1,8, F*. Now Theorem 1.12 and
Corollary 1.13 can be applied. m

Remark. The condition that F* does not contain (I%) uniformly
cannot be removed. Indeed, m, (Iy, I,)= B(l,1,) does not have lLu.st.

From. Theorem 3.1 we obtain e.g. that if M and N are Orliez functions
50 that 1< oy <PL <2< af<PP< oo then IT(Ly(0,1), Ly (0,1))
has an unconditional basis. Indeed both Ly«(0,1) and L, (0,1) have
an unconditional basis (the Haar system) and by a result of [1], Ly (0, 1)
embeds isomorphically into L, (0, 1) and Ly.(0, 1) embeds isomorphically
into L,(0,1) for every p with 1< p < off. = Sy - Hence we can apply

Theorem 3.1.

Another special case of Theorem 3.1 is:

3.4. CoroLTARY. Let 1<s<K2Kr< oo and let B be an Z,-space,
B an &-space. Then IT, (8, ') has Lu.st. and it has an unconditional basis
if both B* and T have unconditional bases. The same is true for w, (B, ly) if B
8 an Z£,~8pace, 1. < r = oo,

Proof. The local structure of &,-spaces, [15], show that in order to
prove the statement about Lu.st. it is enough to show that for all » and m
II,(17, ) has an unconditional basis with a constant independent of n
and m. In cage r < oo this follows from Theorem 3.1 with p =" and

-using that I, is isomorphie to a subspace of L;(0,1), and if r = oo then it

follows from Theorem 2.6 and Theorem 1.12. Assume next that F* and F
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have unconditional bases. Again we conclude from Theorem 3.1 that
II,(E, F) has an unconditional basis when r<C co. If # == oo then F* ig
an &-space with an unconditional basis and by [15] that basis is equivalent
t0 the unit vector basis of I;. The conclusion follows now from the second
part of Theorem 2.6 together with Theorem 1.12.

The statements on I7,(Z, 1) follow from Theorem 3.3, m

It was originally proved by Gordon and Lewis that L1 (H, F) has
lu.st. under the assumptions of Corollary 3.4. Schiitt [31] proved that if
max(r, 2)< s then [I,(H, F) does not have GL-lust, (and hence not
Lw.st.). It is not known what happens in the remaining cases.

‘We now turn our attention to the question of the uniform approxi-
mation property (the w.a.p.) for spaces B®,, X where H and X satisty the
conditions of Theorem 1.7. Let us recall that if 2> 1 and ¢: N-N ig
a function then a Banach space & is said to have tlm (4, @)-n.a.p. if for
every n-dimensional subspace F < B there is an operator I' on ¥, which is
the identity on I and so that |7 < 4, rE(T) < @(n). B is said o have
the 2-u.a.p. if it has the (1, p)-w.a.p. for some function ¢. The w.a.p. was
first introduced by Pelezyhski and Rosenthal [24] and has since been
studied by several authors [6], [18]. In [7] the w.a.p. of m-tensor products
was investigated and we shall heve apply the results from there to the
situation of this paper.

Our first result is an improvement (at least formally) of Theorem 3.7
in [7] in the special case considered in this paper.

3.5. THEOREM. Let 1 < g < p < 2 and Be-sL,, X g-concave, or let 1 be
isomorphic to a Hilbert space and X arbitrary or let B be an arbitrary Banach
space and X an Ly-space. There is a constant I so that if B has the a-u.a.p.
and X has the f-u.a.p. then BQ,, X has the (Kaf -+ ¢)-u.a.p. for all e > 0.

Proof. If X is an Ty-ypace it bas the positive w.a.p. and the conclusion:
follows from Theorem 3.7 in [7], and if # is isomorphic to o Hilbert space
the conclusion follows from Theorem 3.8 of [7].

For the remaining case we may assume that actually W < I, (u}
for some measure u.

If B is finite dimensional then wo argue like in [7], Theorem 3.4

=(ii), but agsuming only that X has the f-wa.p. For the operator T
constructed there wo get that IQZ is a hounded oparator on H®,, X with
QT < K|T) < KB, where K is tho constant for the ideal property of
(H, X). The rest of the argument of the paper above then show that B®,, X
hag the Kp-uw.a.p.

If B is infinite dimensional we let ¢ > 0 and lot for overy n, 4, denote
the closure of the set of all n-dimensional subspaces of ¥ in tlw sot of all

n- dJ.mensmnal Banach spaces equipped with the Banach-Mazur distance.
A4, is then. compact and we choose an s-net in it.
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The space ¥ in the proof of Theorem 3.7 in [7] can then be constructed
using only the e-nets chosen above and a general result on embedding:
Banach spaces into Ly-spaces [15] then gives that ¥ embeds isometrically
into L (x). Hence Y®,,X has the (Kp+e)-ua.p. from the first part of
this proof, and the proof of Theorem 3.7 in [7] then shows that B®,, X
has the (Kaf -+ &)-w.a.p. for all 6 > 0.
Remark. Wo note that it follows [7], Theorem 3.6 that if X is r-con-
vex for some L < < oo and g-concave for some ¢ < oo then X has u.a.p.
it and only if it has tho order w.a.p.
As a corollary wo got:

3.6. COROLIARY. 1° Lot L < g<p<20rp =2 and 1< ¢ < 2 and let
Bes Ly, X g-concave. If B and X have the v.a.p. and I is isomorphic to
a complemented subspace of X then II, (B, ) =IT(B*, F), 1 < s < q and
I, (7™, E) have the w.a.p.

2° If Hes Ly has the w.a.p., X is an Ly-space and F is isomorphic to
a complemented subspace of X then IT(E*, F) has the u.a.p.

3° If ™ is isomorplic to a complemented subspace of a weakly sequentially
complete Bamaoh lattice X with the w.a.p. then I, (F, 1,) has the w.a.p.

Proof. 1°: By Theorems 1.7 and 2.4 it is enough to show that B®,, I
has the w.a.p. Theorem 3.5 gives that F®,,X bhas the w.a.p. and from
Corollary 2.7 it roadily follows that TR, F is complemented in FQ,, X and
therefor(a has thoe w.a.p. as well.

: Agsume that X = Iy(u) for sgome measure u. By Theorem 2.6
we got thwt IT(B*, Ly () == (D* Ly (). Sinee Ly () is & band in Ly (u)*™
it readily follows that Q(L’ I/l(,u)) is a complemented subspace of

B(E*, Ll(y)*"') : (B @y Ly (1) ) The latter space hag the w.a.p. since
E*®mL1(,u) has it ([7]) and the w.a.p. is a self-dual property. Hence
Hl(E Ly(p)) hay the w.a.p. This finishes the proof since clearly II,(B*, F)
is complonmnte(l in JT, (B, Ly ().

3°: This can be proved as 1° by using Proposition 1.3. m

Asg a spocial case of Gorollary 3.6 we get:

3.7, OOROLT:A]LY 1° Lot M and N be Orlice fumctions so that 1< off
KBS << afy < pR<< 2. If B is isomorphio to a complemented subspace of
LM(O 1) (ma’ I 48 isomorphic to a complemented subspace of Ly (0, 1) then
(%, 1) and IT,(1™, 1) have the n.a.p.
20ULat L 82K ooandr 8 unless s = 1,2, If I is an L -space
and I is an L-space and X' is complimented in F* then II,(H, ) has the
Wl
Proof. 1°: It follows from a result of Lindenstrauss and Tzafriri [18]
that both A and I have the wa.p. under the assumptions of 1°. Further
if p, g are chosen go that 5 < ¢< p < off then it is readily verified that
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I (0, 1) is g-concave and sinee fy < 2 iti follows from [1] that Ly(0,1)
embeds into L, (0,1). Now Corollary 3.6 applies

9°: Tt follows from [24] that every Z,-space, 1 <P < oo, hag the
w.ap. and hence we just have to verify that it is possible to use Corollary
3.6.

Assume first that 1 < o' < s (L < 7' < 2if s = 2). F* is then isomorphic
0 a complemented subspace of an IL,-space and Fe 1, [15]. Hence Cor-
ollary 3.6 shows that m, (B, F) has the w.a.p.

Tf 1< s < ¢ then again by [18] and our assumptions I is isomorphic
to a complemented subspace of an IL,-space and B*es L. Tlenco again
Corollaxy 3.6 gives that =, (¥, ') has the w.a.p. &

With the methods of this paper we have not been able to determine
whether I7,(%,, Z,) has the n.a.p. for the remaining values of » and ¢ and
we pose the question as an open problem. Of special interest is of course
the case IIy(ly, L), 1<p<2.

Tt follows easily from Theorem 2.6 that if 1 < p < co and F is an
&, ~space, F an &,-space then II,(E, F) bas the u.a.p. Indeed it follows
that IT,(®, F) is isomorphic to a complemented subspace of an L,-space
and hence has the u.a.p. by [24].

4. Some concluding remarks. There are several problems on compo-
sition of order bounded operators which we have mnot touched in this
paper. One of them is:

4.1. ProBrEM. Let B and X be given. Characterize those § € B(X) for
which I®S8 acts as & bounded operator on I®,, X .

This problem is related to the question whether L, ([0, 1], B) has an
unconditional basis when 1< p << oo and F is super-reflexive with an
unconditional basis. Indeed the whole problem is whether the bounded
operator 8 on I, (0, 1), which changes signs of coordinates in the expansions
of the Haar basis, has the property that I®S is bounded on F®,,L,(0,1)
= Lp([o; 1], B).

Another question which is often applicable in Banach space theory
is the following:

4.2. ProBLEM. Given ¥, X and T, T, e #(H, X) so that there is an
operator 8 € B(X) with Ty = 8T;. When does there exist a constunt K so
thats | Tslly, < KNSN L)) ®

There are soveral examples of operators which have the property
in Problem 4.2. Let us here only mention the following:

Let B be a ]?anach space fmd let g, h: [0, 1]H bo two Gaussian

variables so that of lw*g ()Pt < [ le*h(8) 2 dt for all 2% & B*. It then follows
0

1
from [19] that [ lg(IPdt< [ IR(IFds. It wo define (Z,a%)(t) = a*g(),

(T, @) (1) = a*h(f)for all o* & F*andallie [0, 1]then T,, T), ¢ B®,,Ly(0, 1)
and the first inequality above gives that T, = 8T, for some operator § on
I,(0,1) with |8l <1, while the second means that [Tyl < | Tyl

This fact about vector valued Gaussians has many applications
and some of the material used in this paper can be traced back to it.
Another application can bo found in [21]. It can also be used to show
the following:

Lot 1 be a Banach space and {g,) & sequence of independent Gaussian
variables on [0, 1]. 7 is then of type 2 if and only if there is a constant K

n
50 that if T = S,y € B®,,Ly(0, 1) then [T, < Koy ().
A

This result can be considered as a Bapnach space version of Theorem
2.15 in cage the p there is equal to 2.
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On weak restricted estimates and endpoints problems for
convolutions with oscillating kernels (II)

by
W. B. JURKAT* and & SAMPSON (Syracuse, N.Y.)

Abstract. Throughout we consider K (1) = ¢4%/|tP, 0 >0, a # 1,b <1 and
¢ eR. Hore we consider for fixed A, u the function

Mk, py Ky = M4, p) = S;IIJ]{M ¥ (@)] > 2}
n

«wover all “charactoristic” functions yx, with complex signs (i.e. y, is a measurable function
for whiel |yu| = Lon B, |xul = 0 off B and |B| < p (¢ > 0)). We first note that
1
. di
[ B sy | < f 'mz‘ = cﬂl_b:

-

and so if out~—Y < 4 then M (A, p) = 0. And 8o wo assume throughout that A< oy pr—b
for some congtant o), independont of 4 and g (but may depend on K). Under these
conditions (A < ¢;u!=?) we estimate M (A, u) within constant factors from above and
below.

This paper i§ a continuation of part I [3] where we estimated the function
B(A, u) within constant factors from above and below. For fixed 4, u > 0 we set

B w) = swp [ 1@ Kx @) da,
X ¥p
where the sup is taken ovor all “characteristic” functions xs, x, With complex signs.

§ 1. An interpolation theorem with respect to the kernel. Here we
prove the analogue for M of the corresponding theorem for B given in
part . Again wo congider a decomposition of the kernel

I == Iy - Ky
and mako use of the decreusing resrrangement K* of I (if it exists), so
that
I
supU.K(w)x,,(a;)dm‘ = [K*nat (@eR'icR).
Xp 0
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