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In this paper* we show that any isometry f between two subsets F
and F of R", relative to the metric
(%) e(z, y) = max|z;—y,l,

1<i<n

is locally Euclidean, in the sense that £ (minus a Lebesgue null set) can
be partitioned into countably many pieces (each measurable if F is),
on each of which f is an ordinary Euclidean isometry.

It follows easily that if £ and F are measurable, then they have
tho same Lebesgue measure. More interestingly, we also show, for n = 2,
that if F and F are bounded sets (measurable or not), then they are as-
signed the same measure by all Banach universal extensions of Lebesgue
measure.

1. Introduction and statement of results. Let ¢ be the metric in R®
given by (). For E, F < R*, f: E — F is a p-isometry, and F and F are
o-isometric, if f is surjective and

e(f(=),f(y)) = e(x,y) for all &,y e E.

(Isometries relative to the usual metric will now be called Euclidean to
distinguish them clearly from g-isometries.)
This paper is a study of g-isometries and their relation to measure.
The e-isometries of the whole space form a (rather small) subgroup
of the group of Euclidean isometries (see Lemma 1 below), but p-iso-
metries on smaller sets can be quite unlike Euclidean isometries:

Example. Let B = [—1/2,1/2] X {0} and define f: E—R? by

(@, 0)>(x, o?)

* By permission of the first-named author, these results first appeared in the
Ph. D. Thesis (University of Colorado, 1979) of the second-named author.
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(Fig. 1). Since for —1/2 <,y <1/2 we have |r+ 9| < 1, and hence also

e((x, 2%, (¥, ¥?) = max(lz—yl, lo—y|le+y|) = |e—y|
= 9((“"’ O)’(y’o))7

f is a p-isometry.

1/4 Fig. 1
E ' 7(E)

-1/2 1/2 -1/2 | 1/2

Our main result is

THEOREM 1. Let E be any subset of R™ and E the closure of E. There
exist pairwise disjoint closed polyhedral regions Py, P,, ... in R" such that

(a) for any p-isometry f: E—~R" and any ¢ > 1, the resiriction of f to
EnP; is BEuclidean;

(b) EXUJ P; has Lebesgue measure zero.

i=1 o

Condition (b) implies that the “bad” part E\|_J P, of E has measure
zero and is nowhere dense. i=1

Theorem 1 yields easily that Lebesgue measure is p-invariant, i.e.
whenever £ and F are g-isometric measurable sets, they have the same
Lebesgue measure. This is a special case of the main theorem of [3], where
it is proved that Lebesgue measure is o-invariant for any “reasonable”
translation invariant metric ¢ in R™ consistent with the usual topology.

A theorem proved by Banach and Tarski in 1924 should be recalled
here (sce [2]): Two measurable subsets E and F of R™ have the same
Lebesgue measure iff F can be partitioned into measurable parts E,, E,, ..
and F into ¥, F',, ... in such a way that E, and F, have Lebesgue meas-
ure 0 and, for each ¢ > 1, E, is isometric (in the Euclidean sense) to F.

If the set F in Theorem 1 is bounded, then the outer measure of

\U EnP; tends to 0 as n tends to oo. Thus this theorem allows us to

‘st:;dy g-invariance for some finitely additive measures.

THEOREM 2. Any Banach measure in the plane, if restricted to bounded
sets, is o-imvariant. That i3, if E, F < R* are bounded and p-isometric (but
not mecessarily measurable), and u is a universal, finitely additive extension
of Lebesgue measure in R?, invariant under Euclidean isometries, then
p(B) = p(F).

(The first Banach measure was described in [1]. See [4] for a survey.)
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By using linear transformations in a routine way we can extend Theo-
rem 1 (and hence Theorem 2) to metrics arising from norms whose unit
balls are parallelepipeds (parallelograms for Theorem 2). And it is not
hard to adapt the proof of Theorem 1 given below to norms whose unit
balls are some other common polyhedral shapes.

COoNJECTURE. Theorem 1 holds for any translation invariant metric
consistent with the usual topology on R". (P 1264)

We would like to thank Jan Myecielski for criticizing earlier versions
of this paper.

2. Sets on which p-isometries are Euclidean. The strategy for proving
Theorem 1 is first to find a large class of simple sets on which every p-iso-
metry must be Euclidean, and then to show how to divide up an arbitrary
set into countably many such subsets (modulo a very “thin” set).

Definitions. For € R" and y > 0 we define the y-star at » to be
the set {w}u {(wy, ..., 5;+y,...,o,) |t =1,...,n} (Fig. 2).

""(o: 7‘)

(-7'10) - (0, O) ,(7, o)

Fig. 2. The y-star at (0, 0) in R? . 1(0.=2)

The y-dual-cube at = is the convex hull of the y-star at «.

LEMMA 1. Let 8 be a y-star at x € R* and f: S — R" a g-isometry. Then
f 18 Buclidean and f(8) i8 a y-star at f(x).

Proof. The proof is by induction on #. The lemma is trivial in R.
In R*, n>1, f((@,+7y, 2, ...,,) and f((®,—7,,, ..., ,)) lie on op-
posite faces of the cube {p | ¢(p, f()) = }, and so, for ¢ + 1, the point
f((#15 ..., @, y,®,)) lies in a hyperplane parallel to this pair of faces
and passing through f(z). By the induction hypothesis the lemma holds
for f restricted to the (n—1)-dimensional y-star "

{w}u{(wu ey Wik Yy ey @) |0 =2,..., 0},

and now it is easy to check that f is Euclidean on 8 and that J(8) is a y-star.

By way of a puzzle, we mention that it seems as if y-stars are the mini-

mal configurations on which g-isometries must be Euclidean. To be
precise,
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CoNJECTURE. If a subset § of R™ has no more than 2n 41 points and
is not a y-star, then there is a p-isometry from 8§ into R" which is not
Euclidean. (P 1265)

Returning to the business at hand,

LEMMA 2. Let 8 be the y-star at © € R" and E = S a subset of the y-dual-
cube at x. Then any o-isometry f: 8 — R™ has a unique extension to E.
In particular (by Lemma 1), any g-isometry on E is Euclidean.

Proof. It suffices to show that any point in the y-dual-cube at »
is uniquely determined among all points of R" by its ¢-distances to the
points of the y-star at x. In other words, it suffices to show that if for some
ay, dy, dyy dy, ..., d,,d, >0 the intersection of n-cubes

I = Dl{p | 9(1’1 (®1y «ooy B+ 9, ...,m”)) =d‘.}n

“ﬂ{p | oDy @1y ooy Bg—yy ...y 7)) = &)

contains a point p, in the y-dual-cube at z, then, in fact, I = {p,}.
Now the intersection of any n-cube of the form

{P I Q(pr (@1 ooy gy, “‘7wn)) = d}

with the y-dual-cube at x is a part of one of the faces of the n-cube, per-
pendicular to the z;-axis. So if I contains a point p, of the y-dual-cube
at x, then the intersection

{P | Q(P, (24, ---7“’i‘i‘77 cey @ )) = d(ln
ﬂ{P | Q(p’ (@1yeeey @ —, ...,a:,,)) = d;}

must be contained in a hyperplane perpendicular to the x,-axis for each <.
In other words, there is only one possible value for the ¢-th coordinate
of any pel, fori =1,...,n and so I must contain only a single point.

3. Construction of the partition. We are now ready to begin con-
struction of the P; of Theorem 1.

LEMMA 3. Let F be a closed subset of R". There exists F' = F, of Lebes-
gue measure 0, such that for every 6 > 0 and every p € F\F" there is a y-star
at p contained in F, with 0 < y < 4.

Proof. Since a countable union of sets of Lebesgue measure zero has
also measure zero, it suffices to consider bounded sets F.

Language and notation are cumbersome for the ideas we need in R".
We will give the proof for R* — the way to generalize it will be clear.

Let F, = {(u,v) e F |u = o} be the vertical section of F at the
point (»,y), and FY= {(u,v) € F |v =y} the horizontal one. By the
Lebesgue density theorem ([6], p. 17), almost every (linear Lebesgue
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measure) p € F, is a linear density point on F,. By the Fubini theorem
([6], p- 77) almost every (plane Lebesgue measure) (#, y) € F' is a linear
density point on its section F,. Similarly, almost every point (#, y) of F
is a linear density point on FY. Let F' be the set of exceptional points,
8o that every (z,y) € F\F' is a linear density point on both ¥, and F,.

For given 6 > 0 and (x, y) € F pick n, 0 < n < 4, so that all four of
the sets

(m7m+77)x{y}nFy1 (w—n,w)x{y}nlf",,
@<y, y+nnF,, {@xy—n,ynF,

have linear measure greater than 37/4. Rotate the first three of these linear
sets about (x, y) to coincide with the fourth and intersect the four resulting
sets. By the choice of 7 the intersection has positive measure, and so con-
tains a point (z, ¥y —y) with 0 < y < 5. The y-star at (z, y) belongs to F.

Now we can put the pieces together.

Proof of Theorem 1. Again by countable additivity of Lebesgue
measure we may restrict our attention to bounded sets E.

Let P = E, and let F” be as in Lemma 3. For each z ¢ F\F’ and
each y such that there is a y-star at x contained in F let P(w, y) be the
y-dual-cube at 2. From Lemma 3 it follows that the P(z, y)’s form a Vitali
covering of F\F' ([6], p. 109). Consequently, by the Vitali covering theo-
rem, we may pick a countable set of the P(w», y)’s, say P,, P,, ..., pair-
wise disjoint, such that

A(ENF)N\ UJr) =0,
t=1
where A is Lebesgue measure. Then also
=1

Now ¢, and hence f, is uniformly continuous. So f extends to a ¢-iso-
metry f: F->R". Since f is defined on the star corresponding to each P,,
t > 1, it follows from Lemma 2 that f, and hence f, is Euclidean on P;n E.

COROLLARY (see also [3]). Lebesgue measure i8 o-invariant.
Proof. Let B, E' be Lebesgue measurable and f: E — B’ a g-isometry.

Set B, — EnP, for i>1, Hy = E\{) B, and E, — f(B,) for i>o.
Theorem 1 gives A(E;) = A(E,) for z>‘={ Since A(E,) = 0, we get A(HE,)
> A(B,) by defauls. (Note that By — B'\|JF; is measurable.) So A(E)
< A('). By symmetry, A(H) = A(E).
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Actually, we do not need to assume that E’ is measurable. f is Vn-
Lipschitz, and this together with the measurability of # implies that E’
is measurable.

Proof of Theorem 2. Let a bounded subset B of R’ and a p-iso-
metry f: B — R? be given. Let P,, P,, ... be given as in Theorem 1, set
B; =EnP; for i>1, and set

Eo = E\U Ei‘

t=1

Since E is bounded and the P, are pairwise disjoint, we have
AM{UP)—>0 as n—>oo.
i=n
Hence given ¢ > 0 we can pick » so that

).*(OE,) <e

i=n

(where A* is Lebesgue outer measure).
Let u be a finitely additive universal extension of Lebesgue measure,
invariant under Euclidean isometries. We get

n—1

WFE)+e> 3 (B +e> 3 u(fE)+u(U B)

1=1 =1

=2 wB) +u(U B) = (U B) = p(UE) = u(®.
Since ¢ is arbitrary, u(f(E)) > u(E). By symmetry, u(f(E)) = u(E).
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