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On polynomials taking small values at integral arguments
by

RoBERT0 DVORNICICH and UMBERTO ZANNIER (Pisa)

1. Imtroduction. It is well known (see for example [5], problems
114, 190) that a polynomial with integral coefficients whose valoes at
integers are kth powers is in fact the kth power of a polynomial with
integer coefficients.

This theorem has been generalized and improved in yarious directions
(see for instance [27, [4], [6]). In particular, Davenport-Lewis—Schinzel
have shown that if every arithmetical progression containg an integer @,
guch that the equation F(®,,¥) = 0 has an integral solntion y,, where
P e Q[X, Y], then there exists a polynomial ¢ € Q [X] such thet F{w, g(z))
= Qidentically.

Suppose now that the valnes of the polynomial f(z) are not just kth
powers, but, in some sense, “near” to %th powers: what can then be said
about the polynomial f¢ Is it “near” to the kth power of a polynomial ¥

A question of this kind was positively answered by Matthews [3],
who showed that if f e Z[X] has positive leading coefficient and degree
at least two, then the condition

fln) =b4-o(n), neN\E&

where b* is the integral %th power nearest to f(n) and ¢ is a sufficiently

‘small set, implies

= (g@)*+a

identically, for some g € Z[X] and a e Z.
More generally we observe that, if a is a positive integer, then there
exists an integer b such that

a=0+R

where B < b*~1, Then our question becomes interesting when “near” to &
kth power means that f(n) = b*-+ R, where B, grows less rapidly than
bk«-l
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We may formulafe these conditions assuming that the polynomial
Bz, y) = y*~Ff(@) has, for fixed @,, not just an integral zero, but a good
approximation to zero, i.e.

i1 or
LB (20, 9o}l = W5 —Flwo)l = | Byl = o(g5™) = o ay
In the direction of [2], we have then a nabural generalization (see

Remark 2 below) of this preblem assuming that, for all @, in some set,
the inequality

(o Yo)

B (209, )| = 0( sup = (my, é‘)[) for @o—oo

[E-yl<1
has an integral solution g,. We shall show by entirely elementary means
that these assumptions lead in fact to the expested consequences.

Before stating our results we introduce some notation. If # is a real
nnmber and & is a positive infeger, |lx]; shall denote the distance of @ from
the nearest Lth power, '

], = min | —m”|

meZ
setting, as usual, 7| = lz|,.
In analowy with thls, we shall write, for g e C[X],

lglly = mm deg(g B,

Hurther, if £ is any finite set, let |931 denote the number of its elements,
while if & is a sequence of integers, we set

(N u{aex,o\agzvy
and - _ - )
- o (N - . o (N
d(«) = limsup - | ¥)] , Al =_1im1nf—l—g
N0 N - . N—soo

calling these numbers upper, resp. lower, asymptotic c'Lensﬁ:y of .
Onr results are the following:

TEEOREM. Let F e R[X, ¥Y]. Assume that & is a sequence of natural
numbers with d{ ) >0 such that, for a e o we may find integers gy{a)
satisfying

F
@
5 ()

1) |F(a,y(a)){ =o( sup
[E—w(@) <1
Then there exist a polynomial P with mtzoml coefficients and a sequence
B o o such that

(2 - E{d\ﬂ) =0

icm

' may be substituted with the simpler
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and
(3) | F(b, P (b)) W=<|F{p, (B, @) for alt be 4.

CorOLLARY. Let fe R[X] and o o sequence of positive integers. such
that d(.) > 0. Assume that, for all a e &, we have

{4) fla) =g (w)-rﬂ(y’“'l(a)):
for some integers y(a). Then there exisls an titeger D such that

D5 (), ~ o nMe

00

Jor all ne N,
where 6 > 0.

2. Remarks.

1. Replacing condition (1) by

Fla, y(a)) =0

we obtain the same conclusion asin the above mentioned theorem of Daven-
port-Lewis—Schinzel. However there exist sequences with positive upper
asymptotic density which do npt intersect infmitely many arithmetical
progressions, and conversely, so neither statement may be directly derived
from the other.
2. As observed in the introduction for the particular case when
Pz, y) =y*— f{#), condition (1) eannot be replaced by

| F(a, y(a))| < sup
15~yla)l<1

B
Fym (a, 5);-

In fact, suppose that #(n, y) has a real zero 4, for all suffmlently large n.
Then, setting y{n) = [1,], we have :

oF
7o,y = ty(m)~ 4 )

oF
— (0, )1
dy

whers y(n) < £ < 4,, but the conclusion is in general not truoe.
3. In the particular case F(z, y) = y* —f(=), the sup condition in (1)
oF ' )

{1a) |7 (@, 5

(2, y(a))

vl =of| 5

In the general case, however, this would lead to a wealer theorem. To see
this consider the polynomial

Flw,y) = a(y—a)+1L.

It is easily seen that (1) is satisfied with y(a) = @ for all a e N, while,

for any choice of y(a), (1a) is not true.
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4. 'We observe that the sup in (1) may be taken over any neighborhood
of y{n} of fixed length. In fact let P be any polynomial of degres k. From
Wewton’s interpolation formula it follows that

sup [P ()| < sup |P ()] < Csup P ()]

|zj<8 lxl<.4 J|<d
where A 3= 8 > 0 and € depends only on A4, 4§, k.

5. We point out that (2) is essentially best possible, in the sense that,
given any function g(N) which tends to zero, one cannot improve (2) to
(22) (N B)N)| < Ng(N).

To prove thiz consider
F(w,y) = (y*—)(ay — et +1).
Choose now, as i8 certainly possible, a function (k) such that

(1) 7{&)—=0 ag k->oo,

(i) 3 kr(k)> og'?(w) o,

Vs
Now we set & = N and .
kit n—k < kR,

y(n) =
yin) n?  otherwise.

It is not difficult to verify that for cvery polynomial P the inequality
| F (n, y(n))| < |F{m, P(n)|

holds whenever |n—k%| < kv (k) and % is large enough; moreover the con-
ditions of our theorem are clearly fulfilled in view of (i). Now, recalling
the meaning of £, this means that
ANE o ) [Br—Tr(k), B2+ ke (k)]
Fzky
whence

(D) (@) > D kr(k)+0(Va) » g’ (w) +a*
k<y'z
thus eontradicting (2a).
3. Proofs. The following result will play an important role in the
sequel,

Lemta. Let d be a positive integer and f e C[XU%). Assume that there
exists a sequence of « N with () > 0 such that

If(@)li-0

as ac .
Then feQ[X].

icm

(8) m}n y (@) — a; (@) >0
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Proof. We write f{z) = @™+ aa® Wy ||| L4, @y £ 0, and set,
for fixed d, I{f) = ay, 6(f) =5k

First we note that necessarily §(f) = O(modd), since otherwise the
sequence {f(n),n e N} would be uniformly distributed modl (see [T],
p. 382, 8 Anwendung for a proof); similarly, we also obtain that {fie@
([T, p. 380, 5. Anwendung).

Now suppose that f e C[X*] satisties the hypotheses of the lemma;
but f ¢ Q{X] Then we may certainly write

f@) = p(@)/g-+g(x)

where g € N, p 6 Z{ X1, and either I{g) ¢ Q or §(g) == 0(mod 4). Pick a con-
gruence class {c-+gN}modg such that &' = &N {0+ ¢N} has d(') > 0.
Set g1(w) = g(x)+p(0)/g; then, if 4’ € &' we have trivially

IF (@) = lgaia’)j—0

a contradiction, since either I(g,) ¢ Q or 8(g,) = 0(modd). =

We may now begin the-preof of the theorem, recalling some basie
facts about Puisenx expansions (see for instance [1], pp. 47-52). Let
FelC[X, Y] and D == degyF. Then we may write

D
Flo,y) =) [ [ y— ai=)

f=1

where

o (@) = 2 aivm(ki“ﬂ)ma oy + 0, i=1,..,D,
=0 -

for some %; ¢ Z, d € N, the series being convergent outside a sufficiently
large cirele. Applying this to our polynemial F, we first show that

for a e .

In fact from hypothesis (1) We'hzwe, for large ae o,

D

(6) |i]j(y(a>—ai(a>)| =of s |3 | [{e=q @)}

B—u(a)l<1 " §37 j 3

= o( SUp  max
i—yla) <t 1<t

16— g;(a)i).

iR

Assﬁme that (5) does not hold; then there exist an infinite sequence {a;}
= « and §> 0 such that

min jy (a,) — o;{(a)| = &
2
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It follows that

[ e~aya < [ [ e vian+wie) - laolt

& i+
1 . 1\ -
<[Hwe-sanfi+ 3 <F1+3) " [T waw—a e
T foul

and this contradicts (6). Write now
Ei

o0
a (@) = 2 i 2 aa‘.ffi+vw“wd = Py(a!?) ~ 0 (@711%).
u=1 _

v=0

Trom (5) we derive immediately
7 min fy (@) —P;(a"%)| = 0(1) {for ae .
i

Rearranging eventually the indices, suppose that

By(@) = Py’ e Q[X] fori=1,..., D,

(this set may possibly be empty), and
Ry(o) ¢ Q1X] for ¢ = D,+1,...,D.

From the lemma it follows that the minimum in (7) ean be attained at
i2 D,+1 only on a sequence o' = o with d(«') = 0. This implies in
particular that D, > 1. We show that, for large b & &\ o',

(8) min fy (b) — By (B)| = 0.

. <Dy .
In fact let » be & common denominator for all the coefficients of the Rs.
Fixb e o™\ o'; then either (8) is true or '

min |y (b) — R, (b)] = 1/r,
<Dy -

but this is ineonsistent for large b in view of cur definition of «'. Next
define an order relation in C[X] by

PPy it |Py(m)| < |Py(m)] for all sufficiently large m e N,

Then it ix clear that, for every pair of polynomials P,, P,, at least one
of the relationg P, < P,, P, < P, holds. Chooge then R;, with § < Dy, such
that F(s, B;(#)) is minimum with rvespect to <. Now we are finighed :
nfact, set # = o\ (o' U[1, L), where L is large; then, for b € & we have

B (b By )| < min|F (b, B@)) < [F (b, y(2)
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the last inequality being 2 consequence of (8); moreover
d{ANBY< d(LY+A([L, L]) = 0.

Proof of Corollary. Applying the theorem to F(z,y) = y*—f(x),
which obviously satisfies (1), we obtain the existence of a polynomial
P e Q[X] such that

(9) [f() —P%(n)| = o(P*(n)
for all » in some infinite sequence &%, whence for all # & N. Setting
| R(#) = f(o) —P*()

we contend that

k-1
(10) 1l = deg R 7 degf-1.
In fact from (9} we derive
: E—1
(11) 1l < deg R < degf—1.

Now choose 8 & C[X] such that deg(f— &%) = || flx; (10) will be proved by
showing that §* = P*. Assume the contrary; then '

= : _ F—1
deg(§*—P¥) = deg [ [ (8— ™ P) > (k—1)degP = ‘ -~ degf
T=0 .

while it follows from (11) that

k-1 '
degf—1
k

deg(8*—P") = deg({§*—f} -+ {f P} <

and we have a contradiction. . _
Write now P(a} = P,;{2}/D, where P, € Z[X] and, for n ¢ N, pick
an integer g(n) such that

|D¥f (n) — g*(n)] = |D*f(n)ll.
We have ' -

|DEf (1) — g* ()] < | DEf(n) —PE(m)] = o(PF'(n))
and thug we obtain
1g* (n) —PE(n)] < g7 (n) — DEf(n)]+ | D5 (n) — P¥{(n)] = o(PF(n}).

On the other hand

. /2 "
9% (w) - PE(m) = | [ ] (gw)— = y(m)| > Ig(m) —Po(m)[ 12w
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whenee
|2y (m) —g(n)| = o(l}.

This implies, for large @, P;(n) = g(n). Now the result is achieved, as
follows from the relation

WD*F ()l = |D*F(m)— gF(n)] = LDFf(n) —PE(n)} ~ o-ndfle.,
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Primes in arithmetic progressions

by

E. Fouvey (Talence) and H. Twaxtec (Warszawa)

1. Introduction. Statement of results. Tiet @ and ¢ be coprime integers,
g = 1 and for any > 2 Iet z(2; ¢, @) be the number of primes < @ congrusnt
to e modg. One of the hasic and important problems in anaiyfie thecry
of numberg iy that of proving an asymptotic formula for =(x; ¢, ) that
would hold, depending on », for meduli g as large as possible.

The classical prime number theorem of Slegel and Walfisz states that
if 4 is a given positive number and ¢ < (logz)? then

1
P 10))

where ¢ and the constant implied in the gymbol O depend cn .4 alone (nob
effectively computable if A > 2). A mention should be made of the two
conjectures

liz-+ O (wexp(— oV loga))

w(w; gy a) =

n(z; g, a) = liz-+O(x'**), Great Riemann Hypothesis (GRH),

1
(9)

(25 ¢, @) . ]jw'-}l-.O(g‘”Zm”“"’)l, H. L. Montgomery’s Hypothesis,

(49

the first one giving an asymptotie formula for q < @7 and the latter
for g < #*3° (ef. [15]), neither of these relations is expected to be proved
in & near future.

With the development of Brun's and Selberg’s sieve methods it bebéﬁle' |

motivated 2nd popular to investigate statistical resulty which weuld
hold for “almost all” ¢’s in wider ranges. After pioneering works ¢f Yu. V.
Linnik [13] and A. Renyi [18] and some others [17], [1] in 1965 B. Bom-
bieri [2] and A. I, Vinogradov [21] proved a mean-value theorem which
states, in a form given by Bombieri, that for any 4 > 0 the following
holds . ;

iyt < a(logz) ™

1
-’ﬂi(?}, g, a)— ol0)

—
max max
= [a,q]zl. yEg



